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4 Coupled Oscillations

4.1 Two Spring-Coupled Masses

Consider a mechanical system consisting of two identical masses m which

are free to slide over a frictionless horizontal surface. Suppose that the

masses are attached to one another, and to two immovable walls, by means

of three identical light horizontal springs of spring constant k, as shown in

Figure 4.1. The instantaneous state of the system is conveniently specified

by the displacements of the left and right masses, x1(t) and x2(t), respec-

tively. The extensions of the left, middle, and right springs are thus x1,

x2 − x1, and −x2, respectively, assuming that x1 = x2 = 0 corresponds to

the equilibrium configuration in which the springs are all unextended. The

equations of motion of the two masses are thus

mẍ1 = −k x1 + k (x2 − x1), (4.1)

mẍ1 = −k (x2 − x1) + k (−x2). (4.2)

Here, we have made use of the fact that a mass attached to the left end

of a spring of extension x and spring constant k experiences a horizontal

force +k x, whereas a mass attached to the right end of the same spring

experiences an equal and opposite force −k x.

Equations (4.1)–(4.2) can be rewritten in the form

ẍ1 = −2ω2
0 x1 +ω2

0 x2, (4.3)

ẍ2 = ω2
0 x1 − 2ω2

0 x2, (4.4)
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Figure 4.1: Two degree of freedom mass-spring system.
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where ω0 =
√

k/m. Let us search for a solution in which the two masses

oscillate in phase at the same angular frequency, ω. In other words,

x1(t) = x̂1 cos(ωt− φ), (4.5)

x2(t) = x̂2 cos(ωt− φ), (4.6)

where x̂1, x̂2, and φ are constants. Equations (4.3) and (4.4) yield

−ω2 x̂1 cos(ωt− φ) =
(

−2ω2
0 x̂1 +ω2

0 x̂2

)

cos(ωt− φ), (4.7)

−ω2 x̂2 cos(ωt− φ) =
(

ω2
0 x̂1 − 2ω2

0 x̂2

)

cos(ωt− φ), (4.8)

or

(ω̂2 − 2) x̂1 + x̂2 = 0, (4.9)

x̂1 + (ω̂2 − 2) x̂2 = 0, (4.10)

where ω̂ = ω/ω0. Note that by searching for a solution of the form (4.5)–

(4.6) we have effectively converted the system of two coupled linear differ-

ential equations (4.3)–(4.4) into the much simpler system of two coupled

linear algebraic equations (4.9)–(4.10). The latter equations have the trivial

solutions x̂1 = x̂2 = 0, but also yield

x̂1

x̂2

= −
1

(ω̂2 − 2)
= −(ω̂2 − 2). (4.11)

Hence, the condition for a nontrivial solution is clearly

(ω̂2 − 2) (ω̂2 − 2) − 1 = 0. (4.12)

In fact, if we write Equations (4.9)–(4.10) in the form of a homogenous

(i.e., with a null right-hand side) 2× 2 matrix equation, so that

(

ω̂2 − 2 1

1 ω̂2 − 2

)(

x̂1

x̂2

)

=

(

0

0

)

, (4.13)

then it is clear that the criterion (4.12) can also be obtained by setting the

determinant of the associated 2× 2 matrix to zero.

Equation (4.12) can be rewritten

ω̂4 − 4 ω̂2 + 3 = (ω̂2 − 1) (ω̂2 − 3) = 0. (4.14)
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It follows that

ω̂ = 1 or
√
3. (4.15)

Here, we have neglected the two negative frequency roots of (4.14)—i.e.,

ω̂ = −1 and ω̂ = −
√
3—since a negative frequency oscillation is equivalent

to an oscillation with an equal and opposite positive frequency, and an equal

and opposite phase: i.e., cos(ωt − φ) ≡ cos(−ωt + φ). It is thus apparent

that the dynamical system pictured in Figure 4.1 has two unique frequencies

of oscillation: i.e., ω = ω0 and ω =
√
3ω0. These are called the normal

frequencies of the system. Since the system possesses two degrees of freedom

(i.e., two independent coordinates are needed to specify its instantaneous

configuration) it is not entirely surprising that it possesses two normal fre-

quencies. In fact, it is a general rule that a dynamical system withN degrees

of freedom possesses N normal frequencies.

The patterns of motion associated with the two normal frequencies can

easily be deduced from Equation (4.11). Thus, for ω = ω0 (i.e., ω̂ = 1), we

get x̂1 = x̂2, so that

x1(t) = η̂1 cos(ω0 t− φ1), (4.16)

x2(t) = η̂1 cos(ω0 t− φ1), (4.17)

where η̂1 and φ1 are constants. This first pattern of motion corresponds to

the two masses executing simple harmonic oscillation with the same ampli-

tude and phase. Note that such an oscillation does not stretch the middle

spring. On the other hand, for ω =
√
3ω0 (i.e., ω̂ =

√
3), we get x̂1 = −x̂2,

so that

x1(t) = η̂2 cos
(√
3ω0 t− φ2

)

, (4.18)

x2(t) = −η̂2 cos
(√
3ω0 t− φ2

)

, (4.19)

where η̂2 and φ2 are constants. This second pattern of motion corresponds

to the two masses executing simple harmonic oscillation with the same am-

plitude but in anti-phase: i.e., with a phase shift of π radians. Such os-

cillations do stretch the middle spring, implying that the restoring force

associated with similar amplitude displacements is greater for the second

pattern of motion than for the first. This accounts for the higher oscillation

frequency in the second case. (The inertia is the same in both cases, so

the oscillation frequency is proportional to the square root of the restoring

force associated with similar amplitude displacements.) The two distinc-

tive patterns of motion which we have found are called the normal modes
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of oscillation of the system. Incidentally, it is a general rule that a dynami-

cal system possessing N degrees of freedom has N unique normal modes of

oscillation.

Now, the most general motion of the system is a linear combination of the

two normal modes. This immediately follows because Equations (4.1) and

(4.2) are linear equations. [In other words, if x1(t) and x2(t) are solutions

then so are ax1(t) and ax2(t), where a is an arbitrary constant.] Thus, we

can write

x1(t) = η̂1 cos(ω0 t− φ1) + η̂2 cos
(√
3ω0 t− φ2

)

, (4.20)

x2(t) = η̂1 cos(ω0 t− φ1) − η̂2 cos
(√
3ω0 t− φ2

)

. (4.21)

Note that we can be sure that this represents the most general solution to

Equations (4.1) and (4.2) because it contains four arbitrary constants: i.e.,

η̂1, φ1, η̂2, and φ2. (In general, we expect the solution of a second-order

ordinary differential equation to contain two arbitrary constants. It, thus,

follows that the solution of a system of two coupled ordinary differential

equations should contain four arbitrary constants.) Of course, these con-

stants are determined by the initial conditions.

For instance, suppose that x1 = a, ẋ1 = 0, x2 = 0, and ẋ2 = 0 at t = 0. It

follows, from (4.20) and (4.21), that

a = η̂1 cosφ1 + η̂2 cosφ2, (4.22)

0 = η̂1 sinφ1 +
√
3 η̂2 sinφ2, (4.23)

0 = η̂1 cosφ1 − η̂2 cosφ2, (4.24)

0 = η̂1 sinφ1 −
√
3 η̂2 sinφ2, (4.25)

which implies that φ1 = φ2 = 0 and η̂1 = η̂2 = a/2. Thus, the system

evolves in time as

x1(t) = a cos(ω− t) cos(ω+ t), (4.26)

x2(t) = a sin(ω− t) sin(ω+ t), (4.27)

where ω± = [(
√
3 ± 1)/2]ω0, and use has been made of the trigonometric

identities cos(a + b) ≡ 2 cos[(a + b)/2] cos[(a − b)/2] and cos(a − b) ≡
−2 sin[(a + b)/2] sin[(a − b)/2]. This evolution is illustrated in Figure 4.2.

[Here, T0 = 2π/ω0. The solid curve corresponds to x1, and the dashed curve

to x2.]
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Figure 4.2: Coupled oscillations in a two degree of freedom mass-spring system.

Finally, let us define the so-called normal coordinates,

η1(t) = [x1(t) + x2(t)]/2, (4.28)

η2(t) = [x1(t) − x2(t)]/2. (4.29)

It follows from (4.20) and (4.21) that, in the presence of both normal

modes,

η1(t) = η̂1 cos(ω0 t− φ1), (4.30)

η2(t) = η̂2 cos(
√
3ω0 t− φ2). (4.31)

Thus, in general, the two normal coordinates oscillate sinusoidally with

unique frequencies, unlike the regular coordinates, x1(t) and x2(t)—see Fig-

ure 4.2. This suggests that the equations of motion of the system should

look particularly simple when expressed in terms of the normal coordinates.

In fact, it is easily seen that the sum of Equations (4.3) and (4.4) reduces to

η̈1 = −ω2
0 η1, (4.32)

whereas the difference gives

η̈2 = −3ω2
0 η2. (4.33)
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Thus, when expressed in terms of the normal coordinates, the equations of

motion of the system reduce to two uncoupled simple harmonic oscillator

equations. Of course, most general solution to Equation (4.32) is (4.30),

whereas the most general solution to Equation (4.33) is (4.31). Hence, if

we can guess the normal coordinates of a coupled oscillatory system then the

determination of the normal modes of oscillation is considerably simplified.

4.2 Two Coupled LC Circuits

Consider the LC circuit pictured in Figure 4.3. Let I1(t), I2(t), and I3(t) be

the currents flowing in the three legs of the circuit, which meet at junctions

A and B. According to Kichhoff ’s first circuital law, the net current flowing

into each junction is zero. It follows that I3 = −(I1+I2). Hence, this is a two

degree of freedom system whose instantaneous configuration is specified by

the two independent variables I1(t) and I2(t). It follows that there are two

independent normal modes of oscillation. Now, the potential differences

across the left, middle, and right legs of the circuit are Q1/C+ L İ1, Q3/C
′,

and Q2/C + L İ2, respectively, where Q̇1 = I1, Q̇2 = I2, and Q3 = −(Q1 +

Q2). However, since the three legs are connected in parallel, the potential

differences must all be equal, so that

Q1/C+ L İ1 = Q3/C
′ = −(Q1 +Q2)/C

′, (4.34)

Q2/C+ L İ2 = Q3/C
′ = −(Q1 +Q2)/C

′. (4.35)

Differentiating with respect to t, and dividing by L, we obtain the coupled

time evolution equations of the system:

Ï1 +ω2
0 (1+ α) I1 +ω2

0 α I2 = 0, (4.36)

Ï2 +ω2
0 (1+ α) I2 +ω2

0 α I1 = 0, (4.37)

where ω0 = 1/
√
LC and α = C/C ′.

It is fairly easy to guess that the normal coordinates of the system are

η1 = (I1 + I2)/2, (4.38)

η2 = (I1 − I2)/2. (4.39)

Forming the sum and difference of Equations (4.36) and (4.37), we obtain

the evolution equations for the two independent normal modes of oscilla-

tion:

η̈1 +ω2
0 (1+ 2α)η1 = 0, (4.40)

η̈2 +ω2
0 η2 = 0. (4.41)
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Figure 4.3: Two degree of freedom LC circuit.

These equations can readily be solved to give

η1(t) = η̂1 cos(ω1 t− φ1), (4.42)

η2(t) = η̂2 cos(ω0 t− φ2), (4.43)

where ω1 = (1 + 2α)1/2ω0. Here, η̂1, φ1, η̂2, and φ2 are constants deter-

mined by the initial conditions. It follows that

I1(t) = η1(t) + η2(t) = η̂1 cos(ω1 t− φ1) + η̂2 cos(ω0 t− φ2),

(4.44)

I2(t) = η1(t) − η2(t) = η̂1 cos(ω1 t− φ1) − η̂2 cos(ω0 t− φ2).

(4.45)

As an example, suppose that φ1 = φ2 = 0 and η̂1 = η̂2 = I0/2. We obtain

I1(t) = I0 cos(ω− t) cos(ω+ t), (4.46)

I2(t) = I0 sin(ω− t) sin(ω+ t), (4.47)

where ω± = (ω0 ±ω1)/2. This solution is illustrated in Figure 4.4. [Here,

T0 = 2π/ω0 and α = 0.2. Thus, the two normal frequencies are ω0 and

1.18ω0.] Note the beats generated by the superposition of two normal

modes with similar normal frequencies.

We can also solve the problem in a more systematic manner by specifi-

cally searching for a normal mode of the form

I1(t) = Î1 cos(ωt− φ), (4.48)

I2(t) = Î2 cos(ωt− φ). (4.49)
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Figure 4.4: Coupled oscillations in a two degree of freedom LC circuit.

Substitution into the time evolution equations (4.36) and (4.37) yields the

matrix equation
(

ω̂2 − (1+ α) −α

−α ω̂2 − (1+ α)

)(

Î1

Î2

)

=

(

0

0

)

, (4.50)

where ω̂ = ω/ω0. The normal frequencies are determined by setting the

determinant of the matrix to zero. This gives

[

ω̂2 − (1+ α)
]2

− α2 = 0, (4.51)

or

ω̂4 − 2 (1+ α) ω̂2 + 1+ 2α =
(

ω̂2 − 1
) (

ω̂2 − [1+ 2α]
)

= 0. (4.52)

The roots of the above equation are ω̂ = 1 and ω̂ = (1+ 2α)1/2. (Again, we

neglect the negative frequency roots, since they generate the same patterns

of motion as the corresponding positive frequency roots.) Hence, the two

normal frequencies are ω0 and (1 + 2α)1/2ω0. The characteristic patterns

of motion associated with the normal modes can be calculated from the first

row of the matrix equation (4.50), which can be rearranged to give

Î1

Î2
=

α

ω̂2 − (1+ α)
. (4.53)

It follows that Î1 = −Î2 for the normal mode with ω̂ = 1, and Î1 = Î2
for the normal mode with ω̂ = (1 + 2α)1/2. We are thus led to Equa-

tions (4.44)–(4.45), where η̂1 and φ1 are the amplitude and phase of the
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higher frequency normal mode, whereas η̂2 and φ2 are the amplitude and

phase of the lower frequency mode.

4.3 Three Spring Coupled Masses

Consider a generalized version of the mechanical system discussed in Sec-

tion 4.1 that consists of three identical masses m which slide over a fric-

tionless horizontal surface, and are connected by identical light horizontal

springs of spring constant k. As before, the outermost masses are attached

to immovable walls by springs of spring constant k. The instantaneous con-

figuration of the system is specified by the horizontal displacements of the

three masses from their equilibrium positions: i.e., x1(t), x2(t), and x3(t).

Clearly, this is a three degree of freedom system. We, therefore, expect it to

possesses three independent normal modes of oscillation. Equations (4.1)–

(4.2) generalize to

mẍ1 = −k x1 + k (x2 − x1), (4.54)

mẍ2 = −k (x2 − x1) + k (x3 − x2), (4.55)

mẍ3 = −k (x3 − x2) + k (−x3). (4.56)

These equations can be rewritten

ẍ1 = −2ω2
0 x1 +ω2

0 x2, (4.57)

ẍ2 = ω2
0 x1 − 2ω2

0 x2 +ω2
0 x3, (4.58)

ẍ3 = ω2
0 x2 − 2ω2

0 x3, (4.59)

where ω0 =
√

k/m. Let us search for a normal mode solution of the form

x1(t) = x̂1 cos(ωt− φ), (4.60)

x2(t) = x̂2 cos(ωt− φ), (4.61)

x3(t) = x̂3 cos(ωt− φ). (4.62)

Equations (4.57)–(4.62) can be combined to give the 3 × 3 homogeneous

matrix equation







ω̂2 − 2 1 0

1 ω̂2 − 2 1

0 1 ω̂2 − 2













x̂1

x̂2

x̂3






=







0

0

0






, (4.63)


