DYNAMIC ANALYSIS OF ELASTO-INELASTIC FRAMES

by Robert K. Wenfl] and John G. JanssenEz]

In this paper a method is presented for the dynamic analysis of plane
frames consisting of members having elasto-inelastic bending moment curva-
ture relations. The method is based on a Lumped-flexibility and lumped-
mass approach in conjunction with a numerical intergration procedure for
the time dimension. Deformations are assumed to be due to bending only.
The procedure of numerical solution is illustrated by an example. Numeri-
cal results are presented to show the responses of frames with bilinear
moment-curvature relations that range from the perfectly elastic to elasto-
perfectly plastic.

Introduction

In recent years the dynamic analysis of elasto-inelastic frames has
been discussed by a number of investigators such as DiMaggio (1), Berg
and DaDeppo (2), and Heidebrecht, Lee and Fleming (3). All works reported
thus far deal with frames having elasto-perfectly plastic moment-curvature
relations. The main feature of the method presented in this paper is that
it can be used to analyze frames with quite general elasto-inelastic
characteristics.

The method of analysis is an extention of a method developed for the
dynamic analysis of elasto-inelastic beams by Wen and Toridis (4), and is
based on a "lumped flexbility and lumped mass'" model to represent the
structure and a numerical integration procedure. This of course has the
usual advantages of a discretization approach such as the ease in the
treatment of discontinuities in the distributions of flexibility and mass,
and in the external loading (and/or prescribed foundation movements) in
the space and time dimensions.

The use of the method would, in general, require a high speed digital
computer. On the other hand, the formulation of the method is based on
quite simple and straightforward concepts; its programming for the computer
should be a relatively simple task.

The following presentation is limited to plane frames with straight
members. Only bending deformation is considered; effects of axial and shear
deformations are disregarded. Moreover, the deformations are assumed to be
sufficiently small so that their effects on the geometry of the structure
are negligible.
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Method of Analysis

Formulation of Model

In order to formulate the model used in the analysis, the first step
is to number each member in the frame. Then cach member is divided into a
number of "panels'. It is not necessary to divide all members into the same
number of panels. But it is convenient, although not necessary either, to
make all panel lengths equal in a given member; and this will be presumed in
the subsequent development of the method.

Between the panel points the panels are assumed to be massless and
inflexible. The mass and the flexibility of the wmembers are lumped at the
panel points on a "tributary" basis, except that the interior joints, at
which more than one member meet, are assumed to be rigid.

Shown in Fig. 1b is a typical panel point (i,j) --~ the indices i
and j refer, respectively, to member 1 and panel point i, It is
emphasized that in this paper indices of this tvpe are generally written
ingide parentheses rather than as subscripts. The lumped wass at this point

is: :

x(i,3) + % h(i)

w(i,j) = m(i,x) dx s {1
®{(1,3) ~ % h(i)

in which m(i,x) and h(i) are, vespectively, the mass digtribution and panel
length of the ith member. The lumping of the flexibility is cffectad in the
following manner. Let the relation between the bending moment and curvature
at point (i,j) for the actual continuous structure be formally rvepresented
by the function g(i,}), i.c.,

M(i,i) = g{i,3) [history of curvature at (i,i)) cev. . (2a)

Then the relation between the bending moment and the angular deformation
at point  {(i,3), 6(i,1), may be written as:

M(L,39) = £(i,)) [history of 6(i,j)] el (203

in wﬁich £(i,1) = g(i,1)/h(i). (This is tantamount to assuming that the
bending moment is constant within the tributary length).

Finally, any lateral loading on a member will also be assumed to be
lumped at the panel points.
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Equations of Motion

It is convenient to define a "free panel point", or more simpl
Yfree point', as one which does not coincide with a joint or su pgrz,a:d
is not immediately adjacent to a joint. For example, points (1P2) 2,5)
and (3,3) in Fig.6 are free points. A "constrained panel point',| i; oné ’
that either coincides with a joint (such as points (1,7) and (4,1)) or is
immediately adjacent to a joint (such as points (1,6) and (2 2)5. A point
such as point (1,1) in Fig.6 is a "support point". The equaEions of motion
may be divided into two groups: one for the free points; one for the con-
strained points.

In Fig.l are shown the free body diagrams for a typical free point and
its two adjacent panels. From Fig. 1b, the equation of motion canm be written
as:

m(i, i) y(i,5) = ST, - SN + PG, L. 3)

in which y denotes the transverse displacement. For horizontal members,
it is positive downward; for vertical members positive to the right. The
dots denote time derivatives, the S's shears, and the P's external loads.
Referring to Fig.lc and Fig.ld one can express the shears in terms of the
moments, and rewrite Eq.2 as:

n(isd) $0,0) = gy DL 5D = 2 M(1,3) + M0, 3] + B(5,9)

The displacements of the constrained points depend on the rotations of
the joints and/or the translations of the floors. In Fig.2 is shown the
free body diagram of a typical joint with the associated constrained points.
Assuming small rotations, the equation of motion can be written as:

Jk Uk = sum of moments about k due to the M's, S's, and the P's

in which J, is the polar moment of inertia about k of the system shown
in Fig.2, and u is the angular rotation, positive clockwise. As in the
case of Ey.3, the various shears at the constrained points can be expressed
in terms of moments via a consideration of the equilibrium of the free body
of the adjacent panels. Thus the right-hand side of Eq.5 can be expressed
in terms of moments and the external loads only, i.e.,

Jk ﬁk = function of bending moments and external loads ..... (6)

In Fig.3 is shown a free body diagram for a typical floor with all the
constrained points associated with the joints of the floor. The equation of

motion can be written in the form:
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m.. ¥ = sum of shears (S8) and loads (®» ..., ()
L 74

in which m,, is the sum of all the masses shown in Fig.3, and v, 1is the

horizontal translation of the floor, positive to the right. %ikewise,
the shears can be expressed in terms of moments via consideration of the
equilibrium of the adjacent panels. Thus:

me, Vﬁ = function of bending moments and external loads

Hence, all equations of motion can be expressed in terms of the bending
moments and the external loads at the various pancl points.

Constraints

The transverse displacements of the constrained points are related to
the rotations of the jeints, and, in case that such points are in a column,
to the horizontal floor displacement also. Under the assumptions that
axial deformations are negligible and floor translations are small, the
transverse displacements of the end points of any horizontal girder are
equal to the vertical component of the ground movement. For two collinear
members meeting at a joint, this joint is a pancl point to both members.

Of course, the transverse displacements of these points are cqual. The
preceding relations are illustrated by Egqs.22 in a subsequent sccetion on
"Numerical Example'.

Relation Between Increments of Transverse Diswlacements and Angular Deformations

From Fig.4, it can be see¢n that the angular deformation 6 (i,j) is
related to the transverse displacements as follows:

6¢1,3) = E](T (yiainl) = 2 y(i,gh + y(i.j+1) ] ceen (9)

P

Or, in terms nf increments:

®

88(i,3) = - ;;ﬁ-)— [ 4 yli,joll « 24 yid gy + 4 yli,j+i) ] ceees (10)

The angle is positive, for horizontal members if concave upward; for vertical
members concave to the left.

Boundary Conditiuns

At a ‘hinged or a fixed support. the displacement can be zero or take
on prescribed values as in the case of problems involving ground motion.
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For a hinged support, the moment is zero. For @ fixed su i

. port, ) ; : pport, consid
example, point (1,1) in Fig.6. tI‘ne moment M(1,1) depends on tl:le histoi;’oior
6(1,1), which is equal to [y(1,1) - y(1,2) J/h(1); the stiffness for this
point is twice that of the free points in the same column, The case of the

free end of an overhanging girdfar can be formulated on the basis of zero
moment and shear at that end (&4).

Bilinear Bending Moment-Curvature or-Rotation Relation

For some elasto-inelastic problems, it is convenient to represent the
moment curvature relation by the bilinear type as illustrated in Fig. 5. 1In
the elastic range the stiffness is equal to k.; in the inelastic range the
stiffness is k,. If a reversal of the direction of the curvature increment
takes place whi%u the scction is deforming inelastically, the moment curva-
ture relation will return to an elastic path with stiffness k.. The total
elastic range is assumed to be equal to twice the elastic limif moment Me.

For the lumped flexibility model, one deals with rotation instead of
curvature. To facilitate the computation of the increment of bending moment
AM corrcsponding to a given 46, it is convenient to introduce the quantities:
"positive and negative transition moments", N and N7, which are defined to
be respectively, the magnitudes of the changes in moment that would just
initiate inelastic bechavior in the positive and negative direction (see Fig.5),
At the virgin statc, M = 0, and both N and N7 are equal to M . It is noted
that at all times N" + N = 2 MQ. e

The use of the transition moments in computing the moment increments
is illustrated in the following. (The transition moments may be regarded as

representing the influcence of the "past history'" of the angular deformation).
Referring to Fig.5, the problem may be stated as: given

M(t), N+(t), N (t" and A6 = 6 (t + At) ~ 6(c), it is required to find
AM = MCt + At] - Mit]

; +
If A6 is positive or zero, but less than N (t)/klz

>
4
]
=
>
Le

N

NT(t + At = N+('t;: AM ] v (11la=c)

NT(r F oAt = 2Mu~N+(t + A

, +o
1f A® i= pozitive or zero, and larger than or equal to N (t)/kl-

AM = NP+ K, [AemN+(tW/k1J
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N+(t + At)

]
o

N (t + At)

]

2 M } ..... (12a-~0)

If A® is negative or zera, but algebraically larger than or equal
to (—N?t)/kl):

AM =k, A8
N (t + At) = N (t) - AM J ..... (13a-c)
N+ AL =2 M, - NT(e + AL

If A® 1is negative, and algebraically less than (-N‘(t)/kx):

AM = =N (t) + k, [a6 + N‘(t)/klj

il

N (t +4t) =0 Lo (l4a-c)

NT(e + At) =2 M

e

+ - . .
Of course, N (t + At) and N (t + At) are computed for use in the next time
interval in the numerical solution.

Summary of Procedure of Analysis

Let Y be a column matrix containing the transverse displacements for
all the panel points in the frame. From previous discussions, .the matrix Y
may be considered to be made of three sub-matrices, i.c., Y = {Yl Yz Y3f,
in which Y; contains the displacements of the previously -
defined free points, Y, contains those displacements defined by con-
straints, and Y3 contains the prescribed boundary or support points. Also
from previous discussions, there are three sets ¢f equations of motion:

mY =AM+ B P
JU = A2M + BZP }‘_...xl5awc)

me = A3M + B3P

in wvhich @ is the mass matrix for the free points, J i< the matrix of
the polar moments of inertia of the jointsg, ﬁt itz the mass matrix of the
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loors U is the acceleration matri joi i :
£ 5 rix of the joint rotations, V is the

matrix of the horizontal accelerations of the floors, M and P are matrices
for bending moments and loads, respectively, and A ,...,Bg are matrices of
appropriate sizes containing constants whose values depen only o

nt
lengths of the members. P y he panel

The displacements defined by cpnstraints can be written as:

= C >
YvL,=C0U0+CvVv (16)

in which Cl and C2 are matrices with known elements.

The problem of numerical solution may be stated as follows: Given at
time t, Y(t), U(t), V(£), and HM(t), it is required to determine, for
time t -+ At, the transverse displacements, the deformations and bending
moments of the panel points. The procedure of solution may be outlined as
follows:

(1) From Eqs.l15, compute the accelerations at t.

(2) Having obtained the accelerations at t, use some type of numerical
integration procedure to obtain the changes in velocities and displacements
for the interval At. A procedure for this purpose is for example,
described in Reference (5). In this manner, AY,, AU, AV are obtained.

From Eq.16, obtain AYZ. Since AY3 are prescribed, AY is completely knowm.

(3) From AY , the incremental angular deformations of the various panel
points can be computed from the relationship as given by Eq.10.

(4) From the changes in angular deformation the corresponding changes in
bending moment can be computed from prescribed bending moment-rotation
relations, such as represented by Egqs.1l - 14,

(5) Sctting Y(t + At) =Y (£) +AY; U (£ +At) =U (&) + AU,
V(t + At) =V (t) + AV, and M (¢ + At) = ¥ + AM, the solution can be carried onm
to the next time instant t + 2 At by repeating the steps (1) through (4),
and so on.

Numerical Example

The structurc considered is a two-story symmetrical frame shown in Fig.6,
subjected to a horizontal ground motion as depicted in Fig.7. The frame is
initially at rest. The properties of the members are listed in Table 1.
Within cach member the stiffness and mass distributions are uniform. On
account of symmetry only one half of the structure need be considered. The
columns are divided into six equal panels, and the girders twelve. The panel
lengths are thus equal for all members.
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The free points in the frame are: (1,2), (1,3), (1,4), (1,5); @2,3),
@.4), 2.9); (3,3), (3,6), (3,5, (3,6); (4,3), (4,4), (4,5), (4,6); - 4
total of 15. The constrained points are: (1,6), (2,2), (3,2); (1,7), Q,n,
(3,1); (4,2), (2,6); (4,1), (2,7); -~ a total of 10. The boundary or support
points are: (1,1), (3,7), (4,7) -- a total of 3. Thus there are 28 points
-~ each member with 7.

For each of the free points there is an equation of motion similar to
Eq.4:

m(i) h(i) ¥(i,3) ='1¥<1‘5 [M(i,5-1) - 2 M (i,§) +M (i,j + 1)]

in which m(i) is the mass per unit length of the ith member. The equations
of motion for the rotations of the joints at the first and sccond floors are,
respectively:

J@Eu(l) =2 [M (1,6) - M (2,2) - M (3,2) ]+ M (2,3) - M (1,5 +M (3,3)

J(2)u(@) =2 [M (2,6) - M (4,2) ] +M (4,3) - M (2,5 ... (19)

in which J(1) m(l) h(l)3 + m(2) h(2)3 + m(3) h(3)3, . and

i}

J@2) = m(2) b2+ n@) b4,

The equations of motion for the translations of the first and sccond floors
are, respectively:

1y = L - ‘ L . ’
mpg v(D) = s M (2,3) - M@, ]+ ¢35 M (1,5 - M (1,6)]
..... (20)
. ! . .
LI v(2) = @) M (2,5 -'® ) L. (21)
in which m o= 1.5 [m(1) h(l) + m(2) h(2)] + 6 h(3) m(3), and
Wy = 1.5 m(2) h(2) + 6 h(4) m(4).

The displacements of the constrained points are computed as follows:

¥(3,2) =h(3) u(l) ; y(1,7) =v(1) ; y(2,1) = v(l)
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y(2,7) = v(2) sy, =0 oyG3,) =0
y2,2) = v FED w5 Y06 =) @ e @)
y(2,6) = v{2) - h(2) u(2) ; y(4,2) = h(4) u(2)

The displacements at the support points are:

v(3,7) =0

]

;o y(4,7) =0 (23ab)

]

y(1,1) function graphed in Fig. 7 . (24)

Combining Hgs. 17, 22, 23, and 24, one has 28 equations for the 28

_ displacements. These displacements are sufficient to compute all the
angular deformations needed, which in turn, yiélds the bending moments.
Note that M(3,7) = M(4,7) = 0, and the bending moments at the joints are
not needed in the analysis. The moment-rotation relations are assumed to
be the bilinear type as described previously. The value of k, for each
panel point is cqual to the bending rigidity divided by the panel
length. The ratio R = kz/k1 is considered as a parameter.

For the numcrical integration the following formulas (5) were used:
. 2 ..
bz = Ot z (£) + % (At)T z (t)
Az = % ot [z (&) + z (& +4¢t)]

in which =z denotes any of the displacement unknows, and the prefix A -4
denotes change from t to (t + At).” The size of At wused was 1.055 x 10
seconds .

The response of the frame was considered for eight values of the ratio
R, ranging from zero (clasto-perfectly plastic case) to unity (perfectly
elastic casc). The quantities computed are, for each panel point, the
makimum positive angular deformation 6 , and the absolute value of the
maximum negative angular deformation 95’?:;‘_"‘. In Table 2 are listed, for

>

R =0, 0.2, and 1.0, these quantities scaled by the respective "yield angle"

se Fig i o | : =6 6 . Listed als
6, (sce Fig.5), i.e., -gp,m}ax-/ ee ; and -gn,max. n,max./ . isted also

are the values of ¢t and t which denote tha times (in seconds) at which
these maximum deformgtions occur.

It may be seen from these tables that only at four point§: (l,}),
(1,2), (1,6), and (2,2), the deformations have gone into the inelastic ramge

as.iignified by the fact that the value of — or Bn,max. has exceeded
unity.
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In Figs. 8, 9, and 10 are shown the influence of the ratio R on

the response for these four points. The values of Ep nax, 2Te plotted in
,Tax.

Fig.8. It is seen that the values of Gp max. for point (1,1) and point

3
(1,2) vary considerably with R. While at (1,1) the deformation decreases
with R, at (1,2) it increases with R. The rate of changes is largest in
the neighborhood of R = 0.2 and levels off at approximately R = 0.6. For

points (1,6) and (2,2) the values of gp,max. increase slightly with R,

Graphs of s are shown in Fig.9. For point (1,1), the deformation
increases with R™F3¥' R < 0.2; and decreases with R for R > 0.2, The
opposite is true for point (1,2). For points (1,6) and (2,2), the influence
of R is small.

In Fig.l0 are plotted the 'ranges of inelastic deformation', i.e., ep max
»Mmax,

It is seen that for R < 0.4, point (1,1) has the greatest range

n,max.
of inelastic deformation; and for R > 0.4, point (1,6) has. The results
presented in the preceding would seem to indicate that the parameter R
could have a significant influence on the mode of deformation of the struc-
ture.

Concluding Remarks

It is obvious that the method described here can be applicd to structures
with other elasto-inelastic properties, such as the eclasto-perfectly plastic
and then strain-hardening type as for the structural mild stecl. Effects of
damping and strain rate can be incorporated in the analysis. The influence
of dead and live loads can also be taken into account by setting the bending
moments to appropriate initial values. Moreover, the static behavior of
frames with general inelastic properties can also be treated by the method
as a quasi dynamic problem as, for the elasto-perfectly plastic case, suggest-
ed by Newmark (5) and recently demonstrated by Heidebrecht, Lee, and Fleming
3.

The accuracy of the method apparently depends on the numbers of panels
into which the various members of the frame are divided. As mentioned before,
it is not necessary that all members be divided into the samc number of panels.
For example, if the critical members of a study are the columns, they can be
divided into more panels than the floor girders. Intuitively, it is reason-
able to expect that, as the numbers of panels increase, the solution would
converge to the case of continuous distributions of flexibility and mass.
This, indeed, seems to be the case for a simple beam (4). However, the amount
of computation, and hence the computer time needed to cover a given range of
integration in the time dimension, increases at a high rate (approximately
at third power) with the total number of "free panel points' in the frame.
This in general imposes a practical limit on the number of panel points that
can be used for a given computer. Furthermore, with increasing amount of
computation the round-off error grows rapidly. This also must be taken into
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account in the choice of the numbers of panels.
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‘TABLE I. Properties of Frame
Member i = 1, or-2 i=3 i =4
Length (ft) 12 24 24
Weight per unit length (1b/ft) 31 1000 500
Bending Rigidity (Ib-in2) 3.29 x 10° [10.18 x 10° | 4.72 x 10°
Elastic Limit Moment (in-1b) 822.8 x 103 1453.7 x 103 943.8 x 103
TABLE 2-a Maximum Deformations
R=0.0
ri j:l j=2 j=3 J=4 J=5 J=6
s 6.048 0.851 0.635 0.391 0.759 1.102
p,max
t, 0.055 0.050 0.051 0.059 0.083 0.102
Ll 35 -2.141 -0.850 -0.621 -0.444 -0.691 -2.774
n,max
£, 0.254 0.073 0.069 0.063 0.041 0.052
B 0.000 1.066 0.656 0.349 0.347 0.787
p,max
6 0.000 0.080 0.082 0.254 0.162 0.159
2l 3 0.000 -1.450 -0.625 -0.219 -0.237 -0.543
n,max
t, 0.000 0.162 0.159 0.034 0.429 0.431
% max 0.000 0.395 0.341 0.351 0.230 0.234
€ 0.000 0.148 0.141 0.144 0.138 0.191
3 —
n,max 0.000 -0.465 -0.413 -0.396 -0.290 -0.206
t 0.000 0.041 0.043 0.036 0.035 0.032
8 e 0.000 0.799 0.704 0.572 0.426 0.263
£ 0.000 0.167 0.169 0.163 0.160 0.158
4 N
en’max 0.000 -0.643 -0.561 | -0.573 -0.369 -0.304
t 0.000 0.415 0.410 0.411 0.407 0.416




TABLE 2-b,c Maximum Deformations

R=0.2
J=1 J=2 J=3 j:LI, J'—'S J=6
65, max. 3.638 2.072 0.825 0.508 0.811 1.535
_ € 0.047 0.051 0.051 0.058 0.083 0.102
fn,max. -3.265 -0.116 -0.694 -0.499 -0.673 -3.102
t, 0.105 0.001 0.101 0.138 0.020 0.052
B, max. 0.000 1.297 0.678 0.359 0.376 0.810
tp 0.000 0.089 3.916 0.246 0.180 0.177
6, 0.000 -1.656 -0.639 -0.229 -0.258 -0.586
ty 0.000 0.174 0.150 0.034 0.052 0.089
Ep,max, 0.000 0.422 0.363 0.389 0.250 0.242
_ tp 0.000 0.148 0.142 0.144 0.145 0.191
6, max. 0.000 -0.496 -0.438 -0.419 -0.302 -0.235
t 0.000 0.041 0.043 0.036 0.035 0.061
b, max 0.000 0.900 0.696 0.599 0.432 0.279
T 0.000 0.169 0.164 0.164 0.160 0.159
8n max. P 0.000 -0.694 -0.612 -0.605 -0.394 -0.323
’ t, 0.000 0.076 0.079 0.080 | 0.082 0.084
R=1.0
Bp max 1.605 3.348 0.806 0.534 0.696 1.756
o tp 0.022 0.051 0.051 0.073 0.079 | 0.102
8 max -1.838 -0.896 -0.729 -0.541 ~0.648 -3.370
e t, 0.081 0.101 0.076 0.138 0.020 0.052
FP nax. 0.000 1.370 0.703 0.355 0.391 0.828
? t 0.000 0.082 0.074 0.245 0.183 0.159
. max P 0.000 -1.789 -0.657 -0.229 -0.265 -0.585
e th 0.000 0.168 0.152 0.152 0.052 0.089
. 0.000 0.429 | 0.406 0.425 0.304 0.253
Pmas o 0.000 0.148 0.141 0.144 0.138 0.147
. max P 0.000 -0.490 -0.440 -0.415 -0.306 -0.279
e t 0.000 0.047 0.043 0.036 0.035 0.062
6p,max. 0.000 0.984 0.721 0.612 0.444 0.302
t 0.000 0.172 0.169 0.166 0.161 0.162
[—— P 0.000 -0.703 -0.614 -0.622 -0.410 -0.325
> t, 0.000 0.076 0.079 0.080 0.081 0.084
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FIG. 6. TW0O STORY FRAME
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FIG. 8 EFFECT OF R ON Bnmu

HORIZONTAL GROUND MOTION

(PRESCRIBED y(i,1))

FiG. 7.
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