SEISMIC EFFECTS ON EARTH FILL DAMS
By S.V.Medvedev,x)

A.P.Sinitsym =)

The paper deals with the effects due to dynamic seismic
1oads on earth fill dems. A stationary wave process and the
action of a travelling wave are examined. The effects,resul-
ting from the arising of plastic deformation zones, on the
dam seismic resistance are shown. The conditions stimulating

unstable vibration are defined.

1. Statement of Problem

A theory for calculation of effects resulting from hori-
zontal seismic movements was developed in detail by the So-
viet scientists Medvedev,Nazarov,Kirchinsky ( 1,2,3 ) et
al. with respect to high structures of»relatively small plan
sizes. According to one of the authors (4,5), of a paramount
importance turns to be a load arising at the moment when a
surface wave passes under the toe.

An interaction of the surface wave and the structure
leads to a redistribution of reactions along the toe with the
resulting loads which change the safety and stability fsc-

tors of the structure.
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2, Method of Analysis

A general method for analysis of dynamic loads acting
upen the dams was developed by the author in his earlier
works (6); in the present paper am application of this method
for calculating various types of earth fill dams is shown.

While compiling the calculation scheme we assume the
dam to be a system with several degrees of freedom, a total
distributed mass of the dam is replaced by & number of concen-
trated masses located at the nodes of & grid plottedon the
profile. The problem can be solved in terms of displacements
for which purpose differential equations for motion of each
concentrated mass are designed. This results in a system of

differential equations of the following type:
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Here Tqr Jo» J3 eee T aTE generalized displacements
of masses; § 44 812, 8’13 g soes Sik - generalized
unit displacements from unit forces applied to corresponding
masses (e.g. 8'12 means a displacement of m, mass due to |
unit force applied to m, mass) ; Pi(t) is an external force
applied to m, mass; ZS1P ’Aﬂp' A xp &re displacements
of my, m, ,.. my masses due to force P; = 1 .
Solution of the equation (1) may be written as follows:
Y= P A sinwot +py A, sinc,t + APy A sin ot )
(2
where P p4, P o are the ordinates of main vibration
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modes; A1, A2’ AB are the amplitudes of main vibration modes

and W 4 W o9 GJ3 are natural frequencies.

To find frequencies, an equation of frequencies is ma-
de up by setting the determinant of the system of homoge-
neous equations, corresponding to (1), to zero.

The ordinates of the main vibration modes P .4 are
the ratios of the vibrational amplitudes of separate masses;
they are to be found from the homogeneous system of equati-
ons (1) for each frequency.

Thus, frequencles and ordinates of the vibration modes
are determined in a routine way. For calculating the ampli-
tudes Ak the following formula is used:

]
gk_(ﬂkllr’+gkﬂ,u/z +Qk31f3+-.,> w, (3)

In this formula, Ak1' Ak, ... are the displacement am-
plitudes produced by unit velocities applied to separate mas-
segs. We can pass over from velocities V1, V2 %0 the impul-
ses S, = Vk/mk and forces, taking into account that
ds, = P dt.

Then we shall have the following formulas for the mass

displacements:
Sin o, t )
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The formulas (4) and (§) allow the motion of separate
masses of the dam profile to be studied and its state of
deformation at various moments of time to be plotted.

To analyse the state of stress of the dam, it is a
good practice to determine the effect of individual para-
meters on the result, for which purpose the calculation is
made for a unit effect when the force Pk = 1 is applied in-
sténtaneously to m, mass at t = O and then keeps its value
constant up to t = oo . We can proceed to amother force by
means of a step approximation. From a unit effect for calcu-~
lating the deflections we shall have:

i=n
gk|-z { bZ,4 c., Ak Pk ‘P';f’::) sin @, (t-w du} “
From the deflections it is possible to pass over to

forces using the following equations:

Qki.to'i-‘i Yt &, Yy T Yt v a Yy @

Now the force Qki depends on the time. To make a prac-
tical use of the theoretical results, the formulas (6) and
(7) are employed to calculate Yki and‘Qki for various fi-
xed moments of time t = &« T1 (o = 0.1 0.2 ...), expres-
sed as the fractions of the basic vibration period. The
flexural moments of the reactions of the base and other sta-

tic factors are determined according to the formulas

M. == ) =
ki Qk{,ahu and 'Pk';‘sz-._QkL (8)

The factors n ki and $ ki are the ordinates of the
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influence lines of moments or reactions.

The method developed allows us to study the state
of the stress of & dam both within the elastic zone and be-
yound it when separate sections of the prﬁfile would be

displaced and residual deformations arise.

3. Dam of Triangular Profile

The dams constructed of local materials have usually
a symmetric triangular profile. Two cases should be distin-
guished when estimating se:ismic stability of such dams. With
small amplitudes of the seismic waves the profile displa-
cements will remain under the elastic limit, no residual dis-
placements occur and, therefore, the dam profile can be
treated as an elastic triangular wedge. To make a dynamic
analysis of the triangular wedge, use can be made of diffe-
rential equations as applied for a two-dimensional problem
of the elastic theory which are solved by means of finite- ”
differences method. Subsequently, for plotting the strained
state of the profile corresponding to the given fixed moment
of time, it is necessary to solve a system of finite-diffe-

rence linear equations of the following form:
(Ug-2u,-up) Uy-2uo—UU,)

P at* =(A+2#) Ax? ¥
u. - -
+ M (u, 2“: Uy,) + (A+p) (U-y) + (Uy-) (9)
Ag 2axlAy

For the vertical component of the seismic wave the
strained state of the profile tekes the form shown in
Fig.1. The strained state is dependent on the wave length(4),
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viz.a more lengthy wave is capable of straining a rather gre-
ater section of the profile. A short wave mainly changes
the state of the stress of a profile near the toe. The stress
dimgramm G, which arises in the vertical section on the
symmetry axis of the profile turns to be of(two-sign chara-
cter which results in the fact that in the middle of the
profile height tensile stresses appear which are likely to
cause cracks. An analysis of the strained state of the pro-
file shows that to increase its seismic stability, a section
at the bottom of the inclined edge of the profile should be
reinforced.

A strained state of a triangular profile for the hori-
zontal component of the selsmic wave has been studied in the
works (7) and shown in Fig.2.

An examination of this scheme shows that maximum defor-
mations appear at the upper part of the profile. An incregse
in the size of the profile slopes results in a decregse of
thé vibration amplitude of the apex adding, thus, to the
seismic stability of the dam.

When the horizontal and the vertical components of the
seismic wave act simultaneously & strained state of the pro-
file can be obtained by a method of superposition. This is
shown in Figs.3 and 4. To achieve a higher seismic stability
of the earth fill dams, the toe of the slopes should be so
reinforced that they be able to receive considerable verti-
cal displacements without being destroyed. Construction of
the flat slopes increases the seismic stability of the dam

against the horizontal seismic load.

IV-378



The rigidity of the dam apex should be also increased
in horizontal sections since the combined action of the hori-
zontal and vertical components of the seismic wave will result
in a considerable rise of the shearing stresses in the hori-
zontal sections. The diagrams of the shearing stresses are

shown in Fig.5.

4, Formation of Plastic Zones

For excessive seismic efforts the analysis of the dams
becomes more complicated since the links between separate
parts or members of the profile are disturbed and residual
deformations appear. When dealing with earth £ill dams and
stone fill dams of a pronounced importance is their specific
feature, which we observed as early as 1942 while investigat-~
ing on small models the effect of the travelling of the im-
pact impulse through a layer of sand. The investigation re=-
vealed an interesting phenomenon: with low values of the im-
pact loose bodies behave as elastic ones only when there
is quite definite interrelation between the rigidities of the
system. If the interrelation of rigidities is altered up to
a certain critical value, considerable shears in the stra-
tum of sand take place and the deformations rise markedly.
The gystem behaves as if it were losing its stability. If
we proceed to change the interrelation of rigidities in the
same direction, the system will again behave as an elastic
one but its rigidity factor changes. As the rigidity of the
system and the value of the outer pulse change there appear

three distinctive ranges where the dam profile works:
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1. The range corresponding to an elastic behaviour of
the system with a low outer pulse.

2. The range characterized by appearance of shears in
loose medium and by appearance of large dislocations in the
dam body. This can be briefly termed as a range of unsta-
bility.

3. The range corresponding to a loose medium where
particles have got overcompacted which resulted in somewhat
higher rigidity. Such a system can be designed by applying
a method of a dynamic analysis described in Sec.2 for a sys-
tem with several degrees of freedom; however, the relation
between deformations and stresses will be no longer linear.
This nonlinear law correlating stresses and deformations
has been obtained from specially-organized experiments.

5. Unstable Mode of Vibrations

To draw general conclusions referring to the estimation
of the daw stability, we think it possible to substitute a
stepped law, comprising three linear sections (Fig.6), for a
nonlinear law of the change of the system rigidity as descri-
bed in the paper (8).

Now the problem can be solved with the aid of the so-cal=-
led "skeleton curves" which correspond to the appearance of
the resonance and 'a considerable rise in displacements bet-
ween the members of the syﬁtem.

As is known, when deaLing with 8 linear system of one

degree of freedom the "skeleton curves" are in fact straight
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lines which are parallel to an axis of ordinates; These are
shown for each frequency with dotted lines in PFig.7. On the
diagrams, the ratios of frequencies are plotted as abscissas,
and the amplitudes as ordinates. When in the process of mo-
vement, the rigidity of the system drops the "skeleton curve"
bends first to the left and then to the right following a
rise in the rigidity of the system. This is accompanied with
an appearance of a range of unstable movement and shears.

The estimation of the general stability of the dam can
be made, as & first approximation, determining the relation-
ship which characterizes physical properties of the dam and
constructing the stresses - a strain diagram of the system
considered. This diagram is then to be approximated with the
three linear sections as shown in Fig.6. This simplified dia-
gram is used for determination of three wvalues of frequency
corresponding to three different sections of the diagram.
Thus, 8 band within which the "skeleton curve"™ of the whole
system can be plott#d and the range of unstable movement corres-
ponding to this range may be obtained. This stage of investi-
gation reférs to studying the properties of the dam profile
and allows us to answer the question whether the dam is stable
or not under the given seismic action. A study should be made
of separate harmonics which make up & spectrum of a seismic
wave and refer to the vertical component of the surface waves
Some of the harmonics, whose frequencies are within the li-
mits of the unstable band, shown in Fig.?7, may cause sh
in the dam profile if an additional conditiom I8 fulfilled,
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namely , if the amplitudes of these harmonics are above the

horizontal straight line which corresponds to the ratio

A-:sz 1.
©  Thus, if the spectrum of the seismic load is of the ampli-
tudes which are outside the unstable range plotted for the
given profile of the dam this profile is considered to be re-
liable.

For the practical purposes, the curvilinear areas of un-~
stability can be replaced by the stepped ones. The diagram
shown in Fig.7 is constructed within the dimensionless coor-
dinates; on the x-axis are plotted the reduced amplitudes
which are equal to the ratio of the amplitude of the given
term of expansion of spectrum to the amplitude obtained from
this load in the elastic region. On the y-axis are plotted
the reduced frequency which is equal to the ratio of the fre-
quency of the given term of the spectrum of action of the seis-
mic wave to the profile frequency calculated for the elastic
zone,

When performing practical calculations one has to confine
himself to a few overtones corresponding to the highest fre-
quencies of forced vibrations; therefore we shall have seve-
ral points which should be plotted on the drawing and see
whether all of them are outside the unstable range.

We described the calculation method as applied to the
system with one degree of freedom which is the most simple
one, and, as experience has shown, is accurate enough for

practical estimation of the dynamic properties of the dam.
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A higher accuracy can be obtained by using & system with
several degrees of freedom for which purpose the profile of
the dam should be divided into the sections which will be
interconnected through nonlinear links corresponding to phy-
sical properties of materials used for constructing the sec-
tions concerned and the forces (friction and cohesion) which
arise at the boundaries between these sections. An analysis
of such a system will be much more complicated but no essen-
tial difficulties will be met with if electronic computers
are used for the. purpose. An increase in the number of degrees
of freedom will mean a corresponding increase of the number
of "gkeleton curve" on the diagrams of unstability and inter=-
section of these "“gkeleton curves" is possible in such cases.

The points of intersections are of peculiar properties,
i.e., the effect of instability is governed not only by the
parameters of the exterior dynamic effect but also by the cha-
ra¢teristics of mutual associlations which are to be found bet-
ween some of the members of the system. This conclusion is
of a paramount practical value since it shows that the stabi-
lity of the dam with respect to seismic loads will drop shar=
ply if separate portions of the dam profile are €onjugated
in & poor way. Thus, the proposed method enables us to esti-
nate a total stability of a triangular-shaped earth-fill dam.

6. A, Comparison to Results Observed

A detailed study of vibrations in the slopes of earth
£111 dams has been made by S.V.Medvedev (1). Vibrograms ob-
tained for horizontal displacements of points located at va-
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rious levels from the slope toe have forms that characterize
a system with nonlinear characteristics. Fig.9 showm vibro-
grams for horizontal vibration of the ridge and the toe of a
20 m high earth slope with an inclination of about 45°.

The vibrations were excited by exploding small charges placed
far enough from the slope. Fig.9 also shows the results ob-
tained in the study (8) for & “wthree-linear" system with one
degree of freedom for two cases: (&) when the phases of the
sub-harmonics of the third order and of the basic harmonics
are the same, and (b) when these phases 8re opposite to each
other. A qualitative comparison of the above diagrams reveals
their close similarity. This can serve as & preliminary confir-
mation that an earth fill dam, under certain conditions, beco-
mes & nonlinear system and some pulsations can arise in it

which are characteristic for nonlinear systems.

7. Stresses in Dam Base

A designer of earth fill dams must pay great attention
not only to the amount of inertia forces that is expressed
in terms of seismic factors. It is also of significance to know
numerical values of strains and stresses and vibration velo-
cities to be found at the dam bases during heavy earthquakes.
Maximum values of ground vibration velocities, strain and stres-
ses are given in (9) for earthquakes of various intensity.

The values of vibration velocities have been obtained
by means of integrating the accelerations or differentiating
the shifts. Fig.9 shows a diagram of the vibration velocities
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V, in cm per sec. The velocities are shown for periods from
0.1 to 2.0 sec. The numbers om the diagrams 9, 8, 7 and 6 de~
note the intensity of vibrations according to a seismic sca-
le. The vibration velocity for each value of intensity keeps
within the limits confined by lines shown in Fig.9. With the
periods from 0.1 to 0.5 sec. the vibration velocity rises
with an increase in period. With the periods from 0.5 sec

to 2.0 sec. the velocity value keeps constant.

With an increase of intensity by a nnity the velocity
value rises by factor 2. Thus, with the intensity of 8, the
ground vibration velocity is characterized by the values from
8 to 16 cm per sec.

To determine the stresses in grounds, use was made of
data on the wave propagation velocities for basic kinds of
grounds. In addition, the data on the demnsity of these grounds
were taken into consideration. Figd, in its left-hand side,
also shows the values of maximum stresses appearing at the
base of the dam during earthquakes. The stresses are shown
for the earthquakes of various intensities (6,7,8 and 9).

The stresses differ from type to type of ground. Fig.9 illust-
rates six types of ground.

As seen from the diagrams, for the same intensity of
an earthquake, the stresses in solid rocks are 25 times as
high as in loose grounds. The stress value during the earth-
quakes of intensity 9, for example, may vary from 5 to

10 kg per sq.cm.
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8., Deformations of Dam Base

The amount of maximum relative deformations appearing
in grounds of various types at the bases of earth fill dams
are illustrated in Fig.10., On the figure are presented the
values for the above six different types of ground. To de-
termine deformations, use is made of the values of the wave
propagation velocities and those of the ground vibration velo-
cities. As seen from Fig.10, rock bases exibit dynamic defor-
mations whose values are 15 times as low as those of loose
grounds.

Both the top and the bottom slopes of the earth fill
dams in seismic districts are made flat. This accounts for
tremendous imertia forces which develop in earth fill dams
owing to much construction material involved. However, the
length of a seismic wave 1s of the same order of magnitude
as is the size of an earth £ill dam; that is why at the same
moment in different points of a dam the accelerations differ
not only with respect to the amount but also with respect to
the sign. A seismic factor in the calculations normally inc-
reases only with height from a base to a ridge though it
might be expected that this factor must change along two ho-

rizontal axes of a dam as well.

Conclusion

Approximate calculations made herein belong to the stu=~
dy of an important and new problem which is of a great prac-
tical significance. The calculations include an attempt at
throwing light on the problem of nonlinear vibrations in
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earth £ill dems by using simplified engineering methods. Fur-
ther investigation in this direction will contribute to fin-
ding the best profile to be chosen when constructing an

earth fill dam,
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Ceptions to Figures

Fig.1. Strained state of a dam proiile due to a vertical
component of seismic load when t = 0.25 To(1) and
t = 75 To (2).
Fig.2. Strained state cf a dam profile due to a horizontal
component of seismic load (Ishizaki (7) ).
Fig.3, Strained state of & dam profile due to a combined
| action produced by vertical and horizontal components
of the seismic load when t = 0.25 To.
Fig.4. Same, when t = 0.50 To,
Fig.5. The diagrams of shearing stresses at the dam slope
along horizontal platforms
1 - dus to horizontal load (Isﬂzaki and (7) ).
2 = due to vertical load
3 = due to combined action of horizontal and vef-

tical loads
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Fig.6. Stress-strain diagram

Fig.7. Unstability ranges

Fig.8. Vibrograms of motion obtained by experiments
Fig.9. Vibration velocity, V, in cm per sec. and stress,

6 , in kg per sg cm. during earthquakes of
intensity 6,7,8 and 9 . Velocities are dependent
on period T. Stresses differ for six types of
ground: 1 - granite, 2 - limestone, 3 - marl,

4 -~ gravel, 5 - sand and clay, 6 = loose

ground.

Fig.10. Relative strains, £ , during earthquakes of inten-
sity 6,7,8 and 9 in grounds of 8ixX types:
1 - granite, 2 - limestone, 3 - marl, 4 - gravel,

5 -~ sand and clay, 6 =~ loose ground.
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A REVIEW OF THE SEISMIC STABILITY METHODS OF EARTH DAMS
DISCUSSION

BY N,N. AMBRASEYS*

In principle, any method of stability analysis of earth or rock~fill
dams involving earthquake forces is merely an extension of the stability
analysis methods under static condition; and unless the latter method is
rigorously understood and investigated, the seismic stability analysis
method cannot be applied with confidence.

Let us discuss first tae basic principles of the static stability
analysis of earth dams. Broadly speaking, this involves the principle of
limiting equilibrium, with which the stability of an earth dam is invest-
igated by comparing:

(D) The stresses induced within the structure and in its foundation
by body and external forces, with

(R) The strength that can be mobilised in the structure under these
conditions,

where (D) and (R) are interrelated.

If such a comparison is carried out, and the average siress along a
potential failure surface set up by gravity and other external forces does
not exceed the mean strength mobilised by these stiresses, the factor of
safety of the structure against failure along this potential failure
surface is greater than one. The factor of safety thus defined expresses
the ratio of the actual mean strength of the structure and foundation
along a failure slip surface to that required to maintain limiting
equilibrium,

For a factor of safety (F) greater than one, the mean strength exceeds
that required to maintain equilibrium and the structure, though it may
be locally overstressed and irreversibly deformed, a kinematic slip
mechanism will not arise.

When the factor of safety is less than one, the mean strength is less
than that required to maintain limiting equilibrium and part of the dam
will slide on a failure surface. The sliding mass will move out, and will
come to rest at a position where the new mean stresses induced by gravity,
kinetic and external forces will not exceed the average shear strength of
the material on the failure surface. The amount of relative movement may
amount to a few inches, a few feet or many yards.

In practice, the comparison of the stresses induced in a dam by
various forces, with the mean strength that can be mobilised under these
stresses, can be carried out in a number of different ways. All these

* Department of Civil Engineering, Imperial College of Science, London.
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different ways involve basically (D = driving forces) and (R = resisting
forces) and differ only in the assumption for the particular way (D) and
(R) should be interrelated, the exact interrelation being missing in all
stability analysis methods {see equations 4)., Different methods, there-
fore, employ different assumpiions concerning the way (D) should be
related to (R), some of which, from the engineering point of view appear
to be very satisfactory (1) (2).

A1l methods of stability analysis in common use have one important
principle in common; that is, the principle of "limiting equilibrium", If
this principle is violated, a portion of the structure will slide along a
slip surface, and no matter how small the movement, on the basis of this
principle a failure has occurred. In all these methods of stability
analysis this is observed and the design is always controlled by the fact
that the factor of safety under the most critical conditions should never
be less than one,

Now let us turn to the stability analysis under seismic conditions,
maintaining the same principle, that is of "limiting equilibrium”, In
this method if we include seismic body forces, conditions (D) and (R),
though quantitatively now modified, will in principle still hold together
with the assumed interrelation. The analysis of a typical dam ssection
that involves seigmic forces is shown in Figure 1. Formally, the equilib-
rium of the element (abcd) requires satisfying the following system of
equations:

!
dBE dngz
Horizontal forces : =t k} ‘ a(x) -~ b(x) l +O‘;\ 3 - =0

Vertical forces : %% _X[;(x) _ b(x)] + G:’ + T g:gxz = 0

ceoold)
Moments about M : X+ -g—; Ez(x)] - %E_{ b(x) + %k&[;.(x) - b(x)] 2, 0
X

T = ot +0%/ tan(g1)

The five unknown functions in (4) are the position of the line of
thrust z(x), the integral of stresses along (ac) or (bd) X(x) and E(x),
and the stresses at M, T and (;’

It is obvious that system (4) is indeterminate. If the actual
stress distribution within the body of the dam or the position of the line
of thrust were known, a solution of (4) would be possible. Moreover, we
have to estimate the distribution of the seismic coefficient k(x) inside
the dam, as well as the possible effects of the shock on the properties
of the material (c!') and(g*'). This we will discuss later.

Now, if the instability is brought about by the action of seismic
body forces (F less than 1), this instability will be of short duration
since seismic forces act for a comparatively short periods of time.
During that period of instability, the principle of limiting equilibrium
is obviously violated and part or parts of the structure will slide on
failure surfaces. But since, as we have just said, the earthquake forces
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will act for a very short period of time, it is conceivable that sliding
will stop after a certain amount of relative displacement has cccurred
(assuming, of course, that no liquefaction or extreme reduction of the
shear strength of the material on the failure surfaces will occur),

If we consider that the violation of the principle of limiting
equilibrium under seismic conditions is not permissible, then we have to
design the dam in such a way so that its factor of safety under all
conditions will be greater than one.

In computing the maximum earthquake forces acting on the dam to be
used in the limiting equilibrium stability analysis method, we consider the
dam to possess linear and fully reversible stress—strain characteristics.
For small earthquake movements earth and rock-fill dams respond almost as
elastic oscillatorsy in general, however, the response of such structures
to strong ground motions would be non-elastic, The device of using elastic
behaviour is to some extent justified by the fact that, irrespectively of
whether dams behave as elastic or elastoplastic bodies, their initial
response is elastic. Also, the use of highly damped spectra for the
natural periods involved justify to some extent the use of linear theory.

Concerning the last of equations (4) what is usually not appreciated
is that when the fill of a dam is shaken by an earthquake, the available
shear strength to resist the dynamically imposed shear stresses is not the
full strength of the material, since for the static stability, before the
earthquake, & certain amount of its strength had been mobilised by static
forces. The strength available to resist the seismic stresses will not,
in general, be the remaining strength on a static basis, The reason for
this is that the application of the dynamic forces will lead to a change
in the pore water pressures. The time of loading by the seismic forces,
is so short that no drainage or dissipation of excess pore water pressure
can occur, and the failure conditions in these circumstances will involve
& pore pregsure change different from that implicit in the assumptions
made when computing the static stability. Hence, the strength available
to resist the ground motions will be that which the fill will have if,
after being stressed to the point which represents the stress conditions
for the static equilibrium, it is then sheared under undrained conditions
at a high rate of strain.

In these circumstances, a saturated fill material will appear to
behave as though the angle of shearing resistance were zero, and the
available strength will be independent of the magnitude of the siress
changes induced by the earthquake.

To illustrate this point, consider a point P in the dam (Figure 2)
before the earthquake. The element P is consolidated under an effective
pressure p' and a lateral pressure Kp'. The magnitude of the major
principal effective stress p® can be taken, as a first approximation, as
being equal to the effective vertical head of soil above point P, i.e.

ot = Z[Kd"(’ -H)X;&
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Thus, element P in the fill before shaking is subject to a deviator stress
p'(1-K). If the pore pressure coefficient A for the fill is known* it can
be shown that the available undrained strength at point P will be given by:

pfsin (g') [K + (1 - K)A] I )
b 1+ (28 - 1) sin (4")

where in equation (1), which is valid for c'=0, ** and for materials close
to full saturation, 1 - sin (0)

K = with tan (8) = tan (ﬁ')/F

1 + sin (@)

factor of safety at P before the earthquake. K is obvious-
ly the ratio of minor to principal effective stresses at the point whose

where F is the

© . factor of safety is greater than one. This value of K lies between the

coefficient of earth pressure at rest (K ) and the ratio az/z;l in a
condition of limiting equilibrium corresponding to failure, ™!

Equation (1) can be used in a stability analysis in terms of total
stresses, In terms of effective stresses, the stability analysis can be
carried out by computing the pore pressure change due to the seismic forces.
Assuming that the dam will behave elastically, the earthquake may be
considered to produce a horizontal shear stress i-ZXt’ Its magnitude can
be computed from

Vi
Az= (23305 bk

n

BN )

in which?kg denotes the zeros of the Bessel functions, S__is the
acceleration spectrum in the n-th mode, h is the height 8% the dam, ¥y
refers to the distance below the crest level;Y:is the bulk density of the
material, and Pn is a transcendental function of y,?s,h, and n, that has
been tabulated In reference (3), Figure (3).

For the condition of plane strain, in a saturated material, the pore
water pressure change due to[&r iss

- - Az
Au lﬁ (4 - 1/3) teeeneenncaneneesd(3)

where A is the pore pressure coefficient for plane strain.

* If the factor of safety at P is comparatively small, it is permissible
to assume A = A, (at failure),

%% If o'y o, the term c'cos(g{')/ [1 + (2a - 1)sin(¢')] should be added to(1).
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For partly saturated materials equations similar to (1) and (3) can
be derived.

In the limiting equilibrium method the maximum seismic forces on the
dam can be evaluated, using one of the methods available (3,4,5) depending
on the complexity of the problem. These forces are then applied in a
stability analysis, assuming that they will act permanently. The result
of the analysis should show a factor of safety greater than or equal to
one,

If we consider that the instability of an earth dam that will be
brought about by the action of a strong seismic force will be of short
duration, and probably of non-destructive consequences, we may, for the
brief duration of the application of the seismic forces abandon the
principle of "limiting equilibrium" and attempt to compute the magnitude
of the displacements and the deformations that the structure will undergo.
PFor the sake of convenience let us name this method of instability analy-
sis the "displacement" method.

The displacement method, therefore, is concerned with determining the
magnitude of this finite deformation of the dam. It assumes that, for a
particular structure, (D) and (R), as well as their appropriate inter—
relation under seismic conditions, are known. The deformation of the dam
will be made up of the individual movements associated with earthquake
shocks that will create instability (F less than one). These movements,
will occur along the .same or different failure surfaces, as shown in
Figure 4 (6 p.38). Recent studies (7,8) show that it is not difficult to
compute the order of magnitude of the movement of sliding that is likely
to occur during a particular sarthquake.

Recapitulating, for the earthquake resistant design of earth and rock-
fill dams, in the limiting equilibrium method, after taking into consider-
ation the appropriate soil properties of the materials involved, together
with the static and the dynamic forces imposed on the structure, we design
the dam in such a way that its factor of safety against complete failure
will always be greater than one.

In the displacement method, we allow the factor of safety (as defined
in the limiting equilibrium method) to drop below one for the short
duration of the earthquake pulses involved in an actual earthquake which
can induce failure. We then compute the cumulative displacements produced
by sliding (Figure 4). If, for the strongest probable earthquake, the
total displacements do not exceed a certain predetermined value, the
design is consgidered adeguate,

However, it must be borne in mind that the use of the latter method
requires the establishment of criteria of allowable displacements. These
criteria will depend upon the soil properties, importance of structure,
available free-board, internal drainage facilities, erodability during
overtopping, facility of repair, aftershock activity, and insurance rating.
These factors need detailed study. It should be noticed that little progress
has been made in formulating design procedures based upon displacement
criteria under static conditions, let alone under the complex dynamic con-
ditions of seismic loading,
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Both methods have their merits, and much can be said about the
validity of the principles involved in the displacement method. It must
be borne in mind however, that the failure of a big dam with the reservoir
full has appalling consequences, and that with the present state of know-
ledge of the behaviour of the fill and foundation materials and of the
failure mechanism of such structures one must be conservative, Either
method of approach to the seismic stability of an earth dam involves
assumptions which may or may not be reasonable, but the fact remains that
the limiting equilibrium method (with F>1) is more conservative method of
design.

I believe that under seismic conditions, a dam with a full reservoir
should be designed on the basis of the principle of limiting equilibrium
with F> 1 and that it should not be allowed to deform. Immediately after
construction, with the reservoir empty, or at rapid draw-down with the
reservoir level very low, the displacement method may be used,
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