JEST'ONSE ANALYSIS OF FRAMED STRUCTURES
By
Yohzoh  Ohchi¥
PORWCRD

This report treats a calculation method for tWe seismic response of
the arbitrary framed structures which “ave hinges, plastic hinges in the
rembers, and springs at the supporting points, and also states some calcu-
lated results hy means of the author's own method.
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First of all, we have to 2asien a number to each panel point of the
given framed structure and each member of it respectively. This numbering
is arbitrary, but once done, the sequence should always be ohbserved. For
this becomes the sequence of elements of all vectors and diagonal matrices.

Secondly in order to dis*inguis“ each other let us call both ends of
each member "a'" and "b" respectively and take b-bound direction as the member
direction. But in the figures of this raport "+" is adhered to the end of
"a" instead of writing "a" for the temporary convenience.

a) Vector

Na, Sa, Ma: Normal forces, shearing forces and moment at

the end "a" of each member. (Fig. 2)
)

Nb, Sb, Mb: Normal forces, shearing forces and moments at
the end "b" of each merber. (Fig. 2)

Nfa, Sfa, Mfa: Fixed forces at each member's end "a", due to
external loads.

Nfb, Sfv, Mfb: Pixed forces at eac» member's end "b", due to
external Ioads.

N&, Sa, VMa: Na - Nfa, Sa - Sfa, Ma - Mfa.

NV, Sb, Mb: Nb - Nfb, Sb - Sfb, Mb - Mfb.

Ua, Va, Oa: Displacements of U, V directions and dis-
placement ancle of each member at the end "a"
(Fig. 2).

Ub, Sb, Ob: Displacements of U, V directions and dis-
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Hpy Vi,
Hr, Vr,
Apy Ypo
Ary Yr,
Eon, &

Exr, £

placeront angsle of each member at the end " p»

(Fiwl «?),

Mp: Mternn]l forees of X, ¥ directions and  ex-
ternal momerts nt each panel point.

Mr: Renctionn o X, Y directions and reactinn
nomen*ts at each suprortine point.

Bp: Rinvlecemanta of X, Y directions sand displace-
ment rngle of eac’ panel point.

fre Maplacemen® of X, ¥ directions and rotetion-
sl angle of eact surporting point.

oht satuntional anple Aiff rences hetween the panel
point and t.e member end “a® or "b".

yry Eors Displacomonts of 4, Y directions and rotation.

al angle nt emct supporting point, due to the
plastiec phonamens,

b) Diagonal Matrix

Fe Jy 1

Xy Yr

Cprann wretional srean, sectional moduli and
lengthe of membern,

toand Y samponentn of distance of each member,
Al ypred from "a® to "b".

Mx, Ny, Ae1 & and ¥ directiona' spring constants and rotation.

I

al spring conntants of each supporting point's
ArPIng.

Unit mutrix

o) Confipuration Matrix

o.p

T

Matrices eowing which member is connected with which
panel point, Por exanple, when the end "a" or "b" of
member *k* ia connecoted with the pansl point "i%,

Kik = 1 or Bik = 1, otherwise ik = 0 or Bik = 0.

Matrix showing on what panal print the resction is act.
ing. Consider, for er~m-le, when the resction “k" is
*'f,ﬁ“"‘“ gm ths panol point *i", Tik = 1, otherwine




o]

2: Young's modulus

|

Transposed one of matrix A

INDUCTION CF FUNDAMENTAI, FORMULA

‘ihen we use Castgliano's theorem after having calculated twa strain
energy due to the external forces which is stored in all membhers of the
structure, the following two equations will be obtained. And those indicates
the vrelations either between the mermber forces and the member end disrlace-
ments or between the reactions and the acting points!' displacements of them.

Na EF/L) o , 0 (ua—bu;

5{ =| 0 ,12EYL3, 6EF2 | Vg —Vp+L6 d)
Ma 0, 6EY7 4EYL\ 9,- By

fir- NAg 00 :(Y‘\
V(=] 0 }\a 0 dr )
P1T' 0 o >\9 91‘

Next just imagine that we cut all the members at the panel points and
think of the equilibrium equations of each member and panel point. Then
we will get the following two equations.

[T o o]NZ) [ Ng
0T 0|l S|+|ss|=0 3
oL T My \M

o, oL, 0| [P, #E, 0N [F007(Hr) [y
&L, i, 0||8a| T eE, e ol SO AT I | )
L0, o,a)\My L0, 0. eliry L00T]rry Ary

Finally as we consider the compratible conditions, that is to gay, the
deformation of the member ends and supports are equal to the sum of the de-
formation of the corresponding panel points and the plastic deformation,
we obtain

Ua) 3K, LT, of(Xp| O

Va | =|-%&, 5K, 0 || de | T| 0 ©)
O 0, 0,&\6¢) \Co

11-827



W\ LR 17,
V| = |26 LB
O¢ | 0, 0,
X\ [yoo0
Ivl= OTO]
6-) Lo o

Tyr
Cor

Op

(6

(7)

After having applied eqs. (5), (6) and (7) to the eqs. (1) and (2),
if we refer to the eq. (3), the following result will be obtained.

7

W2
%
My
Ne
5 =
v

Hr

V=

My

(9L, 0 , 0 TEFT X5 0 Ap 0 .0 1[En
0,189, 0 \|=LF, %5 L|| yp |+ 62T\ Eguf (8)
| 0,65z 2EYF| 0, 0,55 kOP YEYLs, 2EJL
i, 0 o JKEEE 0]h) [0, 0 g
o.aetle, 0 N33, 55 3| el {460/ 461 )
0, 6EV)2, ZEY| 0, 0, LT |\Op) |29k, 42y

MY 0,0 [ Xp A 0 0] [Exm

O,Ayr' 0 3? Tl oo 3\3 0 Ear— (v2)

0,0, |\ b7 00 D zor:

And the substitutions (4) for (8), ( 9) amd (10) will be the following

formula.

eq.

where

J‘A,~%,Olf,ol
, C v
[61=15x, 5% 0,0, F,

0, px sk 0,0,

[8I[KIF I+ SIKI[FT(E) = (O7)

Subsequently if we make use of the last rows of eqs.
(10), the result may be;

[ATIKTLET )+ TAIK I (E) = (D)
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[0,L2,52,0,0,0 [E7/. T
0,%,-2,0,0,0
[d]=|0, 0, 0,1,0,0| [K} 72
0,0,0,0,1,0 7EY
10,0, 0,0,0,1 /\ﬁ?
Zea\ M) - g

- ) -
o (B (oL, 0N [k -6, o [N
(O)=Vr |=|oE, ax o |[Ssel-{ 65, 6% o || 54
He/ L0, 0, %)\" | 0, o, @)\ Me,

v {13) and (17) are 4he aermern ovrn for b1 salutien oF e Sramed
structures with plastic ifinpes. In case of “ramed structures with no
plastic hinges, (&) is zero. Therefore the eq. (11) will make as follows:

[&TIKI[ET(7)=(a7) 23)

The above is *he common formula to solve tra elastic displscements of
framed structures.

If there sre hinges =t some member end "a" or "b", it is necessary for
us to put zero into the corresponding elements of the diagonal matrix
12EJ/L  or 4EJ/L .

Wven some suprorting points are fixed vertically, horizontally or ro-
tationally, tre corresponding elements o the diagonal matrix Ax, Ay or
Ne will become infinite. .

Hence the corresponding elements of the vector Xp, yp, or 19p will
make zero. Therefore it is necessary for us to exclude the corresponding
rows of matrix [bﬂf] and the corresponding elements of Ax, Ay or N\ e and
Xp, Yp or 6p.

SOLUTION OF FRAMED STRUCTURES

Using egs. (11) and (12), we can solve *he framed structures which
may have plastic hinges in their members. In case of the static problem,
it is common that the external forces Qp ir riven and M yEand Qm are to
be estimated. And to attain the experted result we usually transform the
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eqs. (11) and (12). But in this report this problem is beyond discussion..

While in case of the dvnamic prohlem, it is required to solve Qp and

Qm for siven® . For this purpose it is convenient to rewrite the eq. (12)
as follows:

() =TI (1) +{ DL (00 (E) (/4)
(Qup=[P](€) (/%)
(Qme)+ (me) =(6,) < (Qr) vé)

where

D: Diagonal matrix consisting of the diagonal elements of matrices

(a’IL K3 [d7].

Qme: Member forces under the condition that the plastic hinges do
not increase in number.

Qmp: Additional member ‘orces which are to be corrected by the exis-
tence of plostic hinges.

Qy: Yield moments or yield forces.

The existing member forces cannot be able to exceed te yield forces,
the yield forces are not necessarilyr to be constants. For instance, they

may be the function of 'iz . The relations of Qme, Qmp and Qm are as shown
in Pig. (6).

Just imagine that Qme, Qmp and E varydQme, AQmp and 4 &, when the
deformation increases 47 . The eq. (6) may be written as follows:

i8(G) Halpe) >(1051)  ven (alop)~(16y1)~(8))-(2B0)
if /(ﬂm)ﬂdﬂﬂe)/é{/ﬁﬂ) then (d QMf)'—’O (/7)
it (0n)+(40ne)<- (1)) vren (4G)=(14) (B} 00

where /Qy/ indicates the absolute value of the yield force Qy. If we
getAQmp from eq. (17), 2 € can be calculated from eq. (15). But we have
to use the iteration method to obtaind &, for 4 Qme includes a4 £ (Eq. T4).
Fig. T shows the flow chart for the calculation of 4& . If we getgEDMY

the above-mentioned method, 4Qp will be calculated by inserting A4 £
and assumed 4 7 into the eq. (11). .
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SEISMIC RESFONSY OF FRAMED STRUCTURES

‘ Imagine that masses of framed structure are concentrated at the panel
points, then we will he able *o induce the following equations o" motion.

(M) + [ed() + (@5) = -[M1(@) 8

were

M 0 0 € 0 0 A
[ ={0”30 ¢]=]°%? a)=|ay
] 00 Mg , (€] 00 Cs (4) Qs

Mx, My, Mb: Diagonal matrices of masses or moments of inatias of
panel points.

Cx, Cy, Ce: Diagonal matrices of damping coefficients.

v w
’Z ,7 : First or second deriva‘ive coefficent of 7( with respect
to time.

Ax, Ay, Qe: Vectnrs of acceleration by earthquakes.

In this equation (18), Qp msy be calculated by the egs. (17) and (11),
using the above-mentioned method.

If we restrict the motion to the horizontal direction only, the
second vector of Qp and the third one, namely Hp and Mp, become zero.

If we delete Yp and Qp from eqs. (11) and (12) by making use of this
result, they will become as follows:

[/ [81( %) + [ 1[I AT (€) = (Hp) 9

w[h g};{ [K1082] (A¢e) +[ A T[e][ LT () = (Qm) (%)
(K] =[K1- K LFIE K & TR
[=[¢L,-8L, 0,7, 0, 0]

(y=[¢E, SL, 0. 0.7, 0
01/"%, —41_;—)0’ 0’27—

? .
“yrthermore it is needed to change J\/and K in egs. (4)'and (5) into
Si and ¥,” respectively, and t“is is followed by the rewriting of the

motion's equation. [M,(](i,b)'f[(z](if)‘flﬁf)='[H1][al) @h
T e autror hes made some programs which calculate tne seismic response

of the framed structures by means of *he eqs. (19), (20) and (?1), and has
made a tria' on some structures. Some of them are shown in Fig. 8.
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CONCILUSION

The deformations of the arbitrary framod s*ructure are solved by the
eq. (18) or ens. (i) and (12).

If there are no rlastic tinges, the eq. (13) is useful, otherwise
eqs. (11) and (12). And thé member fnorces can be solved by the egs. (8)
and (9), using the precedirgly solved deformation .

The seismic response of the framed structures can be be solved by the
eq. (18) or (21), in which (Qp) or (Hp) is the restrained forces and can
be calculated by the eq. (11) or (19) using the condition of eq. (16).

In the long run it mirht he said that the plastic property of the

ground has influence mostly upon the vibrational novements o the framed
structures. However this will be the future work to be done hereafter.
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Pig. 1 EXAMPLE OF CONFIGURATION MATRICES
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Pig. 4 EXPLANATION OF EXTERNAL PORCES, PANEL DEFOR¥ATIONS

AND SPRING CONSTANTS

Pig. 5 EXPLANATION OF FIXED END PORCES
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Fig. 5 EXPLANATION 07 €ea, £ eb,Exr, £yr AND Eer

[@)=0, (€)= Io (Qw)=0,, (@)=0 ]

_[Fet ), ~
(46)=0, (40n =L KT (17)

!
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(4G =0120)- (@)
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| (Q)= (Qn)*(4Ge) | (Q)=(05)+(2@e)
(1)=(n)*l47) , (£)=(€)+(4E)

(1) (2 Q) ¥ (0 Cup) Q=T K TN )4 [ TIAE)

. Plg. 7 FLOW DIAGRAMM FOR  BQUATION (17)
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Fig. 6 REIATION  AMOYG  Qme,  Qmp  AMY  Qn
_OPRUCTIRE DA
MEMERR 1 H ] 4 Y f
L (om) 08 98 Bt B0 980 401
5 (on® x 105 0.003 0,005 9% 8.4 d 9ub
YIELD MOMENT'a!(tm) 10 ] - 100 10 -
YIELD MOMENT b (tm) 1000 1000 - 1010 100 -
WEIGHT (ton) 152 66
DAMPING (45) 0.4 0,04

MAXIMUM | Deeleetion  (om)

MAXIMUM ACCELERATION  PANEL POINY YIELDED PORNY
OF RARTHQUAKE -4 H b

100 pal 1,599 1.838 .
End ‘b of member |7, 2

200 gal 3579 5.999

300 gal 50408 6,553 End "B of member 1|, 2

400 gal 7,667 9.3y Pnd ‘el of membur 4, 9

Pig. 8 SEISMIO REGRONAY OF THY BPROCTURE SHOWE TH Piga)
(4nput sedomic waves are the )inesrly corrected
Bl fentre earthouskes)



