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ABSTRACT

An exact solution for the steady state response of the one degree of
freedom bilinear hysteretic system is presented and this solution is com-
pared with results obtained using a popular approximate technique. The ex-
istence of an unbounded resonance of the steady state response of the
hysteretic system is verified analytically and some general conclusions are
made about the transient response of the system.

INTRODUCTION

Examples of physical systems which exhibit some form of hysteresis are
numerous and in many cases the hysteretic behavior may be adequately described
by the general bilinear characteristic. This is particularly true of systems
which contain coulomb damping and systems which contain one or more elasto-
plastic elements. Systems of the first type include some built-up structures
of rivited, bolted, or damped construction in which the combined effect of
friction and elastic forces may result in a bilinear hysteretic restoring
force. Systems of the second type occur when use is made of structural ma-
terials for which the elasto-plastic engineering approximation to 'yielding'
is satisfactory; i.e. some steels, masonry in shear, etc.

Within the past few years there has been considerable interest in the
dynamic response of both the general bilinear hysteretic system and the
limiting elasto-plastic system. Among the earliest treatments of the subject
is that due to L. S. Jacobsen (1, 2, 3) who investigated the transient re-
sponse of the general system by means of graphical techniques and also did
work in developing a mechanical analog capable of representing hysteretic be-
havior. More recently, L. E. Goodman and J. H. Klumpp (4, 5) have done both
analytic and experimental work on the dynamic properties of a laminated beam
with a slip interface which is an example of a system having the general
bilinear hysteretic character. The response of the limiting elasto-plastic
system was considered graphically for transient pulses and square wave exci-
tation by R. Tanabashi (6) and later, the same author (7) studied the tran-
sient response of the general system using graphical techniques and an
electric analog computer. A similar investigation was also made by W. T.
Thompson (8) who employed electric analog methods to solve for the response
of the general system to a unidirectional force excitation. J. F. Ruzicka
(9) has used both an approximate analytical theory and electric analog tech-
niques to study the dynamics of a vibration absorber which has the general
bilinear hysteresis characteristic, and the transient response of structures
which contain one or more elasto-plastic elements has been considered by
G. V. Berg (10, 11), T. Kobori and R. Minai (12), R. Tanabashi and K. Kaneta
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(13), and others (14-18). The stability of the steady state motion of the
general system has been demonstrated analytically by N. Ando (19) and this
same author has formulated an exact analytic solution for the steady state
response of the limiting elasto-plastic system and has made extensive an-
alytic studies of the transient response of both one and two degree of free-
dom systems of the general type. The behavior of the general bilinear
hysteretic system has been studied quite thoroughly using annraximate
analytic techniques in a series of three papers by T. K. Caughey (20, 21,
22). More recently, approximate techniques have been used by P. Jennings
(14) to study the steady state response of a general class of hysteretic
systems which contains the bilinear hysteretic system as a special case.

The objective of the present paper is to both complement and extend the
efforts of other workers. To this end, an exact solution for the steady
state response of the general one degree of freedom bilinear hysteretic system
is presented and some general conclusions are made about the transient re-
sponse of the system and the existence of unbounded resonance behavior.

FORMULATION

The most general form of the bilinear hysteretic restoring force is shown
in Fig. 1. If a single degree of freedom system having this restoring force
characteristic is subjected to a time varying force input P (7), the differ-
ential equation of motion will be

my + F (y, y) =P (1) . (1)

For the purposes of analysis, this equation may be simplified by the intro-
duction of the dimensionless variables

X = (kI/Fn)y

£(x, x) = F(y, 9)/Fn

i

c kz/k (2)

1

t =vk /m T
1
p(t) = P()/F .

The differential equation of motion then becomes
x + f(x, x) = p(t) (3)
and the normalized restoring force will have the configuration shown in Fig. 2.

If the system represented by equation (3) is subjected to a trigonometric
excitation of amplitude r and frequency w, the steady state system displace~
ment will have a wave form similar to that shown schematically in Fig. 3.

Let x1 be the maximum positive displacement of the system and let ¢ be the

phase angle by which the displacement lags the excitation. Then, beginning
at the point where the displacement is equal to X s the equation describine
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subsequent motion of the system will be

r

¥+ x = (xl—l)(l-a) + r cos (wt + 6), (4)
where
x(0) = x
(5)
%(0) = 0.

Equation (1) will remain valid until the displacement has decreased to
some value Xz’ at which point the slope of the restoring force diagram

changes to a. If t2 is the time required for the system to move from dis-

placement x1 to x, it will be seen from equations (4) and (5) that for w = 1

[Xl - (xl-l)(l-a) - ifiz cos ¢} cos t2 + I%%z sin ¢ sin t2

X =
2
. (6)
+ (xl-l)(l-a) + Too7 cos (wt2 + 0)
and
iz = - [xl- (xl-l)(l-a) - T%;z cos m} sin t2 + T%iz sin ¢ cos t2
rw (7)
- 152 sin (mtz + 0).
However, due to the assumed normalization of the hysteresis loop,
X =x = 2.
2 1
Thus, equation (6) may be rewritten as
r wr .
0= [xl- (xl-l)(l-a) - T:EZ cos 01 cos t2 + 1:52 sin ¢ sin t2
(8)

r
- + 9).
+ (1 + ¢ axl) + {7 cos (wt2 )

Further motion of the system with negative velocity will take place a-
long the lowermost restoring force branch of slope ¢. Therefore, the equa-

tion governing this motion will be

¥ +0x = (l-g) + r cos [m(t + tz) + ®1 (9)

where the initial conditions are now
x(0) =x =x =2 :
) 2 1 (10)

%(0) = k_ .
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If the frequency and amplitude of excitation are such that the effects of
ultra harmonles may be neglected, the hysteresis loop will have the config-
uration shown in Fig. 2 with no zeros of the velocity at other than the
points of maximum and minimum displacement. In this case, if x3 is the value

of the minimum displacement and tz is the time required for the system to

move from x_ to x_, L{t will be seen from equations (9) and (10) that for
o = @, 2 3

x x o+ = ain(wt + ¢).’ sin Vo £, + —F— cos [m(a:3 + :2) + 8

=[5,
o ——
3 Ja a~w? e
, (11)
+ xﬁzw-—a*-co:(mc +m).lcosw’;;: 4'(3-—9‘)'
1 ot amw? 2 | 3 el
and

X 'On[;& + = gin (we +o)n,coa\"<';;€ -'m-:in[w(t +t)¢o}
3 2 2 2 3 3 2

Ca=ty Q=
(1-g) (12}
~Ja[x-2-v - —E— cos (wt +0)]tin\rc;t.
1 o a‘wz 2 3

If the analysis {8 restricted to steady state wotion where the hysteresis
loop {8 symmetric, the perlodicity conditions on the solution become

X W =X (13)

and

t, 4 €, = nfw, (14)

Thus, the problem has been reduced to the solution of a set of six equations

[equations (7), (8), and (11) thru (14)] in terms of six unknowns [s;, o, xa’

ca, xj, and tj). For reasons which will soon become apparent, it is con-

venient to introduce a new variable ¢' defined as

o'uoi-(:zatt:sw nlw) . (15)

Then, in terms of this new variable the periodicity requirement, equation
(14), may be written as

o =9, (16)

Mm: of the bl.;hly txmccndouul ehsrtcut of the simultaneous

equations governing the steady state behavior, direct solution by slimina-
tion of variables is impractical. Thus, guided by the results of graphical
solutions (23) one turns to an iterative method of solution. The analysis
in this case is begun by arbitrary selection of initial values for the two
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variables x1 and ¢. Then, using numerical techniques it is possible to
progressively solve for t2 from equation (8), % from equation (7), ¢

2 3
from equation (12), and finally x, and ¢' from equations (11) and (15).

Having thus determined all of the intermediate variables, equations (13)
and (16) may be used to calculate new values for x and ¢. If these new

1
values are the same as the ones assumed initially, the problem is solved; if
not, the entire process is begun again using the new values as initial con-
ditions. This procedure is continued until the initial and final values of
x1 and ¢ over a cycle of calculation are equal within some desired limit of

accuracy. This method can be made to yield extreme numerical accuracy and

is not subject to the limitations associated with approximate numerical tech-
niques for the direct integration of the equations of motion such as the
Runge-Kutta method (24).

Convergence of the above procedure is difficult to demonstrate math-
ematically but may be inferred from the physical nature of the method itself.
It will be noted that the present approach is essentially just a formalized
mathematical way of constructing the system phase plane contour corresponding
to periodic excitation from some arbitrary point in phase space. The only
real difference between the method employed here and actual construction of
the phase contour is that here only the end points of the contour are evalu-
ated without the explicit determination of all intermediate points. The con-
vergence of phase plane solutions has been demonstrated for a bilinear
hysteretic system which is subjected to square wave excitation (23) and there
is no reason to believe that the system should behave any differently with
trigonometric excitation. However, the best argument for the convergence of
such a procedure is that it actually does converge in practice as shown be-
low.

STEADY STATE RESULTS

Figs. 4 and 5 show the results of digital computer solutions in the
range of parameters where ultraharmonic behavior is not a predominant factor.
It is seen that all of the curves exhibit a characteristic leaning toward low
frequency which is typical of so called "Soft'" systems. This results in a
somewhat gentle slope on the high frequency side of the response curves and
a very steep slope on the low frequency side. Numerous determinations of the
response were made on the low frequency side of the curve and although con-
vergence was extremely slow, it was possible to obtain sufficiently accurate
results to indicate that: 1) within the accuracy of the numerical computa-
tions the slope on the low frequency side is never negative, and 2) this
slope may approach an infinite limit at its steepest point. Thus, on the
basis of these observations it is concluded that there can be no more than
one vertical tangency to a given response curve which in turn implies that
the response curves are all single valued.

COMPARISON WITH APPROXIMATE SOLUTION RESULTS
Several methods have been used to obtain approximate solutions for the
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steady state response of hysteretic systems. One popular method which has
been employed by T. K. Caughey (20), P. Jennings (14), and the present author
(23) is the method of slowly varying parameters or the method of Kryloff and
Bogoliuboff (25). This method is based upon the '"equivalent linearization"
of the system and is most accurate for small system nonlinearities (in this
case for @ nearly equal to one). Since this method has been used rather ex-
tensively to investigate hysteretic systems, the results of the exact solution
were compared with those of the approximate solution. The comparison for two
different values of ¢ is shown in Figs. 6 and 7. Results (not shown) for
values of ¢ closer to unity show almost exact agreement over a very wide
range of inputs.

UNBOUNDED RESONANCE BEHAVIOR

Guided by the results of approximate solutions for the steady state re-
sponse of the one degree of freedom system (20, 23), one is led to consider
the special case of the system response when

w = o (17)
and
¢ = 0. (18)

However, in specifying ¢ and w it is no longer possible to concurrently
specify r. Thus, in this special case r must be looked upon as one of the
variables of the problenm.

Equations (11) and (12) for X and ka were derived under the restriction

that o = Vo . Thus, for the particular conditions specified by (17) and (18)
these equations must be replaced by

x =(fz-£—sin\/&-t)sinxfat +[x~2—‘u"ﬂ[}cos'~gt
3 Jo X 2 3 1 2

. [e4
o4

(19)
+L-1—§1)-+-—;&_——t3 cos Vo (& + ¢ )

and

x

5:==O==./'- = ain\/c;t)cosv’at ~~fa[—x-2~m-]sin45t
b2y 2 3 1 a 3
(20)

+

_r - R .z
T cos Vo (c3 £,) =3 £ sin Vo (t, te).

These two_equations along with equations (7), (8), (13), and (14) when ¢ = 0O

and w = v are the six equations which determine the system behavior. x_ and
t, can be eliminated from these six equations using equations (13) and (14),

and *2 can be eliminated from the resulting equations reducing the problem

to the solution of three equations in three unknowns. The three equations
are
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(1-ct) cos t_ + (lf ) (Ja sin t =~ sin J&rt )+ (1 + @)
*n = 2 = = = (21)
" a(l-cos cz) /
1- ~ (1~0) —
xh(COsJa t2~1) + [2 + i‘zfal}(sin t2 sima £+ cosdT ¢ + 1 cos Vot )
2 2 (04 2
r =
—1"sin\:6t +~;"("£ t)cosw"at
> -
o 2 2&; \JE 2 2 (22)
0 =

Yo r r ~
{.{xm-(xm~1)(1-a)} sin R (cos £ - cos Jo. cz) - —=— cos V& t;}

Al
— — (1:g[
coS vV(x t2 - N [xm~2 - ] sin J& t2 - —=

a ol

ot (23)

where the particular value of x which corresponds to conditions (17) and

(18) has been denoted by x .

Formally, equations (21) and (22) may now be used to solve for r and X
in terms of t2. These results in conjunction with equation (23) would then
give one equation in the one unknown t2. However, it is clearly seen that

this would lead to such a complicated expression that practically speaking
the problem could not be solved. Thus, the procedure followed here will be
to select a reasonable value for t2 and then demonstrate that this value

along with the values it predicts for X and r are all consistent with the

statements of equatioms (21), (22), and (23). Assume that the desired solu-
tion is c2 = 0; or, to be more correct both physically and mathematically,

assume that t2 approaches zero. Then, if r is no less than zeroeth order in
tz’ taking the limit of both sides of equation (21) as t2 approaches zero

gives

lim (x ) = lim ]:4/ozt2 +al3 + O(tz)] (24)
£,~0 n £, 0 2 2

and

x —was t -0. (25)
m 2

The assumption that r is no less than zeroeth order in t2 may be verified

from equation (22). After considerable manipulation it can be shown that
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lim (r) = 1lim [A(Iﬂu)/ﬁ + 0(t )J (26)
€0 t,~0 2

and hence that

r = 4(1l-a)/n as t2 -0 . (27)

Thus, r is indeed zeroeth order as assumed. It now remains only to show
that the values of tz’ r, and ) obtained above satisfy the third equation

(23). Taking the limit of both sides of this equation it may be shown that
the right hand side is of order c2. Thus, as t2 approaches zero the equa-

tion is satisfied and the assumed values of tz’ r, and x  must represent the

true limiting solution of the problem.

Summarizing, it has been shown that the exact equations for the steady
state motion predict an amplitude and phase resonance (xmr»w, ¢ = 0) which

occurs with finite amplitude of excitation at a frequency w = Ja . The am-
plitude of excitation which yields this behavior may be looked upon as a crit-
ical parameter of the particular system under consideration and will be de-
noted by

r, = 4(1-a)/n . (28)

TRANSTIENT RESPONSE
One of the more important questions which arises in connection with the
transient response of the general hysteretic system concerns the nature of
the final state of the system upon completion of the excitation. In some
cagses it will be found that the system develops a certain permanent offset,
while in other cases the s{stem will return to oscillate about its original
2]

point of zero displacement If the excitation is reasonably symmetric

and of low enough level that the response is due primarily to resonance ef~-
fects or, 1f the excitation is of very short duration, any final offset will
most likely result from the behavior of the system after the excitation has
ceased. Thus, in order to better understand the mechanism by which an off-
set may occur, it is instructive to actually follow the motion of the bilinear
hysteretic system during the period from the end of the excitation until a
steady state condition is reached.

Define a 'maxima of the displacement' as any displacement Xy which sat-
isfies the conditions

(2] If there is no viscous damping in the system, the final state will in gen-
eral be oscillatory.
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lx, | >1

n
N

[£(x;, 0)] = afx,| + (1-a)

Then, X, is the displacement which corresponds to a reversal in the sign of
the velocity. If x; is a maxima which occurs after the system excitation

has ceased, it may be shown that the next maxima x will be given by the
equation i

1/2
1 - (sgn xi){- [(Ixil -1-1/a)2+ 4(lxil - 1)J + (1_(1)/&‘1 (20)

where necessary conditions for the validity of this equation are

-x, (sgn xi_l) >1 (31)

and

lxll > 1. (32)

When either of the conditions (31) or (32) is not satisfied it means that
the system is energetically unable to move into a restoring force regiom of
slope ¢ and the system will merely oscillate periodically along a restoring
force segment of unity slope. Using equation (30), the course of the system
motion upon completion of the excitation may now be followed from maxima to
maxima until condition (31) is no longer satisfied. At this point the system
will begin to exhibit undamped periodic oscillations about a mean displace-
ment (offset) 8, given by

by = (1) (1)(egn 5, ) + x| (33)

where x 1is the last maxima which can be obtained from equation (30).

The information contained in equation (30) and conditions (31) and (32)
may be interpreted graphically as shown in Fig. 8. This figure gives a fam-
ily of curves which may be used to obtain the (i + 1)th maxima of the displace-
ment in terms of the ith maxima for various values of the parameter a. If,
for a particular maxima xj, the point (xj+1, xj) lies within the cross-

hatched area of the figure, then xj is the last maxima which will satisfy con-
dition (31). Hence, %54y
take place along a single unity slope segment of the restoring force diagram
with an offset 3  given by equation (33).

equals X and subsequent motion of the system will

It will be noted from Fig. g that the absolute offset [6 | has a def-
inite upper bound which depends only on the value of the hysteresis loop par-
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ameter 7. In general, this upper bound may be obtained by setting

dx
—t w0 (34)
dkal

Performing the indicated differentiation and using equation (33) one finds
that
(Lot} “3/cx = 2 0 (1=t2) /2 y e 1/2
[ ] ! L L (35)
' max O NI W

Equation (3%) makes 1t possible to draw several I{nterecsting conclusions
about the transient response of the bilinear hysteretic system. Based only
on the assumption that a “maxima of the displacement’ existe after completion
of the excitation, equation (3%) says that the maximum final offset will be
bounded for all a » 0 and may become unbounded only if ¢ = 0. More {mpor-
tant , however, is the observation that {f v > 1/2 there can be no permanent
of faet for the system regardless of the value of the initinl maxima ml.

SUMMARY AND CONCLUSIONS

The results of the preceding analysis may be summarized as follows:
1} An “exmact" solution for the steady state response of the one degres of
freedom bilinear hysteretic system has been obtained and the resulre of this
solution have been compared with the results of an approximate solution obe
tained by the method of equivalent linearization. This comparison indicates
that the approximate method s capable of giving very accurate results for
cases where the slope of the restoring force diagram {n the "vielded” reglon
is nearly the same as that {n the “elastic” reglon (o nearly squal to 1},
Furthermore, where the approximate solution does differ sigoificantly from
the exact solution the present analysis indicates that the approximate solu-
tion will always be conservative from 8 deslign polnt of view, i.e. the ap-
proximate solution will predict an amplirude of response which is greater
than or equal to the actual value., 2) Studies of the transient response of
the bilinear hystevetic aystem have shown that the system will in general
exhibit no permanent offset 1f the ratio of the slope of the restoring force
disgram in the "yielded" reglon to the slope in the "elastic’ region is
greater than or equal to 1/2 (u > 1/2).
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