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SYNOPSIS

It has been the usual practice, while calculating the dynamic
behaviour of multistoreyed frames, to asmume that the floor systems
are rigid and the columns do not undergo any rotation at their
Junction with the floor system. This paper examines the efficacy of
such an assumption on the dynamic behaviour of multi~storeyed frames,
with particular reference to forces developed due to strong ground
motion.

INTRODUCTION

Notations- The letter symbols adopted for use in this paper are
defined and are listed alphabatically in the Appendix.

The physical phenomenon due to joint rotation is to introduce
additional coupling between masses, thereby, increasing the flexi-
bility of a structure. The periods get elongated and the displacements
increase compared to that of a rigid structuret+

In this study, single bay frames have been considered. This makes
the apalysis somewhat simpler. Further, it has been shown |1 4that
single bay frames are more flexible than corresponding multiple bay
frames. The results obtzined from the dynamic anglysis of single bay
frames would represent the effect of joint rotation for the most
severe case and therefore would be an upper bound for other cases.
Also, it is possible to a arrive at single bay frames equivalent to
that of multiple bay frames as far as behaviour under horizontal loads
are concerned [2].

BASIC EQUATIONS OF MOTIORN

The building models that would be considered for investigating
joint rotation is based on the following assumptions.

1. Masses concentrated at floor levels.

2. Linear spring forces (columns in multistoreyed frames act as
springs. They are assumed to have linear stress strain
relationships).
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++ Note: The terms ‘£lexible and ‘rigid' used in thls paper represent
relative values and not absolute values. The term ‘flexible structure
is meant to indicate structures in which effect of joint rotation has;
been considered and the term ‘rigid structuxe is 0 t for those in .
: which effect of joint rotation has been negleet d,
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3. Claseical normal modes exist. It is sesumed that the damping
in the system is such thut modal analysis is possidle.

4. No buse compliance.

%« There is no change in the length of columns or girders.
(Axial forces are ignored).

6. There is no settlement of frame supports.

T« Joints are rigid, namely, all ends of members framing tuto
a joint rotate an amount equal to the Jjoint rotation.

The equation of motion for the undamped wibration of tbe bullding
model, which is & n degree of freedowm system, is given by

D1 Ml g} - alil{e} « {5e0] o

Rubinstein and Hurty (3 have indicated s general approach to the
formulation of equations of motion and a method for solution of such
equations. The suthor [1] has worked out solutions to the problems of

this study by s different method.

The solution of the free vibration problem, that im when F(t)
equals mero, gives the natural frequencies of vidbrations (p's ) and
the assooiated coordinates of mode shapes (9% ).

If the structure ie subjected %0 & strong ground motion and 1§
the damping in the system ie such that normal modes sxist, then ihe
relative displacement with respect 1o the buse of any mase « , 18

given by
'
" vy 2 jr? L .T)dT
T “&'m"'m”i &;Sw(?)u Sam pdo(t-T)
e £ m‘(di 3 »

From equation 2, the displacement response of any mses ¢, in the
™mode of vibration is

- b‘“i 8
2,1 = i C ot (8Y), | 3
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The inertia force acting at any floor level is m; X, and from
the equation of motion, v

.= h "
~mgx, = 2 dijB o+ 3 kijZj e 4
j=. FER

The inertia forces are partly resisted by the damping fore
and partly by the spring forces, ping oe

Defining the sum of spring forces at any floor level as the
logd at the floor level, then the logd ‘@ aoting on any mass i is
&iven by

r) n (1)
Q; = E.t Rij 2 . 5

X l'fha shear force at any floor level = sum of loads above that
evel.

Shear V at any floor level . ig

) i )

Vi =z 3 Q-f .. 6
izl

(floor numbers are to be counted from top)

SPECIPICATIONS OF THE PHOBLEMS

Bulldipg models of uniform mass and stiffness distributions
have been considered for this study (Refer Fig 1). The ratio, Sb/s.,
of the moment of inertia per unit length of beam (floor system) to
that of the column was varied over a wide range. The number of
magses were also varied to consider the effect of number of storeys
on the flexibility of the building., The ratio,S,/Sc was varied from
1l to l0and n from 1 to 20.

For each problem, frequencies (p ), mode shapes (¢ ),
displacement response (%) and shear response (V) have been
worked out for the first four modes of vibration,

In this study, while comparing various quantities involving Sv ,
it hes been assumed that Sv has a flat response and the damping

in eavh mode iz same.

DISCUSSION OF RESULTS

4 Natural Frequencies of Vibration
Tha natural frequency of vibration could be expressed as

bg C‘NM e vew T

Values of Cxnfor the various cases have been given in Table 1.
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Figs. 2 and 3 show plots of fundamental frequency versus Sb/Sc and
n. It could be observed that for a ratic of Sy/scabove five, the
effect of joint rotation is negligible. Also, this effect is not
much affected by increase in value of n above five. It is also
observed that the effect of joint rotation is less pronounced in
the case of higher modes than that of fundamental modes.

The spring constant R is a function of the length of the column
and is inversely proportional to the cube of its length. It is
therefore possible to choose equivalent length of columns such that
the same relationship as obtained for the frequency of a rigid
structure (S,=c© ) could be used for the case of a flexible
structure ( s, is finite).

Table 2 gives the dimensionless factor, F, by which length of
the columns should be multiplied such that the fundamental frequency
of a flexible structure (pge ) could be obtained by using the formula
for the fundamental frequency of rigid structure (pPrd).

This factor F, could be easily obtained to a very good degree of
approximation by calculating the fundamental frequency of vibration
by Rayleigh's method [4]. For the flexible structure, the influence
coefficients used in Rayleigh’s method could be obtained by Kloucek’s
procedure [2].

B. Displacement Response

The relative displacement with respect to the base of any mass
due to a ground motion could be expressed as

Z = C,yi - f‘"‘/h . Sv 8

Values ofCzr/n, for the topmost mass, have been given in Table 3.
Fig.4 shows a plot of top displacement response versus Sb/Sc and :
n. Fig.5 shows the displacement diagram for n=10. It could be
observed that for a ratio of Se/scabove five, the effect of joint
rotation is negligible. Also, this effect is not much affected by
increase in value of n above five. It is also observed that the
effect of joint rotation is less pronounced in the case of higher
modes than that of fundamental mode.

In order to predict the effect of joint rotation from the
values of a rigid structure, the dimensionless termZrge/Zrrd is
divided by F?*2 and the results are given in Table 4. It is
observed that this combination of dimensionless factors approaches
unity very nearly in all the cases. This indicates that once the
factor F is known, the relative displacement for a flexible structure
could be evaluated from that of a rigid structure.

C. Shear Response

The shear force at any level i, due to a ground motion could
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be expressed as
Vi = Cai-JR.m. Sv R

Values ofCsp, for the base has been given in Table 5. 4 plot
of base shear response versus Ss/scand n is shown in Fig.6 for the
first mode of vibration and in Fig. 7 for the absolute sum of the
first four modes. Fig. 8 shows the shear diagram for n = 20. It
could be observed that for a ratio ofsekabove five, the effect of
joint rotation is negligible. 4also, this effect is not much
affected by increase in value of n above five. It is also observed
that the patiern of variation of shear force along the height is more
or less similar in all the cases.

In order to predict the effect of joint rotation from the
values of a rigid structure, the dimensionless term L2£€ is multiplied
by F¥2 and the results are given in Table 6, It is observed that this
product of dimensionless factors approaches unity very nearly in all
the cases. This indicates that once the factor F is known, the
shear for a flexible structure could be evaluated from that of a
rigid structure.

CONCLUSIONS

The effect of joint rotation is negligible and therefore may not
be considered if the retio Sb/Sc is of the order of five and above.
For values of n greater than five, the effect of joint rotation
remains very nearly the same as for n = 5. For values of n less
than five, the effect is even less pronounced than that for n
equal to five.

The values obtained by ignoring the effect of joint rotation,
results in a conservative estimate of shear values.

If the factor P, corresponding to the equivalent length of
column is known (relatively, this could be evaluated easily), then
all the values for a flexible structure could be obtained from that
of a rigid structure. That is, the effect of joint rotation can be
taken into account in all the cases, if equivalent length of columns
are properly chosen.
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APPENDIX
Notations
c, - frequency coefficient defined as per equation 7.
€, = displacement coefficient defined as per eguation 8,
subscript T wused along with this represents values of
the top mass.

C3 ~ shear coefficient defined as per equation 9, subsoript B
used along with this represents values st base.

dij - elements of demping matrix.
{f(t)} = column matrix whose elements are forces acting on masses.

F - factor by which length of columns are to be multiplied to
get equivalent lengths.

fe -~ when used as subsoript represents flexible structure.
h  ~ height between floors, assumed constant,
[1] « disgonal matrix whose elements are unity.

]
[k] ~ matrix whose elements are the influence coefficients of
system,

k - spring constant of a column of the building model, equals w“&&
elements of stiffness matrix.

x
R
1
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IM] - mass matrix.
m - mass concentrated at storey level.
" =~ number of masses.
P - undamped natural frequency of system.
Pd = damped natural frequency of system,
= bJT:7§? % p, if $ < o020
Q =~ load at any floor level, defined as per equation 5.
T - index representing mode of vibration.
rd ~ when used as a subscript represents rigid structure.

Sb ~ moment of inertia per unit length of floor system.

&
1

moment of inertia per unit length of column.

Sv - response velocity spectrum,

:Ut y(x)e S Sinpy (t-T) d7 o
t - time interval.
V = ghear at any floor level, defined as per equation 6.
X =~ absolute displacement of mass.

9@*)— ground acceleration,

Z ~ displacement of mass relative to the base, defined as per
equation 3.

¥ = coefficient of damping expressed as a fraction of critical
damping value.

$ =~ mode shape coefficients
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TABLE 3

TOP DISPLACEBMERT
&r = cZT ’l;ko s'

VALUE OF Cyp/n

n Sp/8,
1ST. MODE 2HD. MODE 3BD. MODE 2 MODES +
o 1.0000
10 1.0243
1 5 1.0472
2 1,1094
1 1.1952
o) 0.9472 0.0528
10 1.0029 0.0562
2 5 1.0536 0.0589
2 1.1836 0.0646
10 0.9493 0.0948 0.0266 1.0791
5 5 1.0136 0.1016 0.0287 1.1530
2 1.1819 0.1192 0.0336 1.3452
1 1.4106 0.1424 Q.0392 1.6040
oo 0.8479 0.0914 0.0309 0.9855
10 0.9216 0.0996 0.0339 1.0711
10 5 0.9893 0.1072 0.0365 1.1501
2 1.1675 0.1269 0.0435 1.3583
1 1.4111 0.1541 0.0529 1.6428
oo 0.8300 0.0919 0.0324 0.9701
10 0.9055 0.0999 0.0355 1.0584
20 5 0.9750 0.1076 0.0382 1.1400
2 1.1577 0.1280 0.0456 1.3541
1 1.4083 0.1559 0.0557 1.6479

+ Absolute sum of first four modes.
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TABLE 4

{ %Tf,ﬁf’ - N ) versus 5p/S, and n

Z1te/2Trd <+ F 3/*

n Sp/Se
15T. MODE ¥ MODES +
o0 1.0000 1.0000
10 1.0025 1.0039
5 5 1.0044 1.0065
2 1.0088 1.0115
1 1.,0141 1.0159
co 1.0000 1.0000
10 1,.0007 1.0007
10 5 1.0015 1.0016
2 1.0029 1.0039
1 1.0048 1.0065
[~ -] 1.0000 1.0000
10 1.0002 1.0002
20 5 1.0004 1.0008
2 1.0008 1.0015
1 1.0014 1.0025

+ Absolute sum of first four modes

TABLE 6
( ‘Vlgd——e' x F*/* ) versus Sp/Scand n
Vefe/VBrd X F5, %
n sb/se 1ST.MODE THODE+ T HODES ++
o 1.0000 1.0000 1.0000
10 0.9905 0.9989 1.0268
5 5 0.9828 0.9980 1.0505
2 0.9664 0.9973 1.1083
1 0.9494 0.9962 1.1807
o> 1.0000 1.0000 1.0000
10 0.9936 0.9979 1,0099
10 5 0.9885 0.9969 1.0175
2 0.9778 0.9934 1.0337
1 0.9669 0.9916 1.0531
oo 1.0000 1.0000 1.0000
10 0.9962 0.9977 1.0010
20 5. 0.5934 0.9962 1,0018
1 1 0.9811 : 0.9882 1.0055

+ 8qua:r6 'Root',o‘i' the sum of the 3quares of the first four modes. ‘
++ Absolute sum of first four modes.




TABLE 5

BASE SHEAR
V= Gy rk?n 8,
n Sv/S6 VALUE OF C33
15T. MODE JMODES + _ZMODES ++
oo 1.0000
10 0.9763
1 5 0.9549
2 0.9014
1 0.8367
oo 1.1708
10 1.1032
2 5 1.0470
2 0.9230
1 0.7955
10 1.1515 1.2190 1.7506
5 5 1.0722 1.1430 1.6806
2 0.9080 0.9837 1.5270
1 0.7514 0.8278 1.3703
oo 1.2673 1.3570 2.0429
10 1.1594 1.2470 1.8996
10 5 1.0752 1.1610 1.7841
2 0.9026 0.9819 1.5383
1 0.7399 0.8125 1.2988
10 1.1615 1.2550 1.9363
20 5 1.0759 1.1640 1.8001
2 0.9009 0.9767 -~ 1.5187
1 0.7363 0.8002 1.2518

+ ReM¢S. value of first four modes

++ Absolute sum of first four modes
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REL. DISPLACEMENT DIAGRAM FOR A TEN STOREYED
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