DYNAMIC RESPONSE OF MULTI-LEVEL GUYED TOWERS TO EARTHQUAKE CONSIDERING
NON-LINEARITY OF THE ELASTIC SUPPCRTS

By Dr.-Ing. Rudolph Szilard¥

ABSTRACT

The elastic response of a structure is determined considering the
actual earthquake displacements which are expressed in Fourier series.
The pre-stressed guy cables provide non-linear elastic supports which,
because of the relative motion of the structure and soil, are time-
dependent. The differential equations of motion are given in matrix
form using lumped masses. Navier's solution transforms the differential
equations into algebraic equations, the solution of which yields the
forced part of the vibration. The non-linearity of the elastic sup-
ports is approximated by polygons. The flexibility matrix of the
structure is determined by inversion of the stiffness matrix of the
"disassembled" structure. The eigenvalues and eigenvectors of a
product matrix yield the natural frequencies and modes of the free
vibration. A numerical example illustrates the use of the method.

1. Introduction.

In designing conventional-type structures for earthquake resistance,
modern earthquake codes(1)** provide effective means to guard against
structural damage. In the case of non-conventional structures, how-
ever, the use of detailed dynamic analysis is necessary in order to
predict the dynamic response of the structure to earth motion, inasmuch
as the prescribed lateral forces(l) do not represent the actual forces
which act during an earthquake.

Multi-level guyed towers are by nature extremely tall and flexible
(Figure 1); thus, earthquake resistance designs for such structures must
be based on the actual dynamic characteristics of the earth's motion,
coupled with the actual dynamic behavior of the structure, including the
effect of the supporting soil, considering the relative displacement
which takes place between foundation and soil, as well as the time-
dependency and non-linearity of the elastic supports, all of which add
to the overall complexity of the problem.

The difficulty of such an analysis can be largely overcome by a
matrix approach coupled with extensive use of high-speed electronic
computers. The effect of the complex interaction of the soil and
structure can be approximated by introducing weightless elastic springs
representing the soil.

* Senior\ Research Engineer in the Denver Research Institute and lecturer
in the Graduate School at the University of Denver.

** Figures in parenthesis refer to the Bibliography-.

11-605



It is of interest to note that in the case of guyed TV towers, the
fundamental mode of free vibration is not necessarily the critical factor
and, therefore, higher modes should also be considered (Figure 4).

This method can be extended readily into investigations in the plastic
region of the material by introducing plastic hinges at the points and of
the time where and when the elastic limit of the material is exceeded.

2. Consideration of Actual Ground Motion.

Since motion of the ground actually excites the vibration in the
structure, it is mandatory that earthquake resistance design of such
structures be based upon the most probable dynamic characteristics of
earthquakes in the region being considered. From the complex ground
motion, only the longitudinal and the transverse waves are of particular
importance for earthquake resistance analysis. Since stresses produced
by the vertical oscillation of tall structures are only a fraction of
those produced by the gravity loads (and by pre-stressing in case of
guyed towers), the following analysis will concentrate on a determination
of the response of multi-level guyed towers due to the horizontal com-
ponent of the earth motions produced by earthquakes, with the under-
standing that, fundamentally, the same analysis should be performed to
determine the vertical free and forced oscillations.

Studying the available records of earthquakes for a region in
question, and applying the mathematical theory of probability(2)(3), an
acceleration curve of the most probable earthquakes can be obtained.
The use of high-speed electronic computers also makes entirely feasible
the computing of the dynamic response of a guyed tower for several dif-
ferent recorded horizontal earthquake accelerations or displacements,
respectively.

Figure lba shows a typical horizontal displacement curve which was
used in the numerical example and obtained from Reference k.

In order to utilize the advantages of Navier's "forced solution"
of the differential equation of motion, the forcing function is expressed
in trigonometric series (sine or cosine):

vi=2Z Yim sin pt

(1)
and
Xy = }En X{m Sin pt,
m 2
where P = T ,» m=1,2,3...
T = period of Fourier-expansion,
and

Yim » XIm = constants of the Fourier-expansion.
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In the case of soft soil and an extremely tall structure, which
requires a considerable distance between cable anchorages in order to
provide stability against overturning, there is a phase difference
between the horizontal motion of the foundation of the tower and that
of the foundation of the guys, which results in relatively complex
forcing functions at the points of elastic supports. Knowing the
seismic velocity of the soil in question(5)(6), this time difference
can be easily determined. Another peculiarity of earthquake excitation
transmitted through the guys to the structure is that only motions
"away" from the tower are transmitted since cables are not able to
transmit compression. Thus, the oversimplified earthquake excitation
at any elastic support may have the form shown in Figure 2c. Since any
type of curve can be expressed by Fourier series using a sufficient
number of terms, this fact does not create any problem in the actual
analysis.

3. Preliminary Design.

The preliminary design of a multi-level guyed tower should be based
on wind loads(?). In order to determine the critical direction of an
earthquake, the using of approximate methods given in earthquake codes(1)
is satisfactory. In order to facilitate the preliminary design, one
should make extensive use of the applicable formulae(6)(8) for continuous
beams on linear elastic supports. It is conceivable that a different
earthquake direction (Figure 1) will be critical for the tower structure
as well as for the cable support depending on the geometrical arrangement
and relative stiffness of the structural elements. Preliminary investi-
gation in the case of the numerical example (Paragraph 7), however, has
indicated that, for that particular structure, an earthquake in the
direction of one of the cables (direction I, Figure 1) produces the most
critical condition for the cable as well as for the tower structure.

L. Mathematical Model of the Structure.

In order to handle the complex problem rationally, a somewhat sim-
plified mathematical model is introduced which consists primarily of a

continuous beam with elastic supports having "n" lumped masses "M;"
(Figure 2).

The interaction between soil and structure is approximated by a
weightless spring which is obtained by multiplying the dynamic bedding
coefficient "K" (pci) with the projected horizontal area of the found-
ation in the direction of the critical earthquake:

Csoil = K-A. (2)

A better approximation can be obtained by introducing the Coulomb
damping of the soil “%” (5). Since the mass of the soil participating
in the vibration is unknown, the use of a weightless spring is recom-
mended. The non-linearity of the stress-strain relationship of certain
soil types can be handled in a similar manner as that described for the
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cable supports. Pre-stressed cables made of high~-strength wires usually
exhibit a non-linear force-displacement relationship (TFigure 3a), which
can be effectively approximated by a polygon. Thus, the hcrizontal

force exerted by the cable support, when the 1"-th point moves in the
(+)y direction, can be expressed by:

(+)Ri(y) = Rio + &;’,}%Ei—o v, )
if o <y<vi1,
and (+)Ri (y) = Rz + H Y,
if Vi1 <y < Yizs etc. (u)

By definition, the horizontal spring constant provided by the cables is:

+ ' Ri; - Rj
( )Ci = Rjo + 11 : 10 (5)
Yil
if o<y <vii,
and Ri, - Rj
Hloy = ryy+ 24
Yiz- Yii1 (6)
if Vi1 <Y <yiz » etc.,

assuming fixed supports for the spring. The values of "R;" can be deter-
mined following Reference 7.

In feeding this informaticn into the memory of the computer, equa-
tion (6) is automatically used when the horizontal displacements at point
"i" are larger than "y;1", etc. DNaturally, the force-displacement rela-
tionship might be different when the structure moves in the negative
direction, resulting in different spring constants in the positive and

negative directions of motion.

Since not only the structure but the anchorages of the cables move,
a time-dependency in the elastic support is introduced. This time-
dependency of the cable support can be quite easily considered by fixing
the supports of the springs and by introducing a time-dependent force at
the cable support. The magnitude of this force is:

II
(+)F'1(t) =(+)Pii ?nch sin pt

(7)
in the positive "y" direction and
(-) (-)
TIFi(t) = ' Tpii B YAm sinpt. ®)

n__u

in the negative "y" direction.
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In these expressions:

@) o e

Pii 1 (9)

and

(10)

by the definition of the stiffness factors as discussed in the following
paragraph. The other terms of equations (7) and (8) are obtained from
the expression of the earth-disturbances, equation (1). In a similar wvay,
the forcing function at the tower foundation (point B, Figure 1) can be
written as:

- > :
Fi(t) = oy Z Ypmy sinpt, (11)

where
P11 = Csoil .

The vibration of point "i" of the mathematical model has an effect on the
vibration of point "j", and vice versa. This coupling effect is expressed
by the flexibility matrix[§jj] , the elements "§;;" of which express the
moticn of point "i" due to the unit force acting at point "j". 1In the
fcllowing, the motion and force are used in general terms. Since the
determination of the flexibility matrix, in the case under consideration,
is extremely cumbersome, the stiffness matrix[pij] is determined; between

the stiffness and flexibility matrices the following relationship exists:

6551 = lesj) - (12)

5. Determination of the Stiffness Matrix.

By definition(11)(12)(13), the stiffness coefficient is the force
created by moving the spring with unit displacement. By dealing with a
stiffness rather than a flexibility matrix, a great advantage is derived
from the fact that its elements can be determined using a "disassembled"
structure.

Between the lumped masses, the structure is disassembled yielding
fixed beams with or without elastic supports. Then, a unit motion (cne
at a time) is introduced at the end; the resulting forces are determined
yielding the elements of the matrix of the disassembled structure. For
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instance, between points F & G (Figure 2a and 2b), the stiffness matrix is:

7 8 9 ___10
f—_---—-'———-—_-—-_‘-— N
7| £ & 2 s (23)
12 £ 22 £
6 6 EIL
= - 2 Patitey
[Pij]
g |- 12 -6 12 pg! -6
Y £ 22 g1 i
6 6
= -2 4
10 7 2 7
\ P

The numbers outside of the matrix indicate the motions which can actually
take place on the structure (Figure 2b). The simple sign convention,
valid for displacements and forces, is indicated in Figure 2. The modulus
of elasticity of the material is represented by "E"; "I" represents the
moment of inertia of the section and "{" represents the distance between
points "F"' and "G".

The term'p G'represents the force produced by unit horizontal dis-
placement of the elastic support and can be obtained from equations (5)
andfor (6), respectively.

Naturally, if the elastic support is considered wg.th its full value
FG .

infp;5) ., then it should not be considered in (pij] . Or, it might
be considered with half value in each partial matrices. The stiffness
matrix of the total structure is easily obtained by simple algebraic
addition of the elements having the same subscripts. A schematic way to
compile the stiffness matrix is shown in Figure 3. Great care should be
exercised in numbering the actually possible motions, (Figure 2b) which
determine the number of elements in the stiffness matrix. A matrix inver-
sion, done by the computer, yields the flexibility matrix of the structure,
equation (12). Since the procedure for obtaining the stiffness matrices
of the individual elements is extremely simple, a large number of lumped
masses can be considered with care, thereby increasing the accuracy of the

computation. Both the stiffness matrix and flexibility matrix are always
symmetrical.

6. Differential Equations of Motion and the Use of Navier's "Forced
Solution".

Knowing the flexibility matrix[§ij] , and the forcing functions of
aquations (7), (8), and (11), the differential equation of motion of the

multi-degree vibrating system in the "y" direction can be written in the
matrix form:
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(14)

{yid = - Dol Myl {y 5} + (8351 {Py (01},

where [Mj] represents the mass matrix which can be written in the follow-
ing form:

\4
~1 0 0 0 0
g (15)
0 H, 0 0 0
. 0 0
I
[Mj] =] o 0 o il 0 0
0 0 0 0 Hj 0 0
0 0 0 0 0 0 Wn
g
- o

where "Wp''is the weight lumped in point "n' , '"'g"' is the gravitational
acceleration and''H;'" represents the rotational moment of inertia of the

et

i"-th lumped mass. The mass matrix is always diagonal having only posi-
tive elements.

Certain clements in the force matrix {PJ-} (column matrix) are zero.
The non-zero elements are given in equations (7), (8) and (11).

The solution of equation (1) is investigated in form of:

_ (16)
y; = %Yim sin pt,

n_1n

which for a specific 'm" value yields a series of algebraic equations:
, (17)
{Yim} = p [6551[M;] {¥jm} + [6i5] {Pjm}),
since the trigonometric term cancels out (Mavier's solution). The only

unknowns are {Yim} , which are obtained using electronic computers with
standard programs for solution of coupled algebraic equations.

The free vibraticn of the structure is obtained by making equation
(14) nomogeneous:

{vsi} + [5351IM5] {¥5} = o, (18)

[1-611



The solution can be introduced as:
yi = Z Y{f, sin (ot +q) (19)
m
where "oy is an arbitrary phase angle depending on initial condition,
and "m"Lrepresents the natural circular frequency of the structure.
Substituting equation (19) into equation (18) and introducing:
A= w? (20)

equation (18) can be expressed, after the performation of some matrix
operations, in the following form:

_1 <
[pij] - IM5]7 - A =0 (21)
where f; is the unit matrix.
In this way, equation (21), the solution of the frec vibration, i.e.,
the determination of the lowest frequencies (w;, wj.. Aﬂn), and of the

corresponding modes of vibration, is reduced to the problem of determina-
tion of eigenvalues and eigenvectors of the matrix product:

[p3j] [My]7° (22)

for which, again, ready-made programs on electronic computers are available.

The total solution is obtained by adding the free vibration to the
forced vibration. Knowing the deflections, the moments and forces in the
tower and in the cable can be determined(12)(13).

7. Numerical Exanple.

Applying the method outlined above, a numerical example has been
worked out for the structure shown in Figure 1 and for the earthquake
direction I shown in Figure 1. It has been assumed that the foundation
is rock having a bedding constant K = 1000 x 103 pef. Ground disturbances
at points A, B, and C were assumed to be identical, which is allowable in
the case of rock foundation. The units used in the numerical example are
pounds, inches and seconds. The stiffness matrix is given in Table I.

The diagonal elements of the mass matrix [Mj], equation (15), were:
2L90, 316000, 12.Lk2, 632000, 9.65, 489000, 6.89, 349000, 6.89, 349000,
6.89, 349000, 6.89, 349000, 3.45, and 17500 (1bs. sec®/in).

The elements of the column matrix of the force were:

{P} = {45200 x 10*% 0, 0, 0, 7470, 0, 0, 0, 5150,

2
0, 0, 0, 8640, 0, 0, O}Xsin% 10 (pounds),
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representing the first term in the Fourier series. Because of extrenely
rapid convergence, only three terms of the Fourier series were used.

The obtained modes of free vibration of the structure are shown in
Figure ba. The horizontal displacement of the structures corresponding
to the forced vibration for "t" equals 10 seconds and is shown in
Figure Lb.

SUMMARY

A matrix method has been developed for the raticnal solution of free
and forced vibration of multi-level guyed towers considering non-linearity
and time-dependency of the elastic cable supports. "Actual" earthquake
motions have been introduced in the form of Fourier series and forcing
functions. The method developed in this paper can easily be extended for
the determination of dynamic response of a structure in the post-elastic
range. The numerical example was worked out using a high-speed electronic
computer.
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DYNAMIC RESPONSE OF MULTI-LEVEL GUYED TOWERS TQ EARTHQUAKE
CONSIDERING THE NON~LINEARITY OF THE ELASTIC SUPPORTS.

BY:s R. SZILARD

QUESTION BYs M, WATABE — JAPAN

You treat elastic supports in horizontal direction
only but how do you think of a normal force waich
subsequently occurs in the horizontal direction.
Especially at the top of a guyed wire, we cannot
discuss without considering normal force and some
congideration of buckling problems.

QUESTION BY: T, KATAYAMA ~ JAPAN

The slope of the cables is gquite steep. How do
you consider the vertical forces? Also, for tnis
slender tower the buckling problem will be very
important in practical construction.

AUTHOR'S REPLY: These two questions are basically similar and have
been partially answered in my paper. Equation (1)
shows the general form of Fourier Series repreéanta-
tion of the vertical component of the ground ,
disturbance, Since the length of the papers were
limited, more attention was given to the response
of the structure to the governing horizontal ground
motions with the understanding that basically the
game approach can be taken if the consideration of
the mecondary vertical motions is desired.

In such & case the matrix of the stiffness factor
of the individual elements must be expanded to
consider the effect of tae axiasl motion.

Concerning the matter of buckling, it can be generally
stated that the derived matrix solution of the dynamic
response of multilevel guyed towers can be used also

to solve the dynamic stability problems of the
structure. Needless to say, that the complete dynamic
stability investigation of tine structure is inherently
complex, but again the use of computers can aid in
obtaining the solution.

In case of critical load, the structure offers no
resistance to the disturbances, which means that the
stiffness matrix is singular. In elastic stability
investigation the stiffness matrix must include tihe
effects of possible disturbances and consequently is
generally larger than tae one used to determine tae
dynamic response of the structure.
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QUESTION BYs

AUTHOR®'S REPLY:

Finding the critical load is a matter of trial
and error. The external loads are slowly increasged
by a safety factor o MAs the load is increased,
the elements of the stiffness matrix change., Thisg
procedure is repesated until the determinant of the
stiffness matrix becomes zero. The corresponding
is the safety factor against buckling, Thig
relatively tedious operation can be transferred to
an eigenvalue problem of the stiffness matrix as
it is described in the pertinent literature (10), (11),
This method, however, does not cover the so called
"anap-through" buckling case, which has limited
importance in the problem at hand,

R.W, CLOUGH -~ U.S.A.

The type of structure you are describing is
apparently a very lightweight tower, and it would
appear that the mass of the cables might be a
significant part of the system. It might be that
the vibrations of the cables might be a very import-
ant part of the total response of this kind of
system., You appear to have neglected the mass of
the cable.

In most of the practical cases the mass of the
tower structure is considerably larger than that
of the cables, which justifies the simplification
taken in the paper. If this is not the case, or
for any other reason the designer would like to
know the order of magnitude of such secondary
effects, the general method outlined in the paper
allows not only the consideration of the effect of
the masses of the cables, but also the effect of
their coupled vibration since the cables can also
be treated by a similar discrete element approach.
Tone author feels that a good compromise in this
respect is to use only the dynamically equivalent
cable masses, which can be computed by equating
the kinetic energy of the cable to that of an
equivalent mass~spring system. Furthermore, the
method outlined at this Conference hy Dr. Rubinstein
can also be considered.
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