COMPUTATIONAL SIMULATION METHODS IN PHYSICS(PHY627A)

2×75 minutes Lectures per week, 9 credits – no regular laboratory class, but there will be hands-on sessions whenever required.

This course is open to Ph.D., Master students, and advanced UG students. Basic knowledge of programming is required.

Course content:

C/ FORTRAN programming, revisiting controls/arrays/files, errors, numerical analysis, differentiation, integration, solution of differential equations, solution of Schrödinger equation, simulations of planetary motion, oscillatory motion.

Classical molecular dynamics simulation, simulation of simple gas/liquid, density functional theory (briefly), Ab-initio molecular dynamics simulation (Car-Parrinello method) (briefly), Monte Carlo simulation, simulation of Ising model.

Selected readings:

- 1. An Introduction to Computational Physics by Tao Pang, Cambridge University press (2006).
- 2. Computational Physics: A practical Introduction to Computational Physics and Scientific Computing by K.N. Anagnostopoulos (2016).
- 3. Understanding Molecular Simulation by Frenkel and Smit
- 4. Computer Simulation of Liquids by Allen and Tildesley
- 5. Electronic Structure: Basic Theory and Practical Methods by Richard M. Martin