Phy102: Physics I - Syllabus

July 30, 2012

1 Course content:

Broadly, the course content is as follows:

Transformation of Vectors, Newton's Second Law, Conservative and Non-Conservative Forces; Central Force Motion, Harmonic Oscillator Non-Inertial Frames of Reference, Angular Momentum and Rigid Body Dynamics, Special Theory of Relativity.

Details follow.

2 Lecture-wise break-up (rough)

#	Topic	Lectures
1	Transformation of Scalars and Vectors under Rotation, Newton's Second	2
	Law, Forces of Nature	
2	Solving Newton's Equations of Motion in Polar Coordinates for problems	6
	involving Constraint and Friction, extension to Cylindrical and Spherical	
	Coordinates	
3	Potential Energy Function, $\mathbf{F} = -\nabla V$, Conservative and Non-Conservative	3
	Forces	
4	Central Forces, Conservation of Angular Momentum, Centrifugal Term and	3
	Effective Potential Energy, Energy Equation and Energy Diagrams,	
	Elliptical, Parabolic, and Hyperbolic Orbits, Satellite Maneuvers	
5	Harmonic Oscillator, Damped Harmonic Motion, Forced Oscillations and	5
	Resonance, inclusion of Nonlinear Force and Chaotic Motion, Phase-Space	
	Description	
6	Non-Inertial Frames of Reference, Principle of Equivalence, Centrifugal and	3
	Coriolis Forces, Weather Systems, Foucault Pendulum	
7	Angular Momentum and Torque, Rigid Body Dynamics, Degrees of	8
	Freedom, Angular Velocity Vector, Moment of inertia Tensor, Principal	
	Axes, Torque-Free Precession, Gyroscopes, Euler's Equations	
8	Special Theory of Relativity, Michelson-Morley Experiment, Postulates,	10
	Derivation of Lorentz Transformation, Concept of Simultaneity, Length	
	Contraction, Time Dilation, Velocity Addition, Relativistic Dynamics,	
	Energy-Momentum Conservation in Collisions, Energy-Mass Relation	