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imeline History of High-Energy

Cosmic Rays
Hess discovered cosmic rays — hot air balloon

Cosmic rays seen in cloud chamber

Anderson discovered antimatter (positron); Debate over cosmic rays

Discovery of muon
Auger discovered extensive air showers

First air shower experiments; Discovery of pion and kaons
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A Timeline History of High-
Energy Cosmic Rays

Fermi's theory of cosmic rays
First 10-° eV cosmic ray detected
Proposal of GZK cut-off energy for cosmic
rays
Fly's Eye detected highest-energy cosmic

ray
AGASA high-energy event

Pierre Auger Project begun
HiRes and AGASA Debate the GZK cut-off
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An Energy Shower
Cosmic ray air shower

Top of atmosphere

20091030

&

Ground

Top of the Atmosphere

Short-lived
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SoIme Types of Cosmic Particles

Atomic nuclei: protons and neutrons. E.g., 12
C is composed of 6 p and 6 n.

& Protons: the hydrogen atomis1pand1 e-

= Neutrons: decay into a proton via the reaction
n->pe-ve with alifetime ~ 103 sec.

= Electrons and positrons: e- and e+ .
= Quanta of light: photons or gammas
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Cosmic Ray Energies

A standard unit for elementary particle
energies is the “electron Volt” - eV.

1 eV is the kinetic energy of 1 electron
moved through a potential of 1 Volt.

Ultra-high energy cosmic particles have
energies greater than ~ 101 eV.

1 MeV =1 Mega eV =10° eV
1 GeV =1 Giga eV =10 eV
1 TeV =1 TeraeV =10?eV
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Some Terminology

= Flux: the amount of something arriving in
one unit of area (e.g., 1 m?) in one unit of
time (e.g., 1 sec).
Spectrum: A plot showing the amount of
something, as a function of energy. In the
next slide, the “something” is the number of
particles in one bin of energy.
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A PreTIcLE Engecy sPEcTROM, Cosmic Ray
" Fluxes of Cosmic Rays Energy Spectrum
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Cosmic Rays

High energy particles from space are divided into
two classes:

1) Photons (gamma rays)

11) matter particles ( protons, neutrons,
nuclei etc.).

High Energy Gamma ray photons travel
unscattered and practically unabsorbed
through great lengths of galactic and
intergalactic space.
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Hwo Types of Cosmic Ray
Detectors

= Ground Shower Array (AGASA, Auger,
GRAPES3)

. La2 (ge area because of low flux (1/ km? / century >
10

. Collects data day and night, any weather
= Measures direction by arrival times across array
= Relies on modelling of shower to infer energy and
primary type
= Air Fluorescence (Hires, Auger)
= 10% duty cycle (clear, moonless nights...)

s Difficult to calibrate and Insensitive to shower
details
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Detection

Detecting cosmic ray air showers

Atmosphere
(2) Detect the particle
shower through air
flourescence (1) Detect the particle
shower when it hits
the ground

¢ & Ground
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SIMULATION STUDY

= The simulation of air showers
. for particular energy ranges
swas done using CORSIKA with

s hadronic model SYBILL and
“electromagnetic model EGSA4.

The muon content in the proton
generated shower is ~10%.




Muon content in a proton

shower
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uon content in a gdamima

shower
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igger Efficiency and Angular
Resolution

= Trigger efficiency = No. of showers of

particular energy
detected /

Total no. of showers that fell in

the trigger area of the array

= Angular resolution : This measures the
accuracy with which a source of a primary
gamma ray can be located by reconstruction of
the shower.
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Study of the variation in Trigger
efficiency and Angular

resolution

(TeV) (TeV) 8 m sepn 4 m sepn 8 m sepn 4 m sepn 8 m sepn 4 m sepn
1-1.6 1.3 0.1139 0.06 1.14 0.07 1.49 -- 1.99
1.6-2.6 2.1 0.3222 0.12 3.37 0.28 4.79 1.27 1.94
2.6-4.1 3.3 0.5185 0.99 11.86 1.3 11.24 1.93 1.65 ?
4.1-6.6 5.3 0.7242 3.53 27.9 3.9 23.6 1.56 1.73
6.6-10 8.2 0.9138 11.9 55.4 11.5 41 1.76 1.69
10-15.9 12.7 1.1038 29.7 82.8 244 63.3 1.85 1.62
15.9-25.1 20 1.3010 59.5 97 45.8 84.3 1.66 1.58
25.1-39.8 31.1 1.4927 89.1 99.9 72.1 96.5 1.64
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Plot for the trigger eff. Vs
PImiary energy (gamma shower)

%Trig eff vs Primary Energy
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Plot for the trigger eff. Vs
pPIary energy (proton shower)

%Trig eff vs Primary Energy
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Observations

= At 4 meter detector separation the trigger
efficiency reaches 90% at almost half of the
‘energy threshold with 8 meters detector
separation’, for both gamma and proton
generated showers.
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Vanation in Trigger efficiency
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Observations

= For energies greater than 6 TeV we get an
improvement in angular resolution while going
from 8 meters to 4 meters detector separation.

For 4 meter detector separation angular
resolution shows a trend of decreasing with
increase in the energy as expected, whereas for
8 meters detector separation we don’t see any
particular trend of angular resolution with
energy (surprising!).
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Observations

= When detector separation decreases from 8 m
to 4 m, the number of detectors increases by a
factor of about 4. This implies that statistically
the angular resolution should decrease by a
factor of V4 = 2, but this is not observed. A
possible solution on this is to use the number of
detectors hit during a shower of particular
energy range.

= The angular resolution is always <2".
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Crude Approximation of
Significance from Crab-like
spectrum

= Significance(s) = No. of signal events /
Sqrt(total no. of events)
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Significance

= The integral flux is
500TeV

@ N(>E)=)> ¢(E)*dN/dE(E)
1TeV

= where g(E) is the trigger efficiency at primary
energy E and dN/dE(E) is the differential flux
at an energy E. We have calculated ¢ (E) only
up to ~30 TeV, and to calculate integral flux we
need e (E) up to 500 TeV. Hence the data were
extrapolated using cubic spline extrapolation
method
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Significance

The differential spectrum of gamma showers

from Crab nebula as observed by HESS is

given by

dNy/dE (E) = 3.45 *10%-11 E-2.63 (cm-2s-
1TeV-1)

proton differential spectrum was taken to be

the cosmic ray spectrum found by GRAPES-2

is given by

dNp/dE (E) = 1.057 * 10"-5 * E-2.76 (cm-2s-1sr-
1TeV-1)
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IMprovement in the Significance
iom Crab-like spectrum

Proton Proton by factor

4m

24,89,510 . . 1.94252874

78901 ] . 1.71428571

21327 . . 1.33333333

10134 . . 1.11764706

1.01694915

0.98039216

0.95555556




Inferences

= As we increase the lower limit of energy for
integral flux calculation, the improvement in
significance (0) reduces. If all energies above 1
TeV are considered the improvement is by a
factor of ~2.
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