ANAIYSIS OF DYNAMIC RESPONSE OF MULTI-STdRY BUILDINGS
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" By Michael G, Soteriades (1)

mopsis

Tl:xe 3n natural frequencies of vibration of an n-story building are
deter{rn_ned for the general case of three freedoms of movement of each slab,
The time functions of the translatory (u(t), v(t)) and rotational (¢ )
movement of slabs are determined for a general tremor of the ground u--th s
v=G(t), and ¢ =H(t). For the usual case in practice H(t)=0, G{t)=2F(t),
a design procedure is outlined for obtaining the limiting deformations of
vertical elements (colums and shear walls) of buildings vibrating under
earth tremor effects, Flexibility and stiffness coefficients are assumed
easily obtainable by the method of Prof. Roussopoulos developed in 1932 for
the static problem.

Notation
Symbols are presented in order of appearance in the text,

0 (1,2,3) Center of cartesian coordinated and primcipal directions of
coordinates,

i=1,2,0en Order of slab (or story) counting fron the ground up.

Gy Center of gravity of mass enclosed between the center hight
of ith and (i-1)th story, assumed lying on ith slab,

W Total weight of 1 th story.

g Gravitational acceleration

Wy Total mass of i th story.

I Polar moment of inertia of the mass of the i th story
about Cj.

d::“ Displacement of C; in the direction m, under the application

of a unit load at G in the direction n.
Uiy Ui q:‘: Movement of C; in the directions 1,2, 3 respectively.

F(t),G(t),H(t) Pespectively components in the 1,2,3 directions of the
function describing earth's tremor.

oo

a3ysbixs Cy) Symbols respectivel_yequal to diys ke d;?kza
12 13

@109 £33 84 Symbols respectively equal to diys 95y Lk

Uj> Vys @ Respectively equal to Wyuj, WiVir Ijfs

(1) Professors Dept. Civ.Engr., Catholic Univ. America, Washington, D.C.
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q
la) order of mode of vibration

Aig) Big, Cis normalized amplitudes of free vibration of mode T of C;
' 2 3 : s s
Lis oLis [Je normalized characteristic loads

natural frequency of vibration of the order o

Ws
5; participation factor for characteristic loads of
[} natural frequency of order ©
)R (f) dynamic load factor (of frequency of order o
Us =w, - F(t
N = = - = W,
wy e~ F® )
vy =M -Gl =y -Gq®
W.
12
i = ¢

T ®:

1. The Static Problenm,

In 1932, Professor Roussopoulos of the Athens Polytechnic published the
first paper on a theory of aseismic analysis which accounted for stresses
caused both by translation and rotation of horizontal elements of buildings
(slabs), This solution was given for only lateral loads acting on the slabs
stdtically. There were no limitations placed on the symmetry or layout of
the buildings nor on the direction of the lateral forces,

Unfortunately this work attracted little attention because it was
presented in Greek, Essentially it relied on a methodology for obtaining
the stiffness and flexibility coefficients of horizontal slabs of a multi-
story building, Since then, and particularly during the last decade, this
procedure for structural analysis has become quite popular in view of its
advantages fur computer application.

In the analysis of the dynamic problem for the general case (including
translation as well as rotation of slabs), prgs“ented in this paper, it will
be considered that flexibility coefficients dj}, can always be obtained in
the easy and straightforward way developed by Roussopoulos. Researchers can
obtain the pertinent derivations in the Erench translation of the basic work

of Roussopoulos(2).
2, The Basic Displacement Equation,

Consider an n-story building and designate with i the i th in order slab

(2) A. Roussopoulos: Calcul Des Construction Hyperstatiques A plusieurs
etages solicitees Par Des Zffort Obliques et excentrees,
Publisher: Association Francaise de Recherches et d'essais Sur Ies

liaterieux et Ies Constructions,
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counting from the ground up,

The equations of displacements of the po:m‘ts Ci will then be:
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The analysn.s of dynamic response necessitates the determination of the
frequencies and shapes of the various modes of free vibrations of the
structure (the homogenuous solution), and the determination of the dymarrc
load factors and equivalent static loads which will correspond to the foreced
vibrations caused by the earth's tremor, This is achieved along established
procedures of analysis separately for each component of earth tremor., The
complete effect of the tremor can then be obtained by supperposition.

3¢ Free Vibrations,

nm
Oonsidering that by Maxwell!s theorem d?: = d,; » and introducing the
following symbols:

2 " 2 22 2 33
Aix ""dik 3 bfk = d"'k ) Crx = d"‘k;

z 2 i3 2 23 ‘ (2
€ =d;K ) 'S:l'k = d"k ) 3“"" dik ’ )

and  Ui=Wiu,, Vi =Wy, va‘.:L:ﬂ_

where 1y kK = 15253500eny

and that for the case of free vibrations: F(t)= G(t)=H(t)=0,

the displacement equations (1) become for the case of natural vibration:
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Obviously the matrix of the coefficients of this system of equations
is symmetric, General solutions of the following type are attempted:

U(t) = A cos(wt + o)
V(t) = B cos(wt +o ) W)
Pt) = C cos(wt +e )

For such solutions: 2 =-w% 2z =1, V,9).

The introduction of functions (4) in (3) gives:
(). aned™ - G et - fprs®e - =50 [

L) b
‘ - ¢ .

L | 2 2 + Q 2 g 2
-op W, . (W"a-nw ~Epw...-gw -£ " .. ~Shw

. 2
—ent. o - (- b - B gt gt

_,9,;9_ < < < =

nn
’L @ '1_1_ b"-'q. | 1.1) '1_‘\.. 'Z'L =0 (5)
-Chn .. ~Qw - mus..,(w‘~b,,w ‘—3,,,‘0‘. ST Q@
2
R JE R A O
"~'kmw~" - T w‘b "g:?;b' v —gnw‘L .C:,w".'..(’!i.‘ C:wz ]

5 : 1L 1




To obtain the non-trivial solution of the system of e uvations

dﬂ:te?nqmant of the coefficients matrix is :guated to gerofo Frcgrsl)%h}.}sle
condition a 3n-degree polynomial of (w') is obtained; the 3n solutions of
virch give the 3n nmatural frequencies of vibration, For each mode of

free vibration (S ) there is a solution (4), and hence the complete solution
cf the free vibration problem is given by:

3n
Ui(t)‘c;. Aje cos (Wb +o6 )
Vi(t)ii Bie oS (we 4+ ) ©)
¢i(t)=§ Cic cos (wot + )

The amplitudes of the vibrations Aj, B%, G; can be obtained for each
mode in terms of Aj by solving the system of any 3(n-l) set of equations (5)

for the unknowns A;j/A1, Bj/Aj, Ci/A; and the value of wy obtained as above.

In practice the amplitudes as well as the frequencies of natural
vibrations can also be obtained, in a more convenient probably manner, by
the Vianello-Stodola method. Either way, it is considered that the ampli-
tudes of the free vibrations (6) are obtainable and knowvm, It is further
assumed that Aj, Bj, Cj are the normalized amplitudes of free vibrations and
that therefore they obey the normalizing condition:

3 [ (Ao B+ 3] = @

The normalized characteristic loads are introduced:
,[;d wg Ais (y= 1,2,3,..m

2 2 o=1,2,3... 3m
o(is = We B':U ! ) (8)

3
Lis = we Co
3 > > 3

where o(,.‘, 9 o(z: ,a(ra are considered acting respectively in the directions
1, 2’ and 3.

i

Consider now the identity: o
2

" (] 2 2 3,13 2 7_' 2 A‘.e_ i 9
Z(j:ﬂd«it{g{w,&dﬂ-) = Q)GKZ(A“Q“ ¥ Bk,ewc,ﬁi}:w —mox W (9)

kst =\ 3

imi i i ; i o from

Similar expressions to (9) can be obtained for all Ajes Bigs Gis
the system of equations (5). They prove that the shape of the disp acexﬁ;s_
corresponding to the mode of vibration © can be obtained app]c.lying' s c
ally on the structure the characteristic loads Lis(r =1,253). Indeed:

A3 i6 9 io = max(ug Ui » ) = max. displacement components of point
'ﬁ?’ %_ & (ago “”@"‘ C; for the o mode of vibration.

K

According to this observation, the characteristic loads ofim (k=1,2,3)

produce max(Uimg Vims ¢, )s and the characteristic loads [} (k=1,2 »3) produce
18X (Wi 3 Vin ’Q\,:s . -

k
Therefore, avvlving Bettits lIaw for the energies produced by the "('t'mt
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€
loads during the deformation caused by the i,;s loads and vice versas

n . B; Ge). S () Aim, 2 Bim, 2 G
3 (A e doe L 50= 0 (6 i iz

™ . “m
is ™ Wi

k
a introducing the values of o(;c given by (8):

e . : . B o isPim s D rsC
Zwé’(A—lln—é-‘s+B'—r—B-’s+ C"';C.‘L’>=_ZwM(ALS'MTAl. N 3:?71 CisCim
i

& VY; Wi I, iel W, I:
or (wi-wh) 1; [_‘vl;/‘l (Aim Aigt BimBis) +—‘I—{C;,,,C;, =0

For the case m=s, the miltiplicant of (&5 - wi)=0 is equal to the
unity because it represents the normalizing condition M

For the case s # m, (W -wi,) # 0, and therefore the orthogomality
condition is established:
"
I T =
Z [‘\;V}(AimAis* BimBis) +i:iCimC.s] =0 (10)
1=l

i, Forced Vibrations.

The forced vibrations are caused by the eartht's tremor, defined by the
functions F(t), G(t), and H(t). Normally the tremor is caused by the propa-
gation of a shock wave which has a linear direction and no rotational compo-
nent H(t)s This would imply a condition F(t)=F(t)s G(t)=AF(t) (where X is
a constant) and H(t)= 0, Here, a solution will be worked outfor this case
corresponding to an earth's tremor along a given direction defined by the
slope ) to the axis 1 of the coordinate system O (1,2,3) and by the function
F(t), The general case, which is theoretically valid,even though it may not
represent the physical problem, can be obtained easily by the procedure to
be defined in the discussion which follows the derivation below,

Since the tremor is a physical phenomenon, the function F(t) is conti-
nuous, has no points at infinity and has a finite number of maxima and
minima points, Therefore F(t) is always expendable into a Fourier series:

oo
Kom
F® = K, ] 58 ces(mptre,) (1)
m=o
whexre K, has dimensions of length,
It can be assumed, without loss to generality, that t5=0, and that
F(t,) =F(0)= ) Kycospy = O .
m3o

Define the movement of the center Cj relative to the ground with wj, Vi,
V3, so that:

Wy o= %f -F@®)=w-F®
v = yw - GE=V-IF®) (22)
l‘l):l. = 95-‘- -0 =?,;

p
With the introduction of these symbols and relations (2), the
displacement equations (1) become:
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From (11) : F(t)= -KOPZ-“’m cos (mpt +p )..—Ko? £(t)
where: £(t) mZoKm o cos(mpt+p ). @n)
Introduce the virtual loads:
F( 1)
l— W, KOP = .'fl ‘5‘(‘&) (i=l, 2’3’ -oon) ‘15)

Determine the participation factors 95 (6=1,2,...3n) fron the system
of equations: F @®

P =W; K"P Z 55 °£L6 5(%)
. 2 ) F®
}P,_:)WxKoP = élgg,c(is = WLA ';a)

O=3SFLL=0

Tl

The virtual work corresponding to the loads P; and ) P; and the dis-
placements caused by the © mode of free vibration will be:

(AIO'+JBLC+O C.,)

(16)

W, =
u: " C. 3n .3
or: W = ( Zi”(u’) +Z( W. =) )t;\(.f‘ %‘324“)
or in view of the orthogonality condition (10): V= s
Therefore.
é“’c Z_ (F A\G +ak Eysf
or . z (A o+ 2 Bip). an
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Solut:.ons of the following type are attempted:
- Samg b
vy _’E ) f 2 B“' a8)
¥i = ’i Few & & C“’

where .‘256(\{} represents the dynamic load factor of the ¢ mode of vibration,

If solutions (18) really exist, then:

3n e .
-2 % g e
¥ 3 f va @as)

C
‘l’i = 62_:"8635 "f‘.’
Introducing (15), (16), (18), and (19) in the first n equations of the
system of equations (13) g:z.ves. an.

Taghe.S a..‘(zs,an) Je (1555, (Z%f Ces) +

G-I

+ Zah (4«),7.954 Zen(vfa)if*n)&ﬂ‘ (56)Z F4ne) (20)
or Z&f e _ 54 A B c,,ay,gag APIC RSt B

But in accordance with (9):

FAPIRY (9 2
k;(am o Eh ,,a-;; * rs)= O ;g(aikAm+e.~ka+.£‘§m) (22)

Therefore, after :.ntroduc:mg (22) into (21):

Sagde--] w”" -FHE 5 ]

or 3 £ [Tl - e 5, 2 Zx]=0 Geizim) (23)
Slnﬁlarly.
- + 0‘75"] e
w [:a, B, - $@#)Bi )
ant ¥ E[0Cp - $0 sz T =0 (25)

Se/

Multiply all the terms of the 3n equations (23), (2L), (25) respectively
with AsfVi , Bip/W , Cip/I; (vhere p is any given integer 1< p < n) and
add the respective parts of the equations together:

Zé l:z‘z Aw A.ﬂn&,ela Cc “&)Z(A.plm? 310 le’-f) m,_ Z(A A;;Bt &0

. Butacmrding to the normelizing condition (7) and the orthogonality

+,Ef‘*' (5)




conditions (10):
% Agh B CisC
z ( Q'A P‘l“:B B‘BP+ LSCLP> = SGP
i:l M IL‘

where S“P is the Kronecker delta,

Therefore equation (26) above is reduced to:
e A t) =0

B ®) = §E) + Iz % ® 1)

The solution of the ordinary differential equations (27) provide the

dynamic load factors @ for all modes of vibration p and verify the exist-
ance of solutions of the type (18).

5. Solution of The Differential Equations (27) for ods(,

.. By muiltiplying each term by sinw,t and adding and subtracting the term
OJpo?F cosuyt, equation (27) is transformed into:

o . & » 7‘ .
Hsinagt + (wr?fpm%t _wP?SPcmo),f) + @ sina t =, {@®) sin w,t
This eQuations can be rewritten as:

. z ) -t
2 (Zin) - L (peosuyt)= WpHO sinap
and by integrating in the interval (O,t):

. 2 t N e ! 1
& () sintagt - 0-w, 2 {) coswpt +wp,(0) = e J;a‘ t) srmor't At (28)

Similarly it is easy to obtain:

. n t , -
85?@) cosw,,‘t' _wp(o) +w35,,(+) sina\r‘f -0= wp Lﬁ' @ ) cos oJ,;bal.‘& (29)

Multiply the terms of (28) by (=coswht) and the terms of (29) by sinw,t
and add to obtain:

t I
- Sir (‘l:) 5|h h)P‘l‘: ~(DP%P<O)COS¢0P_L. +aJP %(‘t) = CO;J;‘(*D sin O)?(:é‘ ‘t?oH:
Solving for () =Ap:

. AP , ’
3’) =a-:;«5,,(0)sthu}f+3p(°) CDSU)?*: +00, O‘S'G-) =N wPG'_t ) dt (30)

i i ic load
Equations (30) (for p=1,2,...3n), determine all the dynamic
factors &, provided the values ofgr(o)dspoa.nd gp@:@;'are known, These values
are obbained as follows:

By definitions
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, . 3n .
W, (0)- w,, z‘_g f e Wilteo)-wi,= 2, j{

W,
Vi (k=0)=v,, = 235 f%‘ Vi ¢4:0)- Vi° il Z, “’f%
° . 3n .
)1 < Ce G-, = ), § S
)= T o < B G-, 12, g 7
Therefore:
Zz /4,614? w A _ Zz ?‘ A:DA[P
W‘o Sof W to Tlp =1 oo WL'
¢ 3n
B'o' h 3 BE B“P
B:.P Zz g _W:P \/lo BCF Z' Soj‘é WL'
. - CL.E C;F y C = 3“ X C\.d C.P
"J%o ip= c‘z:_'%o”oﬁ 1_[ ’lk“o up 6%0%’6055 "j—:
The addition of each set of these equatinns (for i=1,2,...n) and the
introduction of the orthogonality and normnlizing conditions, renders:
l=ZI (Wio A':P + vio 8"‘? + ZI)LOCP>: é@ o (31)

LZ. (%, A‘P " Yo B"T + . Copd= % Tra
Therefore, depending on the boundary conditions:

w; (0)s v5(0), P;(0), w;(0), ¥5(0), and Y5 (0),

both 125'0 and ‘zsro can be obtained from expressions (31). After they arec

introduced into (30), they fully define the dynamic load factors ,7&) ‘Thus
for the usual boundary conditions :

Ul(o) = v;(0) = ?’i(o) = 'Ul(o) =U;(0) = ?i(o) = 0,

and in consideration of (11) and (12):

Wio= — Fl0) = —;E_OK.,,\cwngo :Z; W‘PS””P
., =-2F(@@=0 ] o ZKM’MPSmPM
¥,= © {k- .
Therefore: "
2‘3%: "M‘ZOK‘“COSE“’ Lz_—-((A*r +3Bp)=0, and

(32)

3&:5 .= E:ol(“'mps{nem- Z(A;f,t QBL-P)'
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6. Discussion and Design Frocedure.

The most general solution to the dymarmic problen of

gguld o:? course 3:.nvolve the improbable ﬁitem_ ofoi.-g 'e:.;tljexagg;gik:if;r:?

ree time functions F.(t), G(t), and H(t) different., In such a case for
each naturgl'mode of vibration &, there would be three different participa-
tion coefficients €, , Fa o Fsze and three corresponding dynamic load
factors s, 5 Doz 3 Joy » Bach of these sets of (B, s o, )s (Ko s Tz )s
( 9533, s3 ) would be derived independently for the three cases (rie)#0,
G(t)=H(t)=0T, (F(t)=H(t):08(t)£ 0], [F(t)= G(t):gH(E)#0].

. The participation coefficicnts % would be obtained from equations
equivalent to (17) and would be different in each case, because, dzpending
on thg component of the earth's tremor for which the contributing solution
is atterpted, the right-hand side of equation (17) would have only Ass or
only By, or only C; terms,

) The different values of ¥ would be obtained fron (30). In this equat-
ion, the function f(t') which appears under the integral, would vary wit

the component of the eartht!s tremor F(t), G(t), or 1(t) for wiich the solution
would be saught. Thus there would be three such functions ), glt!), and
h(t'), each corresponding to one of the corponents of the earth's tremor, For
each of these functions there would be 3n different dynardic load factors Jy
one cach for every natural frequency of vibration Wes.

Introducing now the folloving additional symbols:

W=y - F) vy s Uy Vi1 = P01
Wio=Uo Vio =Ui2 - G((:) 'LP io = q? 12 (33)
V313= Y13 Vi3 =Uss Yi3= ¢ i3~ H)

it follows that:
3
= e T
k=)
Ul = 2\/11;4- G(‘b)
k=1
3
®s = 2 Yy + HE)
wl -

In the practical problem nf design, the structure is required to resist
a certain tremor, The treuor is either taken from the seisrograph of a
catastrophic earthquake, or it is an idealized wave of a Ireguency and ampli-
tude which are believed to be upper boundaries for earthquakes of a certain
probability of occurence, Once the design tremor is defined in the form of
a function T(t), the designer is asked to assure the safety gi‘ the structure
for any tremor specified by 7(+) acting in any direction horizontally.

(L)

To solve this design problem it is helpful to solve two cormponent
problems:

(1) F() =T{), and G(t)=H(t)=0.
(2) F(t)=H(t)=0, and G(t) = T(t).
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For each of these two tremors, the maximim deformation of vertical
components of the structure (colums and shear walls) are deterrined., This
can be achieved by determining the relative displacements of Cj with respect
to C(i—l) with the help of expressions (18):

(Wi -W(i—l)) = gzaf (~A—a-'-' -_é.9("")>

Wea)
('V'-- v . ) = 2; Bm - Ba':'-l
L 3~2) oZ 35— (W _W:.'(-;J )>
(‘1\)5_"‘1"(5_..1)) = é_@;f_ (_C% _%F.';;)>

and applying the procedures developed by Roussopoulos for determining the
vectorial deformations 1 of the vertical stiffness elements (colums and
shear walls) between the i and (i-l) storys of the structure,

The two component problems above will define two vectorial differential
deformations {j and i, for each vértical stiffness element. These will be
conjugate radii of thé ellipse of deformations (maxdimum) of each vertiwal
element, From these conjugate radii it is easy by geometric construction to
define the principal diameters of respective ellipses of relative displace-
ments of the ends of vertical elements, and hence d:fine the maximum stresses
likely to develop as a result of a given tremor T(t) acting in the most
adverse direction for egch individual vertical member.,

The outlined procedure of analysis for design purposes obviously derands
massive computations rapidly increasing in number and complexity with the
number of storys in a building. To overcome this problem a computer is an
absolute necessity., However, the computational effort can be substantially
reduced in a high building (say a 30 story-bwilding) if its mass is assumed
lumped in distinct storys instead of each slab of the building. If say the
mass is assumed lumped at every fifth slab, than the flexibility coefficents
will be mo more difficult to obtain by the Roussopoulos procedure. The
resulting dynamic response will be less accurate, of course, but it will
supply the engineer with a good understanding of the order of magnitude of
the true natural frequencies of vibration as well as of the true dymandic
load factors, This information when available to the designer to even a
fair degree of accuracy will be very valuable in guiding the rational
distribution of the mass and stiffness of the structure and the provision
with extra stremgth and/or stiffness in critical points.
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