Non-Turing machines: Stochastic and probabilistic learning
circuits
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Exploiting randomness and probabilities as low energy tools for non-
Turing usage.
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Large and small: The problems of scales in semiconductor electronics

2. Non-Turing machines: Stochastic and probabilistic learning circuits

3. Physics-guided Al/ML: Why, how and usage

4. Cultures: Science, engineering, interdisciplinarity and the fallacy of Ockham’s razor

5. Semiconductors: Lessons from the past and what it says for semiconductor manufacturing

In the last talk:
Deterministic computing with large number of irreversible Boolean transformations in the midst of

fluctuations/noise ends up costing many 1000s of kg7" in energy per bit.
This can not change. It is fundamental to error minimization in a thermal bath.

| ended by relaxing how accurately one wished to compute.
Useful in compression, Al as currently practiced, ...., where good enough works.

Today: Randomness as a resource.



Energy

From the last talk: Deterministic computing implies > 1000k T of energy per

bit operation to overpower errors and because energy not recycled. An adder
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Many orders of magnitude lower!



Inexact DSP with Lower Voltages

DDR3

Kim & Tiwari (2010)
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Example: Inexact Addition
Floating point sum with n a,b mantissae

A(E an_l...alao)—l—B(E bn—l---blbO) — S(E Sn—l---8180)

!/
Consider a sum S’ within a probability distribution ]Ja(S — S) centered at S of width O
all expressed normalized — i.e. in units of least precision (ulp’s)

If o > 1, bits less significant than o can be ignored and the circuit truncated

(i.e. those parts shut off) to make the LSB ~ ¢ Eliminates wasted power
o ~ 1 is a useful guide mark for error exp [—71‘(5’ — 5')2] Gauss
Consider FWHM ~ 1 for 7 2/m
1445 — 51)2 Cauchy-Lorentz

For tails, | S — SII > 1, discreteness can be ignored and
what is important is exponential or
polynomial tail



Addition

Arithmetic circuit composed of elements: @« = 1,2,..M

For carry-select adders, elements are half adders generating partial sums, and
Kill/Propagate/Generate (KPG) signals.

KPG combine blocks forming carry-propagation tree.

Multiplexers at the output select the partial sums based on carry-propagation tree

For each element
Ua Energy dissipated per computation using design/voltage scaling

ea  Probability of error

wea  Weight for each element that quantifies mean magnitude of numerical
error in the answer caused by incorrectness in the element while all the
others are correct

e.g., mux corresponding to bit k of output has the weight ok ulps



Addition

Assume errors in each element uncorrelated

When an element « € W C 1,2,..., M is wrong,

1 2
the error in answeris: ((S—S) )y = > w2
acW

with 1/ as the set of erroneous elements with probability: [ H Ea] H (1- 65)
acW BEW

2
The error in the answer would be within constraints of prob distribution po ((S/ —S) )
so long as

{H Ea] II A—ep)

1
< " po ( 3 wg) YW C1,2,.., M
BEW g

acW

Degeneracy — different subsets 17 that lead

2
to same mean squared error > . W,
acW



Addition

For Gaussian distribution, the constraint on error is satisfied if

€a < ieXD {—wwg} Va
aw

For Lorentzian distribution, the constraint on error is satisfied if
2/m

< 5 Vo
Juq ( 1 _|_ 4w01

€

For simple CMOS: U x —Ine
The proportionality constant depends on source of error,
for threshold voltage variations: ~ CVppoy;,
for thermal noise: ~ kT



Power-Error Trade-Off

>0 —— Thermal Error
Input Noise (Gaussian)
40 —— Process Variability (Poisson)

—Ine

0 10 20 30 40 50
U/kgT

By approximate transistor count, half adders are twice as expensive as KPG, Mux and we
can estimate energy given the error rate — energy relationship



Adders

Simple case of carry tree linear chain: an inefficient ripple-carry adder in carry-select:

One adder, one KPG combine, 1 mux per bit (excluding MSB and LSB end)

Elements at bit level k each have a weight 2 => degeneracy, 9w, = 3

Energy dissipated per computation for entire n-bit adder :
n—1

. 1 4
Gaussian U o —4 5 In (5 exp(—22k7r)) = 4nIn 3+?7T (22" —1)

k=0
, " 2/m 3m
Lorentzian U « —4 1;:0 In {3[1 T2k 1)]} ~ 4nIn (7> +4n(n+1)In2

1
U x 4nin (—) (flat error everywhere, i.e., exact arithmetic )

€

The flat error, exact limit (an estimate of lowest € ) can be used to estimate where
approximate adders can be more efficient



More Useful Cases in Arithmetic Operations

Constraint: no block in adder has an error < €q,

i.e., together with following the distribution pg(Sl — 5) , the answer is
random with a miniscule probability rneg

A more efficient adder: Kogge-Stone Modified Booth Multiplier
KPG-combine block of weight 2% is log- &
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These were all 25% to 50% energy improvements.
1000s of £pgT per bit is a hard limit.

The history of the information mechanics engine is of an interplay between the
algorithm and the platform.

Sometimes it is the algorithms (soft) that lead.
Sometimes it is the platform (hard/physical) that leads.
Both adapt to each other.



Non-determinism (probabilism)---tied to complexity---and their algorithms can extract even higher
energy penalty when using the platform that evolved from determinism. As in deep learning
implementations of these days.

My view is that the question/issue is much much more subtle, and the wall-plug efficiency
argument very simplistic.

Priors (so of learning)
Use of that learning in
Bayesian methods
Neural networks methods (next talk)



Turing

Turing machines are hypothetical abstract devices that yield finite descriptions of algorithms that

can handle arbitrarily long inputs.

Specification
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A calculus driven by a program



Randomness/ What is not known/ A very specific behavior with
hidden features

A pottery kiln viewed via its
own radiation

Via external radiation

When near thermodynamic equilibrium,

external energy necessary to reveal
information.

Because it “becomes” hidden

2" Jaw: Blackbody < Thermostatics

Photo: C. Bennett



Nondeterminism -- probabilism -- entropy

Classical world and the quantum world are both a play of cause and chance with somewhat
different rules.

Cause is a relationship
Chance is the unknown or random intermezzo between the knowns.

Chance also appears when we compress (approximate).

Entropy therefore appears in multitudes of ways in nondeterminism.

Probabilism of the inference
Entropy<
Energy dissipation



Randomness as a resource in computing

A sequence of bits is random if the shortest computer program for generating the sequence is
at least as long as the sequence itself.
Kolmogorov complexity and G. Chaitin

Pseudorandom numbers are not random.
They just stretch whatever randomness exists in the seed.

Psuedorandomness has been used in algorithms and in communications and in cryptography and
safety as a resource since the dawn of computing.

Nature exploits randomness (fluctuations know how to).

Here, | will work through use of some examples of exploiting randomness:
(a) magnetization in superparamagnetic limit.
(b) thermal fluctuations of electrons wandering through a resistor or a semiconductor junction.

Synchronization by randomness that reveals information because of it.
Randomness as a way to mutual information optimization.
Probabilities by randomness and inferencing from it (Bayes).



Compressive sensing
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(a) (b)

FIG1] Sampling a sparse vector. (a) An example of a very sparse vector. If we sample this
rector directly with no knowledge of which components are active, we will see nothing
nost of the time. (b) Examples of pseudorandom, incoherent test vectors ¢,.. With each
nner product of a test vector from (b), we pick up a little bit of information about (a).

Romberg, IEEE Signal Processing, March (2008)
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Spike action potential

Spikes are based on leaky ion channels (~40 mV)

https.//en.wikipedia.org/wiki/Action _potential



Spiking action potentials
Thresholding in low signal and noise

Capacitance-based signaling in presence of ion channel conductance and thermal noise.

Tubules

Sustainable chemical concentrations: few to 100s mMs

[KT]  [NaT] Reversal potential
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Viest = =78 mV



Energy in spike train

FitzHugh-Nagumo (FN) neuron for potentiation and flipping

u(u —0.5)(1 —u) —v
T = u—v— B+ esin(wt) + (n,

Trdiu

u(t) : action potential, w(t) : refractory variable, 3 : bias, (n noise ( ~30 mV )

Fisher information for best estimate:

v

veak = 40 mV, which is of the order of noise (noise helps!).

Spike energy: ~ 0.5x110 mV x10" > sx3 pA &~ 165 aJ =~ 40000k 5T

The neuron spiking is an energy-centric mutual information stressing process.




Ribosome is not a Turing machine

@ ¥ & "'\I The bacterial ribosome
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V. Ramakrishnan, Cell, Vol. 108, 557-572, February 22, 2002 V. Ramakrishnan, Nobel lecture (2009)



Perturbations as technology tools

Dithering, as in lock-in techniques, are a method to improving sensitivity and reducing noise in a
bandwidth.

Heterodyning improves sensitivity in receivers.

These are techniques that lower power and
energy in detection.

Compressed sensing uses linear projections onto random basis
Sparse signals (edges!, changes!).
Reconstruction via nonlinear processing..

Flicker is different (noise) from the “wave” (continuous) method.

But subject to synchronization (in a window) because of nonlineatrities.

The eye uses a tuning curve (a window) to capture the visual
information.



Flicker usage in human eye.

This is basically using of a
kernel, or convolution, or
Green’s function.

Flicker detects edges for the eye’s V71 system just as a suitable convolution will do.



Tuning curve and neuron response
Spike trains coded to the tunina/E)ower snectrum curve response.

Cat’s cortical response Functional map in V1
(firiﬁr‘mg rate) B P
5+E: S
k h
% ot

% —_— Butts (2004)

Hubel & Wiesel (1959) Visual information captured through tuning curve (a power spectrum!)

Flicker helps synchronize, thus becoming useful.

Noise, coupled to signal, can aid synchronization and fidelity.



Fisher information

Uncertainty, randomness, and incompleteness of information

Extremize Fisher information (or Cramér-Rao bound)

()
n=0te (2 whee  16) = [ 10w I0Pe(el0)ds,
Example: = f[c%p(a:)]Qp(a:)daz

Best estimate of ¢ has a mean square errorof 1 /7

I projects smoothness. A normal p(x) of variance o%has I = 1/02

If 1 is small, error is large, so smoothest p () consistent with additional information is the more
likely fit.



What does the eye--V1 do?
Firing rate to information

Response
A

10)

— \ | / = stimulus

Fisher information: /gy — <[8In P("‘Q)r> _ %[f’(@)]Q
00 . O

Fisher information vanishes at peak and at no firing rate.



Noise/Fluctuations -> Random

l e.g., superparamagnetic junctions

Thermal noise fluctuations




Random telegraph signal from thermal in Superparamagnetism

Thermal noise fluctuations I' RTS: a slow and fast process consequence
4T
E t— ﬂ “
k
VT
Poisson: p(k,vT) = ( k:') exp(—vT)

1 t+
+\
p(t™) = T_:teXD (_T_i>

This is flicker! Spike rate related to state transitions.



z Noise/Fluctuations -> Random
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Superparamagnetic array
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Modulation

W. noise

Window of synchronization

Synchronized state Too much thermal noise

2
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Existence of noise (akin to dithering), linear superposition on
modulation makes the synchronization happen.

The synchronization is nonlinear.

Signal fidelity improved in a window.



Noise + eye performing averaging improves the visual

This is like the flickering/noise




Random number generation

CMOS random generators are 20 pJ/bit.
Sample the flicker noise of superparamagnetism; break in chunks, and then XOR it to remove any
residual correlations.

x1000 lower energy and are square micrometer. Whitened stream

65
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Number of MTJ signals through xor Test number Test number

Good useful random number generation at an energy 20 fJ per bit
Number of random numbers that can be generated is limited.
Current circuits do use energy (but not as much as thermal amplification).

Phys. Rev. App. 8, 054045 (2017)



Stochastic Low energy classifying

Take a dictionary of known words with their associated occurrence rates in spam and nonspam messages.
Associate each word of the dictionary with a probabilistic random binary generator whose probability of
drawing a 1 is set to different values depending on the presence (or absence) of the word in the presented
sentence. Create multiple binary random generators and use Muller C elements for Bayesian inference.

—_—
O
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(@) »

1.0
pizza
commute
check E
stochastic £ (c) Method Messages correctly classified
"*f“*"“‘ '?2 0.5 No whitening 60%
-\'ls::.r?a ;— XOR4 100%
ransfer S XOR8 100%
“ Blum 100%

A Do you want to get pizza after the commute?

B You should check these stochastic simulations. 0.0 A A
C If you want to earn a fortune, send a check to ’ 2 7 3 3
Nigeria. We will transfer $10,000 to your account

D You are the 99th visitor. Subscribe and you will
save a fortune.
E You won.

Number of bits/word

Muller Cs; hysteresis FF Phys. Rev. App. 8, 054045 (2017)
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Data # Information

Olshausen (2008)



Data # Information

Olshausen (2008)

1 piece of data (black-fill) reveals the information.
Context was important. Algorithmic.
Information and data are not equivalent



Mooney faces (Data # Information and Priors matter)
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Bayesian Architectures

With observations Z0 , hidden variables “hto be inferred, and contextual variables 1 , the
probabilistic relationship between them is:

p(zo,z1|zp) = p(zo|21, TR)P(T1|2H)

| prior
p(x1|xo, zp)p(zolzs) = p(20, 21|2H)
p(z1|xg, xp) = p(xolx1, zp)p(x1|zy)/P(xol2p)

independent of what is hidden
/to be inferred
(a normalization)

This relationship form allows one to, e.g., maximize p(x1|xg,x};) by a posteriori estimation of =1

This can be done at several hierarchical levels to arrive at inferences, such as
matching patterns — a large class of difficult computational problems



Bayesian Circuits
Bayesian operations:

Multiplication: And gate p(Output) = p(Input1) X p(Inputs)

Addition:
ModOr gate p(Output) = p(Input1)+p(Inputs)—p(Inputy) xp(Inputos)

pOr — pAnd

Or eliminate in circuit design the “1” probability for both inputs

All probabilistic operations can now be mapped



Thermal probabilistic gates Thvar NanoAre 2009
IBM’s 45 nm 12S0l

2 Input:  0.1/09v ~ 02/08V 03V 07V
s °r
N (b il
g i
: bkl
S Ll \ LA
2 ”‘ ‘ ” ‘

-40 ghllly)

" 1 " 1 " 1 " 1 "
0.0 0.2 0.4 0.6 0.8 1.0
DC bias (V)

Glitches (Amplitude Errors) and jitters (Timing Errors) are generated when input noise is
propagating through digital circuits.

Kim & Tiwari (2010)



A simple example

Medicine

\ 4

Post- .
.. Medicine
Medicine )
Reaction
Fever

2 prob

2 prob 4 prob



15 probability generators

It works, and it works with less precision even if some of the inner elements are pulled out. Is robust.



Hierarchical Markov Bayesian tracking
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HMM Bayesian: A Poisson neuron toy

Poisson neuron

Hfly|noise
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Likelihood

Inference

posterior Pon prior

PN(a)

_[PN(aB).

PN ()

fly|noise

PN (af3)

PN(a)

o<}—
OTTTI@ RS

o—
OT”’L@ RS @ Locale
pon—l Py

:q n
orm RS

Poq

After C. S. Thakur et al, Frontiers in Neuroscience (2016)



As the fly passes by (Poissonian)

‘Each neuron response over time as an insect moves across field of vision

Neuron 1 T ———— nauron

[ i Nowronz Neuron3 [ Mewona Neurons po—
[ 1 neurond
neurons

Probability of insect near a neuron
o ) o o s
o > I @ <
= e— N | T T
—
——
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Non-Turing mapping: Image recovery
Contraction mapping on state space with iterated function (low area)

Marh o s state viution for sach sl (870 array)

clk

pm f2=——f2 X(n)
pm f3——/3

lteration in Markov chain
Clocked tuning

102 iterations iterations 104 iterations

s g e 1990 e Mo chain e s 19,008 ey 1




There are places where one can relax the error-free constraint.
Approaches of LSB relaxation are of limited utility.
This will be true for the Al/ML world too.

Using randomness and probabilities at the edge of the computational world---human-centric
interfaces of all types---can be useful.

Stochastic, e.g., is low energy, small area, tolerant to error, and progressively precise.
Bayesian provides robustness.

(but the center of technology world will not change. The edge world will)

Next talk: a physics-centric view of the AI/ML world and its utility as a new tool for research and
understanding.

| thank students over the years, insightful colleagues and my teachers who have influenced this
thinking and collaborated in the pursuits.



