
Interface modes in topologically protected edge states using hourglass lattice based metastructures

❖ From the analytical results obtained, one can conclude that the localized interface mode obtained

within the bandgap is dependent on non-dimensional h/t ratio and lattice cell angle 𝜽𝑪 of the

different classes of hourglass metastructures.

❖ From this foundation, one can envisage being able to design an hourglass based lattice

metastructure as a building block for obtaining the topological interface mode.

❖ The interface mode is achieved successfully by placing the mirror copies of the left sublattice and

right sublattice can be strategically placed and used for the potential purpose of wave guiding at

precise frequency and energy harvesting.

❖ The possibility of wave propagation at specific frequencies within the bandgaps is strategically

achieved by defining lattice-dependent stiffness parameters at the interface modes. The considered

configurations define a framework for introducing lattice-based imperfections in the continuous

elastic structure that makes it potential engineering relevance.

❖ The interface mode obtained with the help of regular honeycomb lattice is exactly obtained at the

center of the bandgap which can be used for guiding the wave at that particular frequency by

incorporating desired values of mass and springs involved in the system.

❖ The improved functionality of auxetic lattice has been observed by incorporating them into the

dome shape of the hourglass structure, making re-entrant lattice suitable we can get the interface

mode easily available at any location in the bandgap from left end of the bandgap to the center of

the bandgap.

CONCLUSION

1. Gupta, V., Adhikari, S., & Bhattacharya, B. (2020). Exploring the dynamics of hourglass shaped lattice

metastructures. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-77226-4

2. R. K. Pal, J. Vila, M. Leamy and M. Ruzzene. Amplitude-dependent topological edge states in

nonlinear phononic lattices. Physical Review E, 2018. https://doi.org/10.1103/PhysRevE.97.032209

REFERENCES & ACKNOWLEDGEMENTS

METHODOLOGY

INTRODUCTION

Figure 1. Hourglass shaped lattice metastructures, a combination of two domes d1 and d2 joined by smooth

spline surface to avoid stress concentration. The different hourglass structures shown having different lattice

namely regular honeycomb and auxetic hourglass respectively.

RESULTS

• The study of topologically protected phenomena in materials and metamaterials is an active area of

research that draws inspiration from quantum systems, and it has been quickly extended to other

classical areas of physics, including acoustic, photonic, optomechanical, and elastic media.

• The shape of the hourglass structure in itself is a fascinating design that contains a combination of

two oppositely oriented coaxial domes. For more design complexities, this configuration enables us

to consider two standard lattices based on regular honeycomb and auxetic (re-entrant structure).[1]

• We have expanded the design space of metastructures by integrating the advantage of lattice

geometry with the enhanced tunability of the hourglass shape.

• The unique properties achieved in these media, if the part of a crystalline structure is replaced with

an arrangement that is associated with a different value of the invariant, not only will certain

frequencies be localized to the interface (as predicted by the classical theory for crystals with

defects) but this behaviour will be stable with respect to imperfections.

• These eigenmodes are known as edge modes, and we say they are topologically protected to refer to

their robustness. This study introduces hourglass-based invariants to the periodic structures. Such

metastructures are based on dome curvatures, suitable for auxetic lattice, and generates different

stiffness values.

• The wave propagation at certain frequencies within the isolation (bandgaps) can be precisely

achieved by altering the stiffness parameters with the mean values using hourglass invariants.

Figure 3. Variation of gamma (𝛾) parameter within the limits of the bandgap showing the band inversion.

Figure 5. (a) Natural frequency of the mode (mass) number corresponding to the interface mode frequency in

bandgap corresponding to gamma (𝛾) > 1 topological chain.

(b) Frequency response function of one-dimensional topological chain having Regular Honeycomb hourglass

attached at the adjacent sides of the interface mass exhibiting a localized interface mode within the bandgap which is

shifted towards left side from the center of bandgap. Considering the values as 𝑚1 = 𝑚2 = 𝑚 , 𝛾 = - 0.4 , mean

stiffness value 𝑘 = 1.

Figure 6. (a) Natural frequency of the mode (mass) number corresponding to the interface mode frequency in bandgap

corresponding to gamma (𝛾) < 1 topological chain.

(b) Frequency response function of one-dimensional topological chain having Auxetic hourglass attached at the

adjacent sides of the interface mass exhibiting a localized interface mode within the bandgap which is shifted towards

left side from the centre of bandgap. Considering the values as 𝑚1 = 𝑚2 = 𝑚 , 𝛾 = - 0.4 , mean stiffness value 𝑘 = 1.
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• Symmetry Breaking in Topological Metamaterials

• Considering a finite lattice of one-dimensional spring mass chain, a non-trivial mode is obtained at 

the interface where left and right sublattice are joined with each other. In the diatomic chain the 

values of the masses are identical such that 𝑚1 = 𝑚2 = 𝑚, while the stiffness 𝑘1and 𝑘2 are 

alternating in such a way that one is having stiffness higher than the mean value and the other is 

having stiffness lesser than the mean value.[2]

Figure 2. Inversion symmetry breaking at the interface mass which acts as a mirror for the left sublattice and right

sublattice. Two sublattices appear as mirror copies of each other about the interface mass. The interface mass would

encounter a localized interface mode within the bandgap in the lattice.

• The governing equations for a unit cell p of the sublattice on the left of interface is given by

• For a unit cell p on the right sublattice the equations of motion are given by

• The governing equation for motion of interface mass is given by

• The equations are normalized by writing the spring constants as 𝑘1 = k(1 + γ) and 𝑘2 = k(1 - γ), 

with γ = stiffness parameter and  k = mean stiffness

• A nondimensional time scale 𝜏 = Τ𝑘 𝑚 𝑡 is also introduced to express the equations in 

nondimensional form.

• As gamma varies from -1 to 1 i.e., 𝛾 𝜖 [ −1,1] then Ω 𝜖 2 1 − 𝛾 , 2 1 + 𝛾

• For 𝛾 < 0 , the stiffness 𝑘2 will be less than mean stiffness will correspond to auxetic hourglass.

• For 𝛾 > 0 , the stiffness 𝑘1 will be less than mean stiffness will correspond to honeycomb hourglass 

lattice metastructure.

• The dynamic behaviour of the chain obtained using frequency response (FRF) by applying a 

harmonic displacement at one end of the sublattice (left or right) keeping the other end free and the 

response is calculated at the interface mass.

• Further their mode shapes can also be obtained to understand interface mass mode shape behaviour.

• The dynamics of the whole lattice can be given by

𝑀 ሷ𝑞 𝜏 + 𝐾𝑞 𝜏 = 𝑓 𝜏
• The frequencies at which the diatomic linear chain connected with hourglass attached at both sides 

of interface can be obtained explicitly by formulating eigenvalue problem. 

• Assuming a harmonic solution and formulating the eigen value problem as

𝐾 − Ω2𝑀 𝑞 = 0

• Relating different lattice and cell angle of hourglass auxetic and honeycomb hourglass with 

gamma (γ) parameter

• 𝑘2 = 𝑘(1 − 𝛾) will correspond to auxetic lattice hourglass

• 𝛾 < 0 ∶ Ω = 3 − 1 + 8𝛾2 , Antisymmetric mode

• 𝑘1 = 𝑘(1 − 𝛾) will correspond to regular honeycomb lattice hourglass

• 𝛾 > 0 ∶ Ω = 3 + 1 + 8𝛾2 , Antisymmetric mode

• 𝛾 > 0 ∶ Ω = 2 , Symmetric mode

Figure 4. (a) Dispersion relation of the diatomic one-dimensional linear chain with identical masses 𝑚1 = 𝑚2 = m
and alternating spring stiffnesses values. Green color line corresponds to lattice when spring stiffnesses do not vary

i.e. 𝑘1 = 𝑘2 = k representing the absence of the bandgap and acoustic and optical mode meets at Ω = 2
corresponding to gamma (𝛾) = 0. Blue color line corresponding to the lattice when spring stiffnesses vary

alternatively about the mean stiffness value resulting in presence of bandgap between the acoustic and optical

bandgap corresponding to gamma (𝛾) = - 0.4. Assuming the boundary conditions as one end of chain (left) is

subjected to harmonic excitation and other end (right) is free.

(b) Frequency response function of one-dimensional diatomic chain having spring mass arrangement with identical

masses and spring stiffnesses values alternating about the mean value. The diagram depicts the presence of the

bandgap without any localized interface mode present in it.


