EARTHQUAKE ANALYSIS OF SPACE STRUCTURES BY
DIGITAL COMPUTERS

By Semih S. TeZQanl

ABSTRACT

The matrix formulation for the free vibration and the steady-state elas-
tic response of a multi-degree freedom space framework subje;:t to ground
motions in three mutually perpendicular directions is presented for both dam-
ped and undamped cases. Assuming representative ground displacements or
oscillatory rocking, a set of equivalent seismic loads acting at ‘c.he.lumped
mass points are determined so that they simulate the effect of a strong motion
earthquake, The accuracy is highly improved by considering a three dimen-
sional mass distribution and taking into account the complete spatial stiff-
ness properties of a structural member. The seismic loads are also evaluated
by spectral analysis and compared with those of the proposed method.

METHOD OF ANALYSIS

1. General considerations.-~ The motion of a ground particle during an earth-
quake is generally in three directions and, as reported by Derleres(l), the
actual strength of the structure is tested when all three components of the
ground motion have been developed. For the purpose of evaluating the response
of a space structure to a three directionsl vibration, a building frame rela-
tive to an orthogonal x y 2 coordinate system is considered. The total
mass of the system is assumed to be lumped at selected points, which are re-
garded as the joints of the structure, Six deformations, namely three trans-
lations and three rotations, are specified at each joint by means of mmbered
arrows on a diagram. So that the sequence of the equations generated by the
computer becomes exactly the same as required by the relations to be presented
below, the numbering of the deformations should be done in the following order:
First, the translations of the joints are numbered, proceeding from the top to
the bottom along the x, then along the y and =z directions. Next, the
ground displacements are also numbered in the order of x, y and z. Finally,
the joint rotations are assigned numbers in random order as they constitute
the last set of equations and are subsequently eliminated at an intermediate
stage in the calculations, As an illustration, a simple three-dimensional
cubic structure has been numbered as outlined and shown in Fig. 1.

Sign convention: The joint translations and forces are assumed to be
positive along the positive directions of the respective coordinate axes,
while the positive directions of the joint rotations and moments are deter-
mined in accordance with the right hand screw rule.

2. Response of the damped structure.- The equations of motion of an elastic
space structure vibrating in three directions with N lumped masses are

(o] {8} = -{¢} = {v @

3Nx3N 3N

1 Dept. of civil Engrg., Univ, of British Columbia, Vancouver, Canada.
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in which [\m] is the diagonal mass matrix, D} is the column vector of joint
translations, while {F} and {V} are the column vectors of inertia and damp-
ing forces respectively. Curly brackets are used to indicate a column mat-
rix and the sizes of the individual matrices are shown below each matrix for
clarity. Note that, for structures vibrating in only one or two directions,
the matrix sizes reduce from 3N to N and 2N, respectively. The joint iner-
tia forces {F} and joint momenta(2) {M} are related to the joint deformations
by means of the following stiffness equation:

F N S“ Si2 :S|3 D }3N

Fgt = |Sai Se2!Sez| {Dgp ) (2)
M S31 S32,%3 87| Jaw

(6N+3) (6N+3)(6N+3) (6N+3)

in which, {D} and {6} are the translations and rotations of the joints, {F}
and {M} are the point loads and moments respectively, while Fgl)a and {Dg
denote the ground inertia forces and ground displacements. Th rtiticned
matrix [S] is the general stiffness matrix of the system. Note that it is
not necessary to subscript or relate the joint deformations or the joint
loads with their respective coordinate axes because they are readily identi-
fied by their numbers. This technique of distinguishing one plane of vibra-
tion from another by means of numbers is extremely convenient for the dyna-
mical analysis of space structures.

For the purpose of simplicity, if the rigid body rotations of the lumped
masses are neglected, all the joint inertia moments M} may then be regarded
as zero(3). Upon partitioning Eq. 2 and eliminating {_9}

F K| ; Ko D o
A N PR S L —_—— 3
(3N+3) (3N+3)(3N+3) (3N+3)
in which

K K ) S S =1

I P24 I 12 13

Ko, K [ ] ) S S [33][3[ 32]

2l "2z ’ 2l T2z 23] Snan IN(3N+3)

(3N+3)(3N+3) (3N+3)(3N)

From the first line of Eq. 3, the joint inertia forces{F} are

{F} = [ky] {o} + [x2] {og} (5)
3N 3Nx3N 3N 3Nx3 3

The damping forces {V are related to the derivatives of the joint transla-

tions by the general damping matrix [C] as follows:

I .
[v cy | C D
S —Cl'—-n———'g— e 6)
Vq 21 | C22 Dg
(3N+3) (3N+3)(3N+3) (3IN+3)
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From the first line, the required damping forces {V} are obtained as

{vi = [ey] {0} + [c]{n (7)
3N 3Nx3N 3N 3Nx3 3
Using Eqs. 5 and 7 and rearranging the terms, Eq. 1 becomes

2] o] -l (5]

A convenient solution of the differential equations can be arrived at by
assuming a trial displacement expression of the form

D = Re l:(a-bib)eiwt] (9)

for all the Jjoint translations and ground displacements. Re indicates that
only the real part of the expression inside the brackets will be used., Dif-
ferentiating Eq. 9 and substituting into Eq. &

H:K“ - w2m][+ iw [C”]{a;:t{} - _[[Kw iw [:23] {ag:ib Jd o

3Nx3N X
in which  1is the circular frequency and ag + ib is the column vector
of the complex amplitude of the ground motions., Thes€ complex equations can
be conveniently expressed in real form simply by separating the real and ima-
ginary parts of each quantity(4) as follows:

[Ki=w?m]] -w[c] 1 fal] | [xee] '“’[CIZH {eq] (11)
w O] ["n‘wzfmﬂj {of|  |w[Ce] [KIZJJ {bgf

6N x 6N 6N 6Nx 6

The amplitudes of .the system are obtained from the root mean squares of the
real and imaginary parts of the displacements. However, to evaluate the
final stress resultants of each individual member, the remaining rotation
components {9} are also required, which are calculated from the bottom line
of Eq. 2 in the form

{e} =" [S3EJl [331 332] { gg} (12)

3N INK3N 3Nx(3N+3) L n

If the damping coefficients of the ground displacements [CIZ] as well as the
imaginary part of the ground amplitudes {bg} were taken as zero,Eq. 11 could
be simplified to

{a}f __ (K- ‘*’efm]] -w[c“] 1 S .
{b} - W[Cn:l [K“-w‘?[m]:l 0 {sg} (13)

6N 6Nx 6N 6Nx 6
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which, after partitioning, yields

(of - =[] [53] (o) oo

3Nx3N 3Nx3 3

[4) - oo ol e
3N 3Nx3N 3Nx3N 3Nx3N 3N x3 3
in which o _1_'
3Nx 3N 3Nx3N 3Nx 3N 3Nx3N 3Nx 3N

3. Assumed damping matrix.- The damping characteristics of a space struc-
ture are far more complex than the unknowns involved in the general response
of a building. Despite the extensive analytical and experimental research
in the field of structural damping(5), the nature and extent of the damping
that should be considered cannot be predicted. There is no doubt, however,
that the enormous energy transmitted by an earthquake to a structure is dis-
sipated very rapidly in varying degrees by the following types of damping:
viscous damping within the structure itself, coupling of the soil and the
building during the transmission of the motion, dynamic and static hysteretic
damping both in the structural materials and the surrounding soil, damping
due to plastic deformations beyond yielding and interfacial slip at the con-
tact surfaces and support junctions. For example,it has been shown by
Jenning3(6 that for a period of 1 sec., a critical damping coefficient of
.02 and an acceleration of .5g, one quarter of the energy is dissipated by
viscous damping and the remaining three quarters by yielding. Nevertheless,
damping has a small influence insofar a3 the maximum earthquake stresses are
concerned and, confirming Salvadori's(7 conclusion, it can be stated that
the essential feature of damping is to absorb the energy and the higher modes
of vibration rapidly.

In order to approximate the effect of damping the viscous damping matrix
[Cllj of Eq. 13 is considered to be composed of the absolute or relative vis-
cous damping matrices [c] of each individual member, which are given by

Cto o0 o 0O CCoo-cpo0 o0
gczgooo gcoo~c2o
0 0 0 0 0c; 0 07 -C
c] = |00 ©3¢c,o 0 |or [c] = g0 ¢ o 0 élgg
00 00 CyO i -C20 0 Cp O 1
Absolute| = & o o 22 Cq Relative | o 0% c5 0 02 Cs

The above matrix representations are particularly useful in assembling
the general damping matrix conveniently in the computer in a manner similar
to that applied for the stiffness matrix of the structure, as explained in
Sec. 13. The physical representation of these matrices for the absolute and
relative damping of a space structure is illustrated in Fig. 2. The general
viscous damping coefficient cy3 , for the ith mode and jth mass, in any
particular direction, is assumeg to be of the form

Cjj = 2 ij w; (19)

in which B 1is the percentage of critical damping and wj 1is the ith fun-
damental circular frequency of the svstem when vibrating in the direction
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concerned? , The damping coefficient c3 1in Egs. 17 and 18 represents the
ability of girders or columns to absorb vibrational energy during their
length changes. This is a very significant factor in the damping of a struc-
ture and requires experimental research in order to assess its numerical
values,

L. Response of the undamped structure.- The equations for the undamped
response of a structure to ground excitations are obtained from the pre-
viously derived expressions for the damped case by substituting zero for the
damping effects., Putting [Cll] = 0, Eq. 16 reduces to

E I 1
3Nx 3N 3N x 3N
Further, the imaginary parts {b} of the amplitudes given by Eq. 17 cancel
and the real parts {a}, of Eq. 1L become

=1
fo} =[x -oPm] [%2] {a} (22)
3N 3Nx3N 3Nx3 3
5. Seismic loads and member stresses.- Once the joint translations have
been obtained for the damped or undamped cases and the joint rotations have
been calculated from Eq. 12, there is little left in computing the earth-
quake stress resultants at the ends of each individual member. This is
accomplished by taking the matrix product of the member stiffness matrices
and the corresponding values of the column vector of joint deformations. In
contrast to the customary approach, it is not necessary to determine the
seismic loads of the structure because the stress resultants are the final
stage that would interest the engineer. However, for the purpose of com-
parison with other methods, the values of the earthquake forces acting at
the joints may be required instead of the member stress resultants. If so,
the earthquake forces designated by {F} are obtained from the matrix product
of the reduced stiffness matrix [K] and the above calculated displacements
{D} in accordance with Eq. 3. It should be noted that the sum of the earth=-
quake forces in any particular direction of vibration should be equal to the
ground force Fg in the corresponding direction. This equilibrium is a
valuable check on the correctness of the computations,

6. Numerical examples.- To investigate the effect of various mass and
stiffness idealizations and also to compare the results of the proposed pro-
cedure with those of other methods, several building frames 5, 10, 15 and 20
story high, as shown in Figs. 3 and L, were selected as example structures.
Using the computer program described in Sec. 13, the seismic joint loads and
story shears of these structures were computed following a steady state
approach and modal analysis(9) as well as according to the New Zealand,
SEAOC(9) and Canadian building codes. Some typical comparative results are
illustrated in Figs. 5, 6, 8 and 9. The modal forces were obtained from the
maximum probable shears using the idealized displacement spectrum curves of
the 1940 E1 Centro earthquake.

To further demonstrate the generality of the matrix procedure, a verti-
cal vibration problem has been exemplified by means of the statically inde-
terminate truss shown in Fig. 7.

2 In steady-state response wji 1is taken to be the first fundamental fre-
quency as suggested by Jennings and Newmark(8)
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7. Equivalent ound motion.~ The chief interest of an engineer lies not
in c3%EIEE"VIE?g%TEE"ﬁFBEIEﬁs, but rather in designing his structure so that
it can withstand the strongest probable earthquake without serious damage,
The object of the dynamical analysis following a steady state approach as
presented herein, is to furnish the structural engineer with a system of
equivalent joint loads which will produce approximately the same effect as
that of an actual earthquake.

Referring to Egs. 3 and 13, it is seen that both the joint displace-
ments and joint loads are explicit functions of the ground period Ty, and
the ground amplitudes ag. In order to arrive at realistic values of seis-
mic loads, which can be used in place of code requirements, a set of equiva-
lent ground motion characteristics T and ag were obtained from a series
of computer analyses for various types of frames and plotted in Fig, 10,
For an assumed ground period and a given building height, the corresponding
ground amplitude is read from the horizontal scale.

8. Rocking and tilting of the structure.- Besides the three directional
translation of the ground considered so far, the foundations of a building
may also be directly sutject to rotations in all three directions during an
earthquake, Moreover, even if such ground rotations or twisting phenomena
do not occur, the rocking of a building on its foundations in the vertical
plane will invariably be brought about by small elastic deformations of the
soil under the non-uniform pressures developed by oscillatory lateral seismic
loads. The extent of the rocking, which increases the natural periods, will
depend on the elastic properties of the soil. Such an increase in the period
is undesirable because it results in a relative weakening in the response of
the building.

The mathematical formulation of the dynamical behaviour of a structure
subject to three directional ground rotations remains exactly the same as
described above except that the symbols used for designating the ground
translations and forces are replaced by new symbols for the ground rotations
and moments, as follows:

Ground forces Fg are replaced by Mg Ground moments
Ground translations Dg do 8¢z Ground rotations
Amplitudes of translation ag do ag Amplitudes of rotation

Apart from oscillatory ground rotations, it is possible during an earth-
quake for a building to be permanently tilted at the base as a result of the
soil's yielding. Designating the angle of tilt by {9 } and substituting
zero for the joint forces {F} and momentsl{M} the remaining joint deforma-
tions are obtained from Eq. 3 as

D sy S S

617 | sy so| |se| ot (22
3l 33 32] "3

6N ENx 6N 6N

9. Buildings with a box system.- A box system, as defined by the sEaoc(9),
is a structural system without a complete vertical load-carrying space frame,
which resists seismic loads by means of shear walls alone. The dynamical
analysis of such a box system remains exactly the same as described above for
a framed structure, except that, due to the lack of a complete framework, the
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reduced stiffness matrix [KJ of Eq. 3 is generated in a different manner, as
recommended below:

(1) Each shear wall, i, is taken individually and regarded as an indepen-
dent cantilever structure with lumped masses and joint deformations mmbered
at each floor level. The corresponding stiffness matrix of the wall [S]i of
Eq. 2, 1is then generated from the stiffness matrices of the individual wall
segments between floor levels taking due account of shear deformstions (see
Eq. 42) and openings in the walls, Subsequently, Eq. 4 is employed to yield
the reduced matrix of the wall Dﬂi.

(ii) Finally, assuming the lateral displacements of each wall at any parti-
cular floor level to be equal, i.e. regarding the floor system to be inex-
tensible, the total reduced matrix of the box system is obtained from the
algebraic sum of the reduced matrices ﬁqi of the individual walls as

[_-K] = é [K]i (W = Number of walls) (23)

According to the approximate method recommended by most textbooks(9)(10)
the story shears are distributed in proportion to the relztive stiffnesses
of each wall. This independent distribution at any particular level without
regard to the interaction between adjacent stories may yield erroneous
values especially if the wall stiffnesses vary non-uniformly as a result of
irregular door or window openings. The internal shears of the walls of a
nineteen story building were evaluated by the method recommended herein as
well as by the approximate method and it was found that the errors of the
approximate method reached as high as 70 to 90%.

NATURAL PERIODS AND MODAL DISPLACEMENTS

The empirical expressions proposed by numerous authors and codes to
evaluate the natural periods of buildings are all attractively simple and,
in most cases, highly informative. However, they cannot compete with the
accuracy and generality of a frequency determinant approach because one or
two parameters alone, related to the overall dimensions, are not sufficiently
representative of the complex dynamic properties of a structure. On the
other hand, the frequency determinant is believed to provide more reliable
natural period values, especially if a three-dimensional mass distribution
is considered and the complete spatial stiffness properties of the structure
are taken into account, In order to investigate the relative accuracy of
various methods, the first mode natural periods of the example frames, No. 1,
2, 3, 4 and 5, have been evaluated by each and the comparative results are
shown in Fig. 11,which clearly demonstrates that substantial errors may
occur when using the cantilever rod approach or the empirical formulas.

The following matrix operations are recommended to convert the fre-
quency determinant into a form convenient for computer application:

10. Damped natural periods.~ Using a trial solution for the homogeneous
part of Eq. 8, of the form
D = Re(ce*) (24)

in which both ¢ and A are complex quantities, the frequency determinant
of the damped structure is obtained as

11-637



det | B [m]+x [c ]+ [K][= o (25)
3Nx3N
The symmetrical form of the damping and stiffness matrices can be maintained

by pre- and post-multiplying Eq. 25 by [m]-2. Hence,

get| £[u] + 2[a] + [8] |< o (26)
in which [U] is a unit qatrix, el

G b ok
[A] = [m]°[cy|]® and [B] = [m]" [k [Mm] Ezag
3N
A31onvenient method for obtaining the eigen values of the above second

order quadratic determinant is to convert it into a double size first order
system?ll) in the form

det |E~AU| =0 in which [E] - _C; _li Gos

ENx6N
The eigen values of Eq. 29 are the required naturalxcircular frequencies
while the eigen vectors are the modsl displacements.

11. Undamped natural periods.-~ The frequency determinant of an undamped
multi-degree freedom system is obtained from the steady state vibration
equation of Eq. 21 after setting ag} = 0 and transferring the inverted
matrix to the left hand side. This gives

[K“— 2['m]] {a} s 0 (31)

3Nx 3N 3
The coefficient determinant of the above equation is unsymmetrical. However,
for convenient computer application, it is possitle to convert it into an
equivalent symmetrical form by transferring the mass matrix to the right-
hand side and pre—m&ltiplying both sides by [ua-i, It follows that

RN o L
L[m]2 [f“][m];el[mgz.{a}l = wy [m]2 [m] {a} (32)
H X {x}

” [H]{x} = o {3);} (23)

The undamped natural frequencies are the eigen values of the above sub-
stitute symmetrical system. However, as indicated in Eq. 32, the modal dis-
placements {a} are obtained from the eigen vectors.{x}, of the substitute

system by means of 1
[a} = [m]3]x} (34)
3N

As an illustration, the médal displacements of frame No. LB were com-
puted in the manner described above, taking the full stiffness properties
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of the frame into account, and the results are shown in Fig. 12.3

SOIL CONDITIONS

12. Amplified ground motion.- The magnitudes of the dynamical properties
of ground motion depend largely on local geological conditions. If there is
a layer of soft soil between the foundation of a building and an underlying
layer of granitic rock, the seismic waves are greatly amplified during their
travel from the rock base to the surface of the ground. As reported by
Neumann(12), the acceleration in the filled harbour areas of 5an Franeisco
in 1906, was ten to fifteen times higher than the acceleration experienced
in the adjoining hills, As will be seen from the subsequent discussion, the
thickness and the modulus of elasticity of the underlying soft layer of soil
as well as the period of the seismic waves are the main factors in deter-
mining the magnification of the ground displacements.

Assuming a perfectly elastic soil and neglecting the radiation, refrac-
tion and reflection of the waves, the vertical displacement equation of a
volume of soil of unit cross-sectional area and height is analogous to the
longitudinal vibration of elastic prismatic bars(13) , and is given by

mi = E— and u = 2z sin wt g;gg

wherein, m is the mass, E is the modulus of elasticity of the soil, and
u represents vertical harmonic oscillations of variable amplitude =z,
Denoting the weight density of the soil by § , Eq. 35 becomes

2
. 2 . . 2 ¥ (37)
= 0 h = 249
z2+pz in which p 73 (38)
Introducing a trial solution for Eq. 37 in the form
2 = A sinpz + B cos pz (39)
and using the two boundary conditions shown in Fig. 13
i. O0=0 at z =0 o _ bu .
ii. u=u sinwt at z=h (F = 5 by Hooke's law)
u
the integration constants are obtained as A =0 and B = 333255

Finally, substituting the above constants into Eq. 39, the required
ground displacement amplitude at any level 2z is obtained in terms of the
amplitude of the rock u, as

= M = S0S pz s
z = MF ug where, MF c0s h (for ph < > ) (L0)
3 To obtain extremely convenient Fortran programs for eigen value pro-

blems write, for symmetrical matrices to the Institute of Computer
Science, Toronto, Canada, Program name HOW; for unsymmetrical matrices,
to the IBM Program Distribution Center, P.0. Box 790, White Plains,
N.Y., U.S.A., File 7090 - 1373 NUET 63.
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The percentages of the magnification factor MF are plotted against
the modulus of elasticity of the soil E for various values of soft soil
layer thickness h and ground motion period T = 1 sec in Fig., 14. It is
observed that the ground displacements are magnified by 35% on the surface
of a fifty feet thick layer of loose sand.

COMPUTER APPLICATION

13. General procedure.- The matrix formulation described above for the
dynamical analysis of space structures is particularly suitable for high
speed digital computers. The multi purpose Fortran programsk developed by
the writer for the IBM 7090 and 1620 start with the fundamental data which
consist of the geometric and elastic properties of the constituent members,
the weights of the lumped masses and the properties of the ground motion;
then proceed with the necessary calculations required by the above derived
equations and yield the steady state earthquake forces as well as the natural
periods and the maximum probable modal analysis shears and forces for both
damped and undamped cases. All the computations are performed in complete
automation and absolutely no calculations are required from the engineer,
Though it was possible to handle space structures with up to several thou-
sands degrees of freedom, only some important results of 100 to 120 degrees
of freedom analyses have been presented as numerical examples because of
space limitations. The key phases of these programs may be summarized as
follows:

1. Generate the general stiffness matrix of Eq. 2 from the stiffness mat-
rices of the individual wmembers by the code number approach(1L) Code num-
bers are indispensable in defining the interconnection of the members and
the joints of a structur. and are so versatile that they can be used to
generate any portion of the stiffness matrix in any order and at any stage
in the program., This §: particularly useful when handling an extremely large
number of degrees of freedom by the method of substructures., The code num-
bers of two members of the cubic structure of Fig. 1 are written beside the
respective members for the purpose of illustration. It is of interest that
the code numbers are not furnished as part of the input data, but rather are
set up by the computer itself from information provided about the support
restraints and joint numbers.

The 12 by 12 stiffness matrix [k] of an inclined individual member as
shown in Fig., 15, is

(1) fer]-011] r21] |
_ | [21]) [22]-[21] [42]

= et T D e

| [21] [42]-[21] [22] |

The contents of the 3 by 3 block matrices Elil, [24 R [2ﬂ and [Lﬂ
are given in Fig. 16. Note that the stiffness matrix includes the length
changes and torsional rigidities of the members. Moreover, the effect of
shear deformations on the stiffness influence coefficients has also been
duly considered by means of a factor € defined by

4 These programs are obtainable from the writer.
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| +x 12EI
. 2 AG
in which, [k] is a numerical constant related to the shape of the cross-
section and may be taken as 1.2.

2, Obtain the reduced stiffness matrix [K] in accordance with Eq. 4.

3. Gf:nerate the damping matrix [C] of Eq. 6 from the damping matrices of
each individual member using the above mentioned code number approach.

L. Determine the earthquake displacements {D} either from Egs. 14 and 15
for a damped system or from Eq. 21 for an undamped system. These displace-
ments are subsequently used to evaluate the stress resultants of each indi-
vidual member as explained in Sec, 5,

€= (42)

5. Obtain the earthquake forces acting on each lumped mass and, hence, the
story shears, from the matrix product of the reduced stiffness matrix |K
and the joint displacements {D as in Eq. 3.

6. Determine the damped or undamped natural periods from Egs. 29 and 33.

7. Evaluate the spectrsl maximum probable shears and forces following the
modal analysis approach described by Blume, Newmark and Corning( 9).

CONCLUSIONS

1. The matrix approach presented herein appears to be very generally appli-
cable and provides a realistic idea of the true dynamic behaviour of a
structure. It is noteworthy that the same procedure is valid even for
the vibration analysis of plates and shells by making use of the frame-
work analogy concept(L),

2. The accuracy in the assessment of the basic dynamical properties of a
building is substantially increased because a three-dimensional mass
distribution is considered and the complete rigidity of a space member
against joint rotations, length changes, torsional and shear deformations
is duly taken into account. The common assumptions and limitations of
the customary cantilever rod analysis namely an infinitely stiff floor,
a single concentrated mass in place of the total mass of a story, a
single spring constant representing the stiffness of an entire story,
horizontal oscillations restricted to one plane etc., are completely
avoided.

3. The object of the analysis is shifted from the classical approach of
evaluating the seismic shears to the direct determination of the seismic
deformations and member stress resultants. However, the characteristics
of the representative ground motion are so selected that the resulting
equivalent seismic loads, if required, can be used in place of the cur-
rent design loads.

L. In view of the versatility of the matrix approach, structural engineers
are strongly encouraged to use digital computers to determine the seis-
mic design requirements of any structure since the entire problem is
reduced merely to the clericzl job of preparing the basic data in a
standard form.
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FI6. 4 SPACE FRAME OF A 5 STORY

REINFORCED CONCRETE BUILDING -NO.5
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FIG. 15 INCLINED SPACE MEMBER
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ERRATA

EARTHQUAKE ANALYSIS OF SPACE STRUCTURES BY DIGITAL COMPUTERS

BY S. TEZCAN

PAGE 633: Equation 133 the last metrix should read
{ag}
{o}

6 »l
PAGE €39: Equation 363 delete u=gsin

replece by u=vsin ¢

Equation 363 line 2: for "...amplitude 2", read

¥, ..amplitude v"

PAGE 639 Equation 37; should read ¥+ Do v =0
PAGE 639, Equation 393 should read v = A sin pz + B cos pz
PAGE 639 Equation 40; skhould read v = MF u, where, ......
PAGE 617 Equation 41 should read
T Al T
(] @i~ &y

(B E-R B2
(K] CRNNENL
21 @) 2]

PAGE 646: Fig.13; deletes u=zsin t

replace by: u=vsin ¢

Pig.16; matrix (11] , 3rd colum, 2nd row, firet
term in element; delete: Hmm
' replace by: S m
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