Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

IS 4736 (1986): Hot-dip Zinc Coatings on Mild Steel Tubes
[MTD 7: Light Metals and their Alloys]

“जाने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

“ज्ञान से एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda
“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard

SPECIFICATION FOR
HOT-DIP ZINC COATINGS ON
MILD STEEL TUBES

(First Revision)

Third Reprint AUGUST 2001

UDC 669.586.5 : 669.141.24-462

© Copyright 1987

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Gr 2

March 1987
AMENDMENT NO. 1 MAY 1989
TO
IS : 4736 - 1986 SPECIFICATION FOR HOT-DIP
ZINC COATINGS ON MILD STEEL TUBES

(First Revision)

(Page 4, Note under clause 5.1) — Substitute the following for the existing note:

'Note — Mass of zinc coating shall not be less than 400 g/m² as determined from the average result of two specimens taken from opposite ends of tube selected for testing. The lower of the two values shall not be less than 360 g/m².'

(SMDC 28)

Reprography Unit, BIS, New Delhi, India
AMENDMENT NO. 2 JANUARY 2001
TO
IS 4736 : 1986 SPECIFICATION FOR HOT-DIP ZINC
COATINGS ON MILD STEEL TUBES
(First Revision)

(Page 4, clause 3.1) — Substitute the following for the existing:

‘3.1 Quality of Zinc — Zinc used for galvanizing shall conform to any of the
grades specified in IS 209 : 1992 Zinc ingot (fourth revision) or IS 13229 : 1991 Zinc for galvanizing.’

(MTD 20)

Reprography Unit, BIS, New Delhi, India
AMENDMENT NO. 3 MAY 2002
TO
IS 4736 : 1986 SPECIFICATION FOR HOT-DIP ZINC
COATINGS ON MILD STEEL TUBES
(First Revision)

(Amendment No 1) — Withdrawn

(Page 4, clause 5.1) — Substitute the following for the existing

'5.1 Mass of Zinc Coating — For tubes with thickness up to 6 mm, the
minimum mass of zinc coating, when determined on a 100 mm long test piece
(see 6.2) in accordance with IS 6745 1972‡ shall be 360 g/m²

NOTE — Mass of zinc coating shall not be less than 360 g/m² when tested on two specimens
taken from opposite ends of the tube selected for testing.

(Page 5, clause 5.4) — Substitute the following for the existing

'5.4 Uniformity of Galvanized Coating — The galvanized coating when
determined on a 100 mm long test piece (see 6.2) in accordance with IS 2633
1966* shall withstand 5 one minute dips '
AMENDMENT NO. 4 NOVEMBER 2007
TO
IS 4736 : 1986 SPECIFICATION FOR HOT-DIP ZINC COATINGS ON MILD STEEL TUBES

(First Revision)

(Page 3, clause 1.1) — Delete ‘covered in IS 1239 : (Part 1)-1979† and IS : 1161-1979‡’.

[Page 4, clause 5.1, first line (see also Amendment No. 3)] — Substitute ‘tubes of any thickness’ for ‘tubes with thickness up to 6 mm’.

(MTD 24)

Reprography Unit, BIS, New Delhi, India
Indian Standard

SPECIFICATION FOR
HOT-DIP ZINC COATINGS ON
MILD STEEL TUBES
(First Revision)

Hot Dip Sprayed and Diffusion Coatings Sectional Committee, SMDC 28

Chairs:

Chairman
Shri V. R. Subramanian

Representing
Indian Hot Dip Galvanizers' Association, New Delhi

Members
Shri V. K. Agrawal
Shri N. G. Sharma (Alternate)
Shri P. K. Banerji

Hindustan Aluminium Corporation Ltd, Renukoot

Shri J. N. Bhatlaharya
Shri M. Y. Borger
Shri A. Bhattacharya (Alternate)

National Thermal Power Corporation Ltd, New Delhi

Dh. Chakraborty

National Test House, Calcutta

Chemist & Metallurgist

Ministry of Defence (DGI), New Delhi

Assistant Chemist & Metallurgist (Alternate)

Usha Martin Industries Ltd, Ranchi (Bihar)

Chief Engineer (Trans)

Ministry of Railways

Shri J. C. Enay

Gujarat Electricity Board, Vadodara

Executive Engineer (Alternate)

Shri G. Ganeshan
Shri B. G. Sodhi (Alternate)

Steel Authority of India Ltd (Bokaro Steel Plant),
Bokaro Steel City

Shri Brijlal Khastriya (Alternate)

Kamani Engineering Corporation Ltd, Bombay

Steel Authority of India Ltd (Rourkela Steel Plant), Rourkela

Shri J. N. Bhambry (Alternate)
Shri M. L. Khullar
Shri P. K. Banerjee (Alternate)
Shri Ramesh Chandra
Shri Darshan Singh (Alternate)
Dr. M. D. Maheshwari

The Tinplate Co of India Ltd, Golmuri, Jamshedpur
The Indian Steel and Wire Products Ltd,
Jamshedpur

Shri K. R. Natarajan (Alternate)

(Continued on page 2)

© Copyright 1987
BUREAU OF INDIAN STANDARDS

This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.
(Continued from page 1)

Members

Shri S. Mathur

Shri P. G. Mukherjee

Dr I. Mukherjee

Shri B. N. Singh (Alternate)

Shri S. N. Banerjee

Dr A. R. Kiskar (Alternate)

Shri D. Paul

Shri L. Pugazhenthi

Shri S. N. Singh

Shri Pinaki Ghosh (Alternate)

Shri N. K. Singhal

Shri A. Sengupta (Alternate)

Shri J. L. Soni

Shri M. R. Doctor (Alternate)

Shri K. Raghavendra, Director (Struct & Met)

Representing

Directorate General of Technical Development, New Delhi

Indian Posts & Telegraphs Department, Calcutta

The Tata Iron & Steel Co Ltd, Jamshedpur

Zenith Steel Pipes Ltd, Bombay

Guest, Keen, Williams Ltd Calcutta

Indian Lead, Zinc Information Centre, New Delhi

1MC Steelal Ltd, Calcutta

The Indian Iron and Steel Co Ltd, Burnpur

Special Steel Limited, Bombay

Director General, ISI (Ex-officio Member)

Secretary

Shri S. K. Gupta

Deputy Director (Metals), ISI

Hot Dip Galvanizing Subcommittee, SMDC 28 : 1

Convener

Shri V. R. Subramanian

Members

Shri L. Pugazhenththy (Alternate to Shri V. R. Subramanian)

Shri V. P. Anand

Shri S. N. Singh (Alternate)

Shri B. D. Bahl

Shri J. S. Bedi

Shri A. K. Sohbi (Alternate)

Director (Transmission)

Deputy Director (Transmission) (Alternate)

Shri D. Dutta

Shri A. K. Ghala

Shri S. Kumar (Alternate)

Joint Director (Chem)

Joint Director (II) - I (Alternate)

Shri Vijay Kapoor

Shri R. C. Mahajan

Shri Attar Singh (Alternate)

Shri B. Mahapatra

Shri S. N. Sinha (Alternate)

Indian Hot Dip Galvanizers' Association, New Delhi

EMC Steelal Ltd, Calcutta

Hydel Designs Directorate, Chandigarh

Hope's Metal Windows (India) Ltd, Calcutta

Central Electricity Authority, New Delhi

The Indian Tube Co Ltd, Jamshedpur

The Fort William Co Ltd, Calcutta

Ministry of Railways

Guest, Keen, Williams Ltd, Howrah

The Indian Steel & Wire Products Ltd, Jamshedpur

Steel Authority of India Ltd (Rourkela Steel Plant), Rourkela

(Continued on page 6)
Indian Standard

SPECIFICATION FOR
HOT-DIP ZINC COATINGS ON
MILD STEEL TUBES
(First Revision)

0. FOREWORD

0.1 This Indian Standard (First Revision) was adopted by the Indian Standards Institution on 28 August 1986, after the draft finalized by the Hot Dip Sprayed and Diffusion Coatings Sectional Committee had been approved by the Structural and Metals Division Council.

0.2 The hot-dip galvanizing process is very widely used for obtaining protection against corrosion of a large variety of ferrous products. This standard has been formulated with a view to achieving efficient and economic protection of steel tube by a hot-dip galvanized coating of adequate and uniform thickness.

0.3 This standard was first published in 1968. In this revision, the requirement of the quality of zinc for the purpose of galvanizing has been modified and also the purity of zinc in the galvanizing bath has been specified to ensure the better quality of zinc coatings. Reference has also been made for the guidance of manufacturer and purchaser for rejection/acceptance of the galvanizing defects, in 5.2.

0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS : 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard covers the requirements for zinc coating applied by hot-dip galvanizing on mild steel tubes covered in IS : 1239 (Part 1)-1979† and IS : 1161-1979‡.

*Rules for rounding off numerical values (revised).
†Mild steel tubes, tubulars and other wrought steel fittings: Part 1 Mild steel tubes (fourth revision).
‡Steel tubes for structural purposes (third revision).
2. SUPPLY OF MATERIAL

2.1 General requirements relating to the supply of material shall conform to IS: 1387-1967.

3. GENERAL REQUIREMENTS

3.1 Quality of Zinc — Zinc containing at least 98.5 percent by mass should be used for the purpose of galvanizing, or the molten metal in galvanizing bath shall contain not less than 98.5 percent by mass of zinc.

3.2 Galvanizing — The steel tubes may, as far as practicable, be galvanized in accordance with IS: 2629-1985.

4. MANUFACTURE

4.1 Basis Metal for Tubes — Unless specified at the time of ordering, tubes shall be manufactured from mild steel and shall satisfy the conditions laid down in the relevant standards for tubes. Some alloy steels and carbon steels other than mild steel may present special difficulties in galvanizing. In such cases, the standard shall be applicable only after agreement between the galvanizer and the purchaser.

5. COATING REQUIREMENTS

5.1 Mass of Zinc Coating — For tubes with thickness up to 6 mm, the minimum mass of zinc coating, when determined on a 100 mm long test piece (see 6.2) in accordance with IS: 6745-1972, shall be 400 g/m².

 Notes — The mass of zinc coating shall be not less than 400 g/m² as determined from the average result of two specimens taken from opposite ends of tube selected for testing.

 5.1.1 The mass of coating expressed in grams per square metre shall be calculated by dividing the total mass of zinc (inside plus outside) by the total area (inside plus outside) of the coated surface.

5.2 Freedom from Defects — The zinc coating shall be reasonably smooth and free from such imperfections as flux, ash and dross inclusions, bare patches, black spots, pimples, lumpiness, runs, rust stains, bulky white deposits and blisters. Guidance for rejection/acceptance of these defects have been prescribed in Appendix A of IS: 2629-1985.

 5.2.1 Small black spots may be repaired as prescribed in Appendix A of IS: 2629-1985.

 5.2.2 Unless a passivation treatment is specified, some white rust may be found on the tubes. Guidance for rejection/acceptance has been prescribed in Appendix A of IS: 2629-1985.

*General requirements for the supply of metallurgical materials (first revision).
†Recommended practice for hot-dip galvanizing of iron and steel (first revision).
‡Methods for determination of mass of zinc coating on zinc coated iron and steel articles.
5.3 Free Bore Test — If required by the purchaser, a rod 230 mm long and of appropriate diameter as given below shall be passed through relevant nominal bores of the sample tubes to ensure a free bore:

<table>
<thead>
<tr>
<th>Nominal Bore of Tube After Galvanizing</th>
<th>Diameter of Rod to be Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
</tr>
</tbody>
</table>

5.4 Uniformity of Galvanized Coating — The galvanized coating when determined on a 100 mm long test piece (see 6.2) in accordance with IS : 2633-1986*, shall withstand 4 one-minute dips.

5.5 Adhesion Test — Galvanized tubes up to and including 50 mm nominal bore, when bent cold through 90° round grooved former having radius at the bottom of the groove equal to 8 times its outside diameter, shall not develop any crack in the coating.

5.5.1 The adherence of zinc coating on tubes above 50 mm nominal bore, shall be determined by the pivoted hammer test given in IS : 2629-1985†.

6. SAMPLING AND PREPARATION OF TEST SPECIMEN

6.1 The sampling shall be as given below:

<table>
<thead>
<tr>
<th>Nominal Bore</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 25 mm</td>
<td>1 tube; 1,000 tubes or part thereof</td>
</tr>
<tr>
<td>Above 25 mm</td>
<td>1 tube; 500 tubes or part thereof</td>
</tr>
</tbody>
</table>

6.2 Test specimens shall be cut approximately 100 mm in length from opposite ends of the lengths of tube selected for testing. Before cutting the test specimen, 50 mm from both ends of the sample shall be discarded.

7. RETEST

7.1 Should any of the test pieces fail to pass the requirements of this standard (see 5), two further samples, from the same batch, shall be selected for testing. Should the test pieces from both these additional samples pass, the batch represented by the test samples shall be deemed to comply with the standard. Should the test pieces from either of these additional samples fail, the batch represented by the test samples shall be deemed not to comply with this standard.

*Method for testing uniformity of coating on zinc coated articles (second revision).
†Recommended practice for hot-dip galvanizing of iron and steel (first revision).
(Continued from page 2)

Members

Shri S. Majumdar

Development Officer (HME) (Alternate)

Shri M. S. Mehta
Shri P. G. Mukherjee
Shri K. Mitra (Alternate)

Dr T. Mukherjee
Shri S. Neelakantan
Shri B. A. Desai (Alternate)

Shri N. D. Parikh
Shri A. Sengupta
Shri J. L. Soneji

Shri M. R. Doctor (Alternate)

Shri K. M. Taneja

Shri G. P. Gupta (Alternate)

Representing

Directorate General of Technical Development, New Delhi

General Engineering Works, Bharatpur, Rajasthan

Posts & Telegraphs Department, Calcutta

Tata Iron & Steel Co Ltd, Jamshedpur

Zenith Steel Pipes Ltd, Bombay

Kamani Engineering Corporation Ltd, Bombay

The Indian Iron & Steel Co Ltd, Burnpur

Special Steel Ltd, Bombay

Directorate General of Supplies and Disposals, New Delhi

Tube Galvanizing Panel, SMDC 28:1/P-2

Convener

Dr Rajendra Kumar

National Metallurgical Laboratory (CSIR), Jamshedpur

Members

Shri S. C. Anand
Shri Sudarsh Kumar Batra (Alternate)
Shri S. R. Bhogal
Shri C. D. Kediyal (Alternate)
Shri D. Dutta
Shri Neelakantan
Dr A. R. Keskar (Alternate)
Shri K. M. Shah
Shri Gopal Patel (Alternate)
Shri K. M. Taneja

Shri G. P. Gupta (Alternate)

Bharat Steel Tubes Ltd, Haryana (Alternate)

Khandelwal Ferro Alloys Ltd, Nagpur

The Indian Tube Co Ltd, Jamshedpur

Zenith Steel Pipes and Industries Co Ltd, Khopoli

Gujarat Steel Tubes Ltd, Ahmedabad

Directorate General of Supplies & Disposals, New Delhi