Semiconductors: Lessons from the past and what it says for semiconductor manufacturing

Sandip Tiwari

stiwari@iitk.ac.in st222@cornell.edu

The aim of science is not to open the door to infinite wisdom, but to set a limit to infinite error.

1

Bertolt Brecht (Leben des Galelei (Life of Galileo))

4 transistors 5 resistors

http://www.computerhistory.org/semi conductor/timeline/1960-FirstIC.html

Semiconductors are the foundation of the information edifice of the modern society

Communications (cell phones, all the financial transactions, ...): semiconductors based.

Computing (transactions, financial bookkeeping, Aadhar, UPI, education, ...): semiconductors based.

Sensing and decision making (data gathering, inferencing, ...): semiconductors based.

Defense (monitoring, reactions, controls, operations, ...): semiconductors based.

Even cars are increasingly semiconductors and computing on wheels

Like agriculture!

the Stanford marshmallow experiment of delayed gratification

Development and growth is a flow.

A flow across the entire chain in all its dimensions.

People, ideas, development, products, ... in time

iitk_T5

Maternal-mortality death rate per 100,000 live births by select country, 2020 estimates

Source: World Health Organization

© Sandip Tiwari 2023

WSJ, 03/27/23

iitk_T5

© Sandip Tiwari 2023

GDP per capita (Dollars) South Korea vs India comparison

https://www.statista.com

iitk_T5

Fast and slow, short and long, scattering and friction, work and heat.

Lower income and middle income trap

UK: Manufacturing gone, class and feudal and financial chicanery Italy: Tourism and gastronationalism is half of GDP Greece: Tourism and right-left ancient debates Türkiye: Tourism and secular-religious cultural fights When a community finds itself deprived of its sense of identity, because of whatever historical shock or fracture with its past, it invents traditions to act as founding myths.

Eric Hobswam

Different years 2021, 2022

	Türkiye	South Korea	China	India
Annual GDP \$M	817,508	1,797,810	17,744,640	3,176,296
GDP/capita	9,654	34,744	12,564	2,257
Debt/GDP %	41.8	51.33	68.06	89.18
Debt/Capita	4,036	17,968	7,164	1,704
Deficit/Gdp %	-3.86	-0.02	-9.72	-12.76
Expenditure \$/Capita	3012	9046	3726	588.5
Export/GDP %	26.15	35.61	18.97	12.46
Education \$/Capita	395	1487	347	56
Education/Budget %	12.41	24.98	11.45	12.75
Health \$/Capita	291	1214	337.9	19.9
Health/Budget %	9.69	13.42	9.07	3.38
Density	108	515	147	428
Life expectancy	75.85	83.5	78.08	70.15
Population	84,680,273	51,736,000	1,412,360,000	1,407,563,842
				https://www.otatio

© Sandip Tiwari 2023 https://countryeconomy.com

https://www.statista.com

iitk_T5

GVA, India

Distribution of gross value added across India in financial year 2022, by sector

GDP, China

Distribution of the gross domestic product (GDP) in China in 2022, by industry

GVA adjusts GDP by the impact of subsidies and taxes (tariffs) on products.

Source: Automated Export System, retrieved on February 22, 2022

iitk_T5

#1	9A991	"Aircraft," n.e.s., and gas turbine engines not controlled by 9A001 or
#2	2B230	All types of "pressure transducers" capable of measuring absolute pres
#3	7A994	Other navigation direction finding equipment, airborne communication e
#4	2B350	Chemical manufacturing facilities and equipment, except valves control
#5	EAR99	Items subject to the EAR that are not elsewhere specified in this CCL
#6	6A005	"Lasers," "components" and optical equipment, as follows (see List of
#7	3A001	Electronic items as follows (see List of Items Controlled).
#8	2B352	Equipment Capable of Use in Handling Biological Materials, as Follows
#9	5A991	Telecommunication equipment, not controlled by 5A001 (see List of Item
#10	3B991	Equipment not controlled by 3B001 for the manufacture of electronic "p

Top T	en ECCNs	to China by Shipment Count
#1	5A002	"Information security" systems, equipment and "components," as follows
#2	EAR99	Items subject to the EAR that are not elsewhere specified in this CCL
#3	9A991	"Aircraft," n.e.s., and gas turbine engines not controlled by 9A001 or
#4	2B230	All types of "pressure transducers" capable of measuring absolute pres
#5	5D002	"Software" as follows (see List of Items Controlled).
#6	7A103	Instrumentation, navigation equipment and systems, other than those co
#7	5B002	"Information Security" test, inspection and "production" equipment, as
#8	7A994	Other navigation direction finding equipment, airborne communication e
#9	3A001	Electronic items as follows (see List of Items Controlled).
#10	6A005	"Lasers," "components" and optical equipment, as follows (see List of

	i op i	CII LCCN5	to china by shiphent count
	#1	9A991	"Aircraft," n.e.s., and gas turbine engines not controlled by 9A001 or
Z	#2	5A992	Equipment not controlled by 5A002 (see List of Items Controlled).
ບັ	#3	38991	Equipment not controlled by 3B001 for the manufacture of electronic "p
щ	#4	5A991	Telecommunication equipment, not controlled by 5A001 (see List of Item
with	#5	3A991	Electronic devices, and "components" not controlled by 3A001.
3	#6	3B992	Equipment not controlled by 3B002 for the inspection or testing of ele
Ř	#7	7A994	Other navigation direction finding equipment, airborne communication e
Z	#8	3A992	General purpose electronic equipment not controlled by 3A002.
	#9	2B999	Specific Processing Equipment, n.e.s., as Follows (See List of Items C
	#10	3A999	Specific Processing Equipment, n.e.s., as Follows (See List of Items C
Mate	- ECCAT	descriptions	have been two extends where exciting Commerce Control Third for full description

Note: ECCN descriptions have been truncated: please review Commerce Control List for full description

American export controls

Category 0 - Nuclear Materials Facilities & Equipment [and Miscellaneous Items]	2023-02-24		
Category 1 - Materials Chemicals Microorganisms and Toxins	2023-02-24		
Category 2 - Materials Processing	2023-02-24		
Category 3 - Electronics Design Development and Production	2023-02-24		
Category 4 - Computers	2023-03-16		
Category 5 Part 1 - Telecommunications	2022-05-26		
Category 5 Part 2 - Information Security	2023-02-24		
Category 6 - Sensors and Lasers	2023-02-24		
Category 7 - Navigation and Avionics	2023-02-24		
Category 8 - Marine	2020-09-11		
Category 9 - Aerospace and Propulsion	2023-02-24		
https://www.bis.doc.gov/index.php/regulations/			

export-administration-regulations-ear

https://www.bis.doc.gov/index.php/country-papers/2971-2021-statistical-analysis-of-u-s-trade-with-china/file

Semiconductors: TSMC

Founded 1987, \$75B/yr (2022), 65000 employees. Foundry (Intel is \$62B/yr) Morris Chang (from TI (founded 1951, made the 1st integrated circuit (Kilby)), \$21B/yr Analog/Digital)

USA: CHIPS Act is roughly \$280B

© Sandip Tiwari 2023

iitk_T5

Dirigisme (Fr. diriger)

Technology, value and control

Large cloud providers: Amazon, Google, Microsoft, Alibaba Cloud.

Dominant desktop OS providers: Microsoft, Apple and various Linux

Dominant mobile OS providers: Google and Apple.

Chip companies: Samsung, TSMC, Intel, GlobalFoundaries

Design companies: Nvidia, Broadcom, Qualcomm

Social networks: Meta, Whatsapp, Snap, TikTok, WeChat

Car companies: Tesla, Hyundai, Toyota, VW, Mercedes, BMW

Airplanes: Boeing, Airbus, Comac C919

GDP: \$23,315,081B

World change from post WWII order

9,831,510 km² 331,894,000 people 9,562,910 km² 1,412,360,000 people

GDP: \$17,734,063B

Amazon	\$514B/yr		Alibaba	\$135B/yr	
Apple	\$388B/yr		Huawei	\$110B/yr	
Google	\$283B/yr		Baidu	\$20B/yr	
Tesla	\$82B/yr		BYD	\$52B/yr	
Meta/FB	\$117B/yr		ByteDance(TTok)	\$58B/yr	
			Tencent(WeChat)	\$81B/yr	
Twitter	\$4.4B/yr	328M users	Sina(Weibo)	\$2.1B.yr	340M users
Nvidia	\$27B.yr	H100	Biren Tech		B100
	\$27B.yr	$7.7 imes10^{10}$ trx			$7.7 imes10^{10}$
		7 <i>nm</i>			7 nm

Amazon, Google, Facebook, Snapchat, Pintrest: \$380 billion in advertising revenue in 2022.

© Sandip Tiwari 2023

iitk_T5

Total shareholder return for S&P 500 sectors, 03/09-12/21, % annualised

Tech hardware Semiconductors Software Media Retail Autos/components Health equip/serv Durables and apparel Transport Banks Banks Non-bank financials Insurance S&P 500 Real estate Capital goods Pro. services Cons. serv Pharma Materials Staples retailing Food, bev., tobacco Household prod. Utilities Telecom serv. Energy 5 10 15 20 25 0

Semiconductors-dominated and based information structure

https://www.ft.com/content/939e819e-8381-4fee-8639-439847a196b3

NVidia's competition: Biren Technology

Founded Shenzen: 2019 Fabless design AI and high performance computing Chips from TSMC

7 nm, 7.7x10¹⁰ (Nvidia's H100 is at 4 nm node) 300 MB on-chip sram 2048 TOPS INT 8 1024 TFLOPS BF 16 512 TFLOPS TF 32 256 TFLOPS FP 32 64GB HBM2E 8BLinkTM 2.3TB/sexternall/Obandwidth

550 W

HotChips'22

© Sandip Tiwari 2023

25

iitk T5

ARM

230B cumulative ARM-based chips in 2022
80B per year currently
(most going to China, and China's ARM has as strong a control of ARM has Softbank)
Is now pervasive from cloud to edge, with cpus in the middle.)

Macs, iPhones, Chrome, ...

Neoverse V2 : cloud, hyperscale, HPC; AMBA CHI, UCIe and CXL, ... https://20stech.com/files/arm-pr-image-210211.jpg

© Sandip Tiwari 2023

Cumulative plot

RISCV

By the end of the decade, open RISC-V will be the dominant instruction set architecture 1/3rd of chip projects (ASIC, FPGA, ...) now employ at least some RISC-V. Europe is all in RISC-V. (Unix-like open software culture change in design)

Projects Incorporating RISC-V by Market Segment

Wilson Research Group/Siemens iitk_T5

Borderless architecture: RISCV

2022: 10B chips, with 5B from China (1/6th of ARM volume)

Chinese academy of sciences on 6mo. cycles of upgrading

Starfive (Dubhe, out-of-order cpu, hypervisor, SiFive (P650 CPU core, ...)

Alibaba (XuanTie custom-built processors based on RISC-V instruction, and is porting Android 10 to RISC-V ISA.) Ali Pingtou: Xuantie C908 (one of the most energy efficient processor in industry) mult-core, mutli-cluster, 9 state dual issue; Etian 710 for clouds, Hanguang 800 for AI, ...

Baidu Huawei

Dirigisme and technology

SEMICONDUCTORS

Japan export curbs pay off for South Korean chip materials makers

Profits double as Samsung and others pivot to domestic suppliers

https://asia.nikkei.com/Business/Tech/Semiconductors/Japan-exportcurbs-pay-off-for-South-Korean-chip-materials-makers (March 26, 2023)

Not many give credit to *George Fernandes* who threw IBM out in 1977 (along with Coca Cola) for exercising exclusive control.

It was due to this policy/event that India's software and computing was born.

GF knew the lessons of the Stanford marshmallow experiment.

Education

The strength of the western culture comes from a close relationship between the way in which questions are posed and then acted on.

In practical actions, all cultures are just as experienced.

It is ability to change the questions asked into questions of principle and thus to arrive at new points of view that bring order and insight into the kaleidoscope of experience. This makes it accessible to human thought.

It is this link between the posing of questions of principle and practical action which makes education so powerful and the task for us.

The Humboldt educational model: The university is the environment where students turn to being autonomous individuals and world citizens.

Critical thinking and analysis Problem solving Self management Working with people Technology use and development Core literacy

Norld University Rank 2023	World University Rank 2022	University	Country/region	
1	1	University of Oxford	United Kingdom	
2	=2	Harvard University	United States	
=3	=5	University of Cambridge	United Kingdom	
=3	4	Stanford University	United States	
5	=5	Massachusetts Institute of Technology	United States	
6	=2	California Institute of Technology	United States	
7	7	Princeton University	United States	
8	8	University of California, Berkeley	United States	
9	9	Yale University	United States	
10	12	Imperial College London	United Kingdom	
=11	11	Columbia University	United States	
=11	15	ETH Zurich	Switzerland	
13	10	The University of Chicago	United States	
14	=13	University of Pennsylvania	United States	
15	=13	Johns Hopkins University	United States	
16	=16	Tsinghua University	China	
17	=16	Peking University	China	
18	=18	University of Toronto	Canada	
19	21	National University of Singapore	Singapore	
20	22	Cornell University	United States	
21	20	University of California, Los Angeles	United States	
22	=18	UCL	United Kingdom	
23	=24	University of Michigan-Ann Arbor	United States	
24	26	New York University	United States	

By UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA JANUARY 6, 2021

Chinese scientists have established the world's first integrated quantum communication network, combining over 700 optical fibers on the ground with two ground-to-satellite links to achieve quantum key distribution over a total distance of 4,600 kilometers for users across the country. Credit: University of Science and Technology of China

700 optical fibers on the ground with two groundto-satellite links to achieve quantum key distribution over a total distance of 4,600 kilometers

https://scitechdaily.com/china-buildsthe-worlds-first-integrated-quantumcommunication-network/

https://www.timeshighereducation.com/student /best-universities/best-universities-world iitk_T5

Institutions of eminence? (2018)

Jio Institute 0 students, 52 acres

Buildings alone do not make an institute.

Creative students and faculty, hard work, world recognition of the work, local impact, serving humanity does.

Today (2023): 2 graduate programs 120 students 6 faculty

Fabrication across the value chain, less at low end, most at high end (4 nm! and continuing smaller)

Process materials (wafers, ultrahigh purity gases, plumbing, clean-room systems, ...)

Process tools (depositions, etching, patterning including EUV, in-process and post-process characterization) Demanding of broader capabilities, and distributed, low to high cost, higher employment.

Lead in design, focus on RISCV

High-end hardware (networking, optical systems, cloud systems, AI/ML systems, ...)

Create own open-source underlyng operating systems (AI, ML, smartphone, laptop, simulation and chip design, ...

Create new ideas across design, hardware, to be at the top

Well within India's capabilities, traditions, low cost, and of large student interest.

Sustainment of entire value chain through mid-tier education. Higher end. With world-leading research. Demanding, non-compromising high expectations.

India, as a giant independent nation near the center of the world can sustain a large industry just as China can. © Sandip Tiwari 2023 35

Industry

Education

We as faculty like to work with problems that stay within our control.

These are inevitably highly constrained and we all have our own ways.

The world has changed.

A large fraction of the most interesting problems are now complex. Integrative.

We have tools to deal with complexity. AI/ML, 500 years of learning, hardware, new ways, ...

We must embrace complexity to avoid trap.

This implies less friction, painless processes, appropriate organization, Success, change and well being will be the reward.

An den Schwankenden

•••

Auf wen rechnen wir noch? Sind wir Übriggebliebene, herausgeschleudert aus dem lebendigen Fluß? Werden wir zurückbleiben? Keinen mehr verstehend und von keinem verstanden? Müssen wir Glück haben? So fragst du.

Erwarte keine andere Antwort als die deine.

Bertolt Brecht (1935)

To the waverer

Whom do we still count on? Are we just left over, thrown out Of the living stream? Shall we remain behind Understanding no one and understood by none? Have we got to be lucky? This you ask.

Expect no answer other than your own.

Bertolt Brecht (1935)