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Non-Turing machines: Stochastic and probabilistic learning
circuits

Sandip Tiwari, stiwari@iitk.ac.in, st222@cornell.edu

Exploiting randomness and probabilities as low energy tools for non-
Turing usage.
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1. Large and small: The problems of scales in semiconductor electronics 
2. Non-Turing machines: Stochastic and probabilistic learning circuits
3. Physics-guided AI/ML: Why, how and usage

4. Cultures: Science, engineering, interdisciplinarity and the fallacy of Ockham’s razor
5. Semiconductors: Lessons from the past and what it says for semiconductor manufacturing

In the last talk:
Deterministic computing with large number of irreversible Boolean transformations in the midst of
fluctuations/noise ends up costing many 1000s of            in energy per bit. 

This can not change. It is fundamental to error minimization in a thermal bath.

I ended by relaxing how accurately one wished to  compute. 
Useful in compression, AI as currently practiced, …., where good enough works.

Today: Randomness as a resource. 
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An adder

Tiwari, Proc. of IEEE Aug. (2015)

Similar conclusions with use of stochastic 
approaches to Bayesian networks that can be 
programmed into deterministic hardware.

Energy

Work capability:

Proc. capacity: 

Information and 
negentropy:

Phase space: 

n circuits, m terminals, t terminals 

logic
memory

Memory’s contribution smaller
logic

Many orders of magnitude lower!

From the last talk: Deterministic computing implies                      of energy per 
bit operation to overpower errors and because energy not recycled. 



© Sandip Tiwari 2023 iitk_T2_014

Inexact  DSP with Lower Voltages

x0.52 Energy  

x1.0 Energy

x0.66 Energy  

Kim & Tiwari (2010)
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Example: Inexact Addition
Floating point sum with  n a,b mantissae

all expressed normalized – i.e. in units of least precision (ulp’s)

is a useful guide mark for error 

If bits less significant than     can be ignored and the circuit truncated 
(i.e. those parts shut off) to make the Eliminates wasted power

Consider for

Gauss

Cauchy-Lorentz

For tails, discreteness can be ignored and 
what is important is exponential or 
polynomial tail

Consider a sum S’ within a probability distribution                          centered at S of width    
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Addition
Arithmetic circuit composed of elements: 

For carry-select adders, elements are half adders generating partial sums, and 
Kill/Propagate/Generate (KPG) signals.

KPG combine blocks forming carry-propagation tree. 
Multiplexers at the output select the partial sums based on carry-propagation tree

Probability of error

For each element 
Energy dissipated per computation using design/voltage scaling 

Weight for each element that quantifies mean magnitude of numerical 
error in the answer caused by incorrectness in the element while all the 
others are correct
e.g., mux corresponding to bit    of output has the weight        ulps
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Addition
Assume errors in each element uncorrelated

When an element is wrong,

the error in answer is:

The error in the answer would be within constraints of prob distribution 
so long as

with       as the set of erroneous elements with probability:

Degeneracy – different subsets       that lead 
to same mean squared error
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Addition

For Gaussian distribution, the constraint on error is satisfied if 

For Lorentzian distribution, the constraint on error is satisfied if 

For simple CMOS:
The proportionality constant depends on source of error,

for threshold voltage variations: 
for thermal noise: 
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Power-Error Trade-Off

By approximate transistor count, half adders are twice as expensive as KPG, Mux and we 
can estimate energy given the error rate – energy relationship 
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Adders
Simple case of carry tree linear chain: an inefficient ripple-carry adder in carry-select:

One adder, one KPG combine, 1 mux per bit (excluding MSB and LSB end)

Elements at bit level k each have a weight 2k => degeneracy,

Energy dissipated per computation for entire n-bit adder :

Gaussian

Lorentzian

(flat error everywhere, i.e., exact arithmetic )

The flat error, exact limit (an estimate of lowest    ) can be used to estimate where 
approximate adders can be more efficient
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More Useful Cases in Arithmetic Operations

A more efficient adder: Kogge-Stone Modified Booth Multiplier

Region of maximum power savings

Ripple Carry

KPG-combine block of weight       is 

Constraint: no block in adder has an error 
i.e., together with following the distribution                      , the answer is 
random with a miniscule probability
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The history of the information mechanics engine is of an interplay between the 
algorithm and the platform.

Sometimes it is the algorithms (soft) that lead.
Sometimes it is the platform (hard/physical) that leads.

Both adapt to each other.

These were all 25% to 50% energy improvements. 
1000s of          per bit is a hard limit.
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Non-determinism (probabilism)---tied to complexity---and their algorithms can extract even higher 
energy penalty when using the platform that evolved from determinism. As in deep learning 
implementations of these days.

My view is that the question/issue is much much more subtle, and the wall-plug efficiency 
argument very simplistic.

Priors (so of learning)
Use of that learning in

Bayesian methods
Neural networks methods (next talk)
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Turing
Turing machines are hypothetical abstract devices that yield finite descriptions of algorithms that 
can handle arbitrarily long inputs.

Specification

10 1 1 1 01

calculus driven by a program

FSM: State

Unbounded
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Randomness/ What is not known/ A very specific behavior with 
hidden features

A pottery kiln viewed via its 
own radiation

Via external radiation

Photo: C. Bennett

When near thermodynamic equilibrium, 
external energy necessary to reveal 
information.

Because it “becomes” hidden

2nd law: Blackbody  Thermostatics
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Nondeterminism -- probabilism -- entropy
Classical world and the quantum world are both a play of cause and chance with somewhat 
different rules. 

Cause is a relationship 
Chance is the unknown or random intermezzo between the knowns.

Chance also appears when we compress (approximate).

Entropy therefore appears in multitudes of ways in nondeterminism.

Entropy
Probabilism of the inference

Energy dissipation
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Randomness as a resource in computing
A sequence of bits is random if the shortest computer program for generating the sequence is 
at least as long as the sequence itself. 

Kolmogorov complexity and G. Chaitin

Pseudorandom numbers are not random. 
They just stretch whatever randomness exists in the seed.
Psuedorandomness has been used in algorithms and in communications and in cryptography and 
safety as a resource since the dawn of computing. 

Nature exploits randomness (fluctuations know how to). 

Here, I will work through use of some examples of exploiting randomness:
(a) magnetization in superparamagnetic limit. 
(b) thermal fluctuations of electrons wandering through a resistor or a semiconductor junction.

Synchronization by randomness that reveals information because of it.
Randomness as a way to mutual information optimization.
Probabilities by randomness and inferencing from it (Bayes).
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Compressive sensing

Romberg, IEEE Signal Processing, March (2008)
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Spike action potential

https://en.wikipedia.org/wiki/Action_potential

Spikes are based on leaky ion channels (~40 mV)

50
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Rest.

Refract.
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Spiking action potentials

Sustainable chemical concentrations: few to 100s mMs
Tubules

inside

outside 5

140
140
12

Reversal potential

Ion sizes:

Ion leakage:

Capacitance-based signaling in presence of ion channel conductance and thermal noise.

Rest potential

Thresholding in low signal and noise
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Energy in spike train

FitzHugh-Nagumo (FN) neuron for potentiation and flipping

Spike energy: 

action potential,             refractory variable,        bias,         noise (                   )

Fisher information for best estimate:

, which is of the order of noise (noise helps!).

The neuron spiking is an energy-centric mutual information stressing process. 
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Ribosome is not a Turing machine

V. Ramakrishnan, Cell, Vol. 108, 557–572, February 22, 2002 V. Ramakrishnan, Nobel lecture (2009)
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Perturbations as technology tools

Dithering, as in lock-in techniques, are a method to improving sensitivity and reducing noise in a 
bandwidth.

Heterodyning improves sensitivity in receivers.
These are techniques that lower power and 

energy in detection.

Flicker is different (noise) from the “wave” (continuous) method. 

The eye uses a tuning curve (a window) to capture the visual 
information.

But subject to synchronization (in a window) because of nonlinearities.

Compressed sensing uses linear projections onto random basis
Sparse signals (edges!, changes!). 

Reconstruction via nonlinear processing..
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Flicker usage in human eye.

Flicker detects edges for the eye’s V1 system just as a suitable convolution will do.

This is basically using of a 
kernel, or convolution, or 

Green’s function.
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Tuning curve and neuron response

Visual information captured through tuning curve (a power spectrum!)
Flicker helps synchronize, thus becoming useful.

Noise, coupled to signal, can aid synchronization and fidelity. 

Hubel & Wiesel (1959)

Spike trains coded to the tuning/power spectrum curve response.
Cat’s cortical response
(firing rate)

peak firing rate

Butts (2004)

Functional map in V1
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Fisher information

Extremize Fisher information (or Cramér-Rao bound)

Uncertainty, randomness, and incompleteness of information

Example:

Best estimate of      has a mean square error of           . 

projects smoothness. A normal          of variance      has                     . 

If    is small, error is large, so smoothest          consistent with additional information is the more 
likely fit. 
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What does the eye--V1 do?
Firing rate to information

Fisher information:

Response

stimulus

Fisher information vanishes at peak and at no firing rate.



© Sandip Tiwari 2023 iitk_T2_0128

Noise/Fluctuations -> Random

DUT

e.g., superparamagnetic junctions

few

Thermal noise fluctuations



© Sandip Tiwari 2023 iitk_T2_0129

Random telegraph signal from thermal in Superparamagnetism

Poisson:

RTS: a slow and fast process consequence 

few

Thermal noise fluctuations

This is flicker! Spike rate related to state transitions.
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Noise/Fluctuations -> Random

Population
coding
with 
ri tuned by current
(wavefunctions that 
compose the 
response)

Net output spiking rate
representing objective
Tune through Fisher.

Feedback and minimize by Fisher measure.

Classification

These are now basis functions 
obtained from different devices
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Model simulations

Train using 
horizontal, rotated, 
and  vertical lines to 
minimize Fisher 
information

Superparamagnetic array

1

0.75

0.5

0.25

95%

69%

77% 82%

86%

Test
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Window of synchronization

Synchronized state Too much thermal noise

Existence of noise (akin to dithering), linear superposition on 
modulation makes the synchronization happen.

The synchronization is nonlinear. 
Signal fidelity improved in a window. 
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Noise + eye performing averaging improves the visual

Through a python 
code with 
Gaussian noise 

This is like the flickering/noise
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Random number generation

Phys. Rev. App. 8, 054045 (2017)

Good useful random number generation at an energy 20 fJ per bit
Number of random numbers that can be generated is limited.

Current circuits do use energy (but not as much as thermal amplification).

CMOS random generators are 20 pJ/bit.
Sample the flicker noise of superparamagnetism; break in chunks, and then XOR it to remove any 
residual correlations.  
x1000 lower energy and are  square micrometer. Whitened stream
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Stochastic Low energy classifying

Phys. Rev. App. 8, 054045 (2017)

Take a dictionary of known words with their associated occurrence rates in spam and nonspam messages. 
Associate each word of the dictionary with a probabilistic random binary generator whose probability of 
drawing a 1 is set to different values depending on the presence (or absence) of the word in the presented 
sentence.  Create multiple binary random generators  and use Muller C elements for Bayesian inference. 

Muller Cs; hysteresis FF
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Data ≠ Information 
Olshausen (2008)
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Data ≠ Information 

1 piece of data (black-fill) reveals the information.
Context was important. Algorithmic. 
Information  and data are not equivalent

Olshausen (2008)



© Sandip Tiwari 2023 iitk_T2_0138

Mooney faces (Data ≠ Information and Priors matter)
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With observations       , hidden variables      to be inferred, and contextual variables      , the 
probabilistic relationship between them is:

prior

independent of what is hidden
/to be inferred 
(a normalization)

This relationship form allows one to, e.g., maximize                           by a posteriori estimation of 

This can be done at several hierarchical levels to arrive at inferences, such as 
matching patterns – a large class of difficult computational problems

Bayesian Architectures
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Bayesian operations:

Multiplication: And gate

Addition:
ModOr gate

pOr – pAnd

Or eliminate in circuit design the “1” probability for both inputs 

All probabilistic operations can now be mapped

Bayesian Circuits
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Thermal probabilistic gates
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Glitches (Amplitude Errors) and jitters (Timing Errors) are generated when input noise is
propagating through digital circuits.

Input: 0.1/0.9 V 0.2/0.8 V 0.3 V 0.7 V

IBM’s 45 nm 12SOI

Kim & Tiwari (2010)

Tiwari, NanoArch(2009)

VDD
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A simple example

Sickness

Fever

Temp

Medicine

Post-
Medicine 

Fever

Medicine 
Reaction

Decision

1 prob

2 prob

2 prob

4 prob

2 prob

4 prob

Decision making based on fever, temperature, medicine, 
and reaction.
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It works, and it works with less precision even if some of the inner elements are pulled out. Is robust. 
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Hierarchical Markov  Bayesian tracking
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Likelihood Inference

prior

Locale

posterior

HMM Bayesian: A Poisson neuron toy
Poisson neuron

After C. S. Thakur et al, Frontiers in Neuroscience (2016) 
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As the fly passes by (Poissonian)
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Non-Turing mapping: Image recovery

iterations iterations iterations

Clocked tuning

Contraction mapping on state space with iterated function (low area)

Iteration in Markov chain
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There are places where one can relax the error-free constraint. 
Approaches of LSB relaxation are of limited utility.
This will be true for the AI/ML world too.

Using randomness and probabilities at the edge of the computational world---human-centric 
interfaces of all types---can be useful.
Stochastic, e.g., is low energy, small area, tolerant to error, and progressively precise.
Bayesian provides robustness. 

(but the center of technology world will not change. The edge world will)

Next talk: a physics-centric view of the AI/ML world and its utility as a new tool for research and 
understanding.

I thank students over the years, insightful colleagues and my teachers who have influenced this 
thinking and collaborated in the pursuits.


