UNB:LANCED BUILDINGS, AND BUILDINGS #ITH
LIGHT 10WEhS, UNDER EsRTHJUAKE FORCLES

Skinner R, I.* Skilton D.W.C.* Laws D.A.®

SUMMARY

Torsionally unbalznced buildings, and buildings surmounted by
relatively light towers, have special sensitive features which influence
the seismic forces and movements in them, This sensitivity arises when
& naturel period of the building in translational movement is close to a
torsicnal period in the one case, or to a period of the tower in the other
case. Such buildings call for special considerztion during dynamic analysis,
VWhen the building deamping is low its behaviour may differ dramatically from
that which occurs when the damping is high. The discussion is confined
to elastic buildings but takes account of damping.

* Engineering Seismology Section, Physics and Engineering Laboratory,
D.S.I.R. Private Bag, Lower Hutt, NEW ZEALAND.
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4. LIST OF SYWBOLS

r = redius of inertis
r (I + A) = redius of stiffness ( A may be negative)
ré =

= of‘t:‘set from centre of gravity to centre of
stiffness (may be taken as defining the
positive direction, so that & » O)

Ya Yb' = displacements of equivalent weights W/2 and W /2

Yc’ Yd = displecements of ends of equivalent columns
of stiffness K/Z and K/2

X = distance from C.G. to node

T = natural period

€, P = auxiliary constants

g = acceleration due to gravity

F,F, = inertia forces in modes 1 and 2

R,R, = moments in modes 1 and 2

Yo = displacement of the C,.G.

) = rotation

Ys = displacement of the centre of stiffness

o = term relating tower period to building period

@ = tower to building weight ratio

D = damping; fraction of eritical.

2, INTRODUCTION

A natural period of a building in simple horizontal vibration may
be the scme as a netural period of torsional vibration., A small unbalance
of such a building will couple these movements and the resulting two normel
modes will have natural periods slightly greater than, and slightly less
then, the natural period in tr:nslation only. In each of these normal
modes the building will twist severely despite its small unbalance. If
the seismic forces are czlculeted by combining the modal forces in the
usual way then it is found that the torsional movements appear to increase
these calculated forces considerably. Howéver a more detailed analysis
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shews that such results actually eccur only when the building damping ig very
lew, This low damping occurs during small esrthquakes and when building
tests are made with the assistance of a vibrator. When the effestive
building damping has the high value to be expected during a severe earth-
quake then the effect of the small unbalance falls to about the value which
would be expected on the basis of ordinary static analysis.

A similar case occurs when a building is surmounted by a relatively
1light tower and when a period of the building is equal to a period of the
tower., Again a pair of normal modes arise in which one period is slightly
greater than, and one period is slightly less than, the period of the
building alone, In each of these normal modes the tower has very severe
movements. The earthqueke forces derived by the methods usually employed
for elastic buildings are again very severe, while more detailed elastic
analysis again shows that such large forces only occur when the building
damping is very low. For the high damping to be expected during a severe
sarthquake the forces generated in the tower are typically several times

the weight of the tower.

The usual method for assessing the seismic forces to be expected in
an elastic building is as follows. The meximum forces and movements which
the earthquake generates in each important normel mode are calculated
separately, and then the total force or movement in any building component
is obtained by combining the maximum contributions of each normal mode in
some way. However, simple addition cannot be used since the maximum
contribution of each normal mode occurs at a different time during the
earthquake.

A very simple agproximate method of combining two or more normal modes
is to take the squere root of the sum of the squares of the individual
model maxima ("R.S.S. value"). This convenient method breaks down when the
modes concerned are of very short period, when algebraic addition must be
used. The R.S.S, method breaks down also for the cases of the slightly
unbalanced building and the tower-surmounted building, which were described
above,

For the unbalanced building, with high modal damping, the maximum
effects in the two close-period normal modes need to be added algebraically
giving small net rotations.

The components of the tower are subjected to a pair of opposing modal
forces of almost equal magnitude. Algebraic addition would now give small
forces; these are too low, The true combined forces, which may be several
times the weight of the tower, are still much smaller than the forces which
would be obtained if the R.S.S. method was used.

When the unbelance of a building is increased, or when the weight of
a tower is increased (without change of perﬁ.od) , then pairs of natural periods,
originally close in value, move further apart. W#hen the natural periods are
sufficiently far apart the earthquake-generated effects in a pair of normal
modes may be added by the k.S.S. method, even when the building damping is
high. When two normal modes are somewhat closer in period the combined
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earthquake-generated forces have values between those for close periods
and those given by the K.S.S. method. Reduced modal damping has an effect
similer to increased period difference, so that the method of modal
combination is controlled by the ratio of period difference to damping.

3. ONE~-STOREY TORSIONAL BUILDING

The important features of coupled translational and torsional
vibrations are illustrated by the behaviour of a one-storey unbalanced
buildinso

Fig. 1(a) represents a building which is unbalanced under horizentsl
inertia forces; the ceantre of stiffness is displaced from the centre of
gravity. The dynamic character of a rigid floor is retained if its
distributed mass is replaced by two equal masses at equal distances, the
radius of inertia, from the centre of gravity, Similarly the system of
supporting members may be replaced by a pair of columns of equal shear
stiffness at an appropriate distance, "the radius of stiffness", on either
side of a "centre of stiffness". Fig.1(b) illustrates positive values of
all the quantities, which are defined in the list of symbols, section (1).

3.1 MODE SHAPES AND NATURAL PERIODS

The shapes of the two normal modes and their natural periods may
be obtained frem the equations of steady-state motion, Equating translational

forces:

3% (—Z%T—)z bt ) - _g.(YC+ ). (1)
Taking moments about a node:

.2.“9’_ (E.TII> (Y5+Yg) = _*2<_(Yg+Yd’), (2)

Geometrical relationships may now be used to express the displacements Y in
terms of distances to the node; and eliminating T we obtain

x‘—-2r—§'—x-—r‘=0, (3)

A | (Al 51)
whers =40+ 18+ (so that €=4 approximately for small A and
( 8 ). Solving equatien (3) 133 obtain the pogition of the node
which define the two mods shapes):
x= LVE+ S+ el (iode 1), (&)

! o

X1==——-

r («/&‘z & —¢) (Mode 2). (5)
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Note the useful relationsghip
(6)

X Xy=—T"

which may be obtained either by multiplication, or directly frou equation
(3). It shows that the nodes (of the two nodes) lie on opposite sides of
the centre of gravity, one within and one beyond the radius of inertia,

Fig.(2) gives for positive A the node positions in the form r/X, which

= —xl/r.
From equation (1) we may also obtuin the natural periods in the form:

amy_ _95( | — I_S_) (either mode), (7)
T W X

whence substituting x from equations (l,.) or (5) we obtain:

(.ZE) ok [1+ e-m}, (8)

T

(—21)1=—9\;VK—[I+6+«/6T;3;], (9)

T
{80 that T‘>Tz and the modes are correctly identified), (Fig. (3)).

For a balanced building § =, the two modes become purely
translational (node effectively at infinity) and purely torsional (node at
the C.G., x=0 ). Which is "Mode 1" (1onger period), depends on the sign
of €or & : if A>OMode 1 becomes purely translational, if A<O
torsional. For the translational mode (1 or 2) the square bracket in the
period equation (8) or (9) becomes 1; for the torsional mode, ( | + 2€).
Thus approximately

torsional period _ = 1—A (A smil, 8§=0). (10)

translational period

It way be shown more directly that the ratio is 1/(1 + A) ex ctly.

As the unbalance J increases from O, the translational mode acquires
asome rotational character, and vice versa. Thus one node moves from the C.G.
towards one of the concentrated masses: +the other node moves from infinity
(of the opposite sense) towards the other mass: equation (6) holds always.

As the same time the period difference grows larger (whichever the
sign of A ):

L. [— A + 6 aporoximately. (11)
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3,2 MODE FORCES AND MOVEMZNTS UNDER “ONE-z" STATIC ACCELERATION

When calculating the seismic forces and movements in & normal mode
of a building, a convenient first step is to calculate the forces and
movements of the normal mode under standard conditions, a static acceleration
of one "g", (1 ). These forces and displacements can be expressed in terms
of the mode shape and period.

;thn a system of n weights is under a static acceleration of g, in
the 'y’ direction, and when a mode shape is given by the relative movements
YoY . Y, then the inertias force is given by

WY Coe o s
E - WrYrEW R (i,r = weight No.). (12)

For elither mode of the present building, we can deduce from equations
(&) er (5) the relative displacements of the two weights, and substitute in
equation (1 2) to get the forces contributed by the two weights. They can be
resolved inte a force at the C.G. plus a moment about the C.G. for each mode:

Mode 1: Force -.'%[‘*‘ﬁ]) (43)

Moment R = X __L&__; (12)

J
2 Je+ &
w €
Mode 2: F=—|l — /——| = W—F)
2 ) { m] ( 2 1s (15)
(16)
Equations (13) and (1k4) are illustrated by Figs. (4) and (5). It
can be seen that large modal torsional forces, R, can occur for very small
unbalance, r§,provided that A is comparably small, that is provided the
torsional and translational periods are sufficiently close; equation (11).
Individual building components may be designed in terms of the
movement of the part of the floor to which they are attached. For either

normal mode, under one-g static acceleration (1), the displacement and
rotation of the C.G, are given by

Y= (%) (jv% ’ (17)

o~ (3] (28 “
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The R.H, terms are given by equations (8) (9) and (13) to (16),
or the corresponding graphs Fig.(}% (h) and (5). The displacement Yy of
a point on the floor at any distance x from the centre of gravity is now
given, for mode 1 or 2, as

y= Y%t ©x (19)

3,3 RESPONSS OF NUxhial, kODES TO sAaRsTQUAKSS

In order to obtain the earthquake-generated forces and movements

in each of the two modes, for which the one-z static responses are given by
equations (13) to (19), we must multiply these results by the earthquake
response factor, that is, by the maximum response of a unit resonator to

a "standard" earthquake (Fig.6); Skinner (2). Corresponding responses
are given by Housner (35. We now have the maximum earthquake-generated
ferces and movements in each of the normal modes and it remains to combine
them to ebtain the maximum total forces and movements.

3.4 COMBINING THE EARTHJUAKE RESPONS3S OF THE TWO NORMAL MODES

At a given point in the building the forces or movements may have
the same, or opposite, signs, As derived above only the maximum modal
ferces or movements are known, In order to find the way in which the two

modes may be combined and the maximum combined response estimated, the
following detailed analysis was performed on an electrical anelogue.

A pair of resonators, with close natural periods and with damping
5% of critical, were subjected to the El Centro earthquake (1940, N.S.
componqnt). The resonators each had unit weight, and their instantaneous
response values were added with the same sign ("1:1") or with opposite
sign€ 3"1:—1"). The maximum of the combination was recorded and graphed,
Fig (7).

The Fig (7) shows that when two equal-weight resonators have the same
sign and also heve periods whose ratio T, /1; is not greater than 1.1, then
their individual earthquake responses may be combined (approximatelys by
algebraic addition, On the other hand when equal-weight resonators are of
opposite sign, so that algebraic addition would give zero response, then the

"minus" curves of Fig (7) show that such algebralic addition no longer
applies. Physical arguments suggest that when the period ratio is small and
the algebraic sum is not too small then algebraic addition will apply. It
suggests further that an increase in damping will increase the range of cases
in which the two modal responses may be combined by algebraic addition.

In practice the design of components in an unbalenced building, for
example by the ap)lication of equation (19), does not result in very small
differences of normal mode forces or movements. These small algebraic sums
mgy occur in the design of tower-surmounted buildings, which must then be
designed on the basis of information such as the "minus" curves of Fig (7).

[1-592



(Purther computation will be perfermed to amplify these points).

Algebraic addition will eften be called for in cases of small
tersional unbalance. If the periods are close the one-mode earthquake
response factors, Fig (6), for each of the two modes will be almost equal,
In this case we can add the two one-g static responses (algebraicallyg
before multiplying by the response factor., For a single storey (as above)
the result is simply the ordinary one-g static displacement or force, as

obtained by purely static analysis.

The displacements may be expressed most simply as follows:

W

YS- - = displacenent of centre of stiffne 20(a))
K stifiness
o= —d*‘YS = rotation; (20(»))
r (l + A)
Y=Y—0O (x - ré) = displacement of a point at any
distancexfrom centre of gravity; (20(¢))

The significance of the torsional effect may be measured by comparing
the displacement due to torsion at some typical radius such as r, with the
translational displacement, The ratio is

re _ é
2
Y (1+a)
(since Zmust be small to give close periods, &guation (11)).

= 6 approximately,

Thus although the modal equations would appear to indicate etherwise,
a small imbalance measured by 8 and a small Awill give small torsional effect
(because the period difference is then small and justified algebraic
addition).

Note that where zlgebraic addition is pot justified the estimated
maximum displacements will not vary linearly along the building as do the
values Jjust given.

The physical process occurring may be understood by considering a single
earthquake pulse applied to the two equal resonators of opposite sign. They
each proceed to execute a damped sine wave, starting 180 degrees out of phase,
with complete cancellation when added. At later times the phase difference
is progressively reduced since the periods are different. This results in an
increasing net movement which is limited however, by the progressive decay of
the motion of both resonators. Hence the damping opposes the effect of the
period difference. It is expected that the maximum buildup of motion in
this equal-and-opposite case is controlled by the ratio Q of relative period

difference to damping:

Q= . | (21)
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& HULTISTOREY UNBALANCED BUILDINGS

A gimple form of unbalanced multistorey building has normal modes
and periods which can be derived directly from its normal modes, when balanced,
and from the results for the unbalanced single-storey building. For this to
be justified, this building must have successive storeys which are geometrically
the same; the C.G. and the C.S. (centre of stiffness) of each floor lie in
two vertical lines and the radii of inertia and of stiffness have two
constant values, Further it must be limited to certain types, for example
those shown in Fig (8).

When balenced this building has pairs of modes, one translational

and the other torsional with the same vertical profile; and antinodes & nodes
occur at the same height in the two modes, This is true under certain
restrictions on the effects of floor flexibility., When a small unbalance
ig introduced the modes of an original pair interact to give a derived pair
of modes which have the same shape, along a vertical line, as the eriginal
pair, Along the horizontal axis, x , at any level, the modes of the pair
have nodes at the same positions as a single storey building of the same
geometry (C.G., C.S. and the radii of inertia and stiffnessg; as given by
equations (4) 2nd (5). The periods of the resultant mode pair are derived
from the original translational period in accordance with equations (8) ana
%9) which derive the modal periods from the translational mode period

reading [21]-/ Torans T for gK/ W).

Algebraic sddition of responses of the modes of one pair may be
called for just as in the onme-storey case of the lest section 3.4. The
sum of the one-g static responses is no longer the ordinary "total"™ static
response. Instead, the state of displacement is given as follows: The
displacement of the centre of stiffness of each floor is equal to the one-g
static displacement of that floor in the purely-translational mode from
which the pair was derived. The displacement of the other poigts on the floor
is then given by equations (20b) (20¢) for each floor.

If a building has a small unbslance which is not uniform throughout
its height, it is to be expected that there will be an approximately
equivelent uniformly-unbalanced building which has similar behaviour, at
least for the first few normal modes.

41 BUILDING T1YPiS PHONE TO0 TORSIONAL OSCILLATIONS

Since a smell unbalance (due, e.gs to foundation assymetry) may excite
torsional oscillations in a building which has close translational and
torsional natural periods, a search is made for such buildings.

A typical building of columm and beam or columm esnd slab construction,
tends to have torsional periods which are somewhat shorter than the
corresponding trensletional periods; Fig (8a) shows the uniform floor mass
distribution which would need to be associated with a set of equal columms
to give approximately equal translational and torsional periods. However a
moderate change in the stiffness or mass distribution of a conventional frame

building could result in close translational and torsional periods.
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Another building type which tends towards equal trznslational
and torsional periods is the multibay structure w{th seperating shear walls
Fig (8b). Such structures have advantages as blocks of flats since they
provide sound insulation and fire protection. If the longitudinal stiffness
is obtained from a central spine wall or other systesm which does not add
to the torsional stiffness then the trenslational and torsional periods
will be close.

When a building has its lateral stiffness provided by two towers
Fig.(8c) there will be a certain spacing of the tomers which gives close
translational and torsional periods. 4 spacing of about this amount may well
be adopted for structurzl reasons.

4.2 SHEAR WALLS AND CENRAL SPINE waLL - FIZLD TESTS

A building vibrator has been used to permit measurements of the periods
and mode shapes of & 100-foot high building of the type illustrated in Fig
(Bb). The building was of balanced design, but it was evident thzt there was
some unbalance in the stiffness of the foundations., The horizontal profiles
ef the normal modes are shown on the left of Fig (9) (Bash line represents
a floor). We obtained the following building paremeters:

x, = -93 ft, x, =+3ft, T / T, = 1.08 (taking building length as
200 ft), ‘Whence from equations () to (9):
r = 65 £t (slightly larger than estimatzd from plans);

A = +0.025, radius difference = r A 1% ft

olle

é == ~-0,07, offset between centres = r¥d lgs Pt

If we anticipate 3j of critical damping (even more so, 1) in a major
earthquake, then with the period difference of 8%, algebraic addition of modal
responses is justified and we can estimate the significance of the torsional
effect as in section (2.&.) using the total static deflection. e find that
the north end of the building, about 110 ft from the centre of stiffness, is
liable to about 12% more displacement than the centre; 1.e, the torsional
increase is not severe.

5 BUILDING SURMOUNTED EY TOWER

As described in the introduction, a building with a relatively light
tower on top has many fe.tures in common with a torsiocnally unbalanced building,
Close tower and building periods correspond to close translational and torsional
periods. Also a small rztio of tower to building weight corresponds fco a small
unbalance and hence a small coupling between the trenslational and torsional
movements, However, since the forces in the tower ere separate from those in
the building they tend to be given by the combination of two opposite and
almost equal forces when the modes have close periods. Then neither "RSS" nor
algebraic combination is approprizte: the speciel cese distinguished in

Sect. (3.4).
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It is also possible for the tower to have a damping factor very
different from that of the building; to take this into account, non-mogsl
methods of analysis would be called for and these are beyond the scope of this

peaper,
Tower-surmounted buildings will be discussed briefly following the
same lines as the fuller treatment of the unbalanced buildings,
561  SINGLE-STOREY BUILDING WITH SINGLE-STOREY TOWER
The building parameters are defined in Fig (10).

By solving the equations of steady-state motion we obtain the
normal mode shapes and natural periods.

U= x,/x, =-p £+ 8 (22)

(satisfying u*+ 2pu-8 =0),
where p-(q+6) 2,
a= ‘E'/A\;N‘ — | (approximately twice the relative
difference of period between tower and base-building considered separately) »
8= w/W
The preduct of the two values of u is —@

Alge (—-Z—T—T): Sv—t— [l +p 4=n/5;‘;'_6_:] > (23)

T
so that (T/T,)—I'; -8 for small o and @. (24)

These periods are illustrated in Fig (12).

[The best (but still imperfect) analogy with corresponding torsional
formulae is seen by letting Ccorrespond to-2Aof section (3.1), @ correspond
to §*, p to-E. Ifg=O(base and tower periods equal) and 8 is small the
mode shape parameters u are almost equal and opposite, like the modal
distances of the torsional modes whenA=(O. On the other hand when B=Qthe

-values by no means tend to O and ooas the analogy would lead us to expectJ

5141 MODAL SHEARS IN TOWER UNDER ONE-g STATIC ACCELERATION

The modal sheers in the tower may be obtained by suBstituting the
modal shapes defined by equation (22) into equation 12). The tower shear
ferces for the two modes are

f - ‘.”.[I:e d+p
2 ) (25)
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It is seen in Fig (11) that the shear forces are many times tlie tower
weight when small relative period difference (o), occurs together with
small relative tower weight @

5.1 MODAL AND TOTAL EARTHQUAKE-GENZRATED SHZARS

The earthquake-generated shear force in the tower, for each of the
two normal modes, may be obtained by multiplying the shears of equations (25)
by the earthquake response factor, Fig (6).

When the natural periods, as given by equation (23), are not too

close the total earthquake-generated shezr force may be obtained as the
root-sum-of-squares of the values of the two modal shear forces. However

for very close periods the shears are almost equal and must be added according
to Fig (7) (for o damping). For these small period differences (under 5%

or roughly under 10x) the curves of Fig (7) fall linearly with period
difference. Hence the earthquake response of two equal resonators, waich

have one-g responses of plus and minus R and any such small period difference,
is,

R= 40 AG:L —|>R (26)
2
where A is the response factor from the particular curve "2-" of Fig (7).

When values from equations (24) and (25) are substituted in equation
(26) the total earthquake-generated shear, for small period differences,
is approximately

f‘= ZOAW. (27)

This tower shear is therefore independent of the value of small
period differences, and when A is substituted from Fig (7) _typical tower shears
are about 4 times the tower weight, when a building with 5% damping is
subjeeted to the El Centro earthquake. This shear force probably falls to
about 1,5 times the tower weight for 10/ building demping.

It should be possible to extend the methods used for a single storey
building with a single storey tower to multistorey cases, Wy using equivalent
welghts and stiffnesses.

The severe attack on light towers may be enhanced when it occurs
with the forces in the base-building still relatively small since the damping
of the building may then be small, The building demping tends to control the
modal damping giving larger earthquake forces.

The above discussion applies to all small resonant building components,
and in particular to cantilevers. The latter tend to be rapidly damz.iged when
earthquake strains (due to building motior along the line of the cantilever)
extend to plastic deformation, since the gravity force ensures that all
plastic strains are in the same sense and strictly cumulative, This contrasts
with a vertical tower where plastic strains in opposite directions partly
cancel,
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6.  DISCUSSION

It is seen from the above that it is of advantage to avoid close
torsional and translational periods., However the law of combination of
normal modes tends to minimize the net result of extreme modal twisting
particularly for the high damping expected during severe earthquakes.
However, for the low damping encountered during vibrator tests on buildings,
close periods and small unbalance will give large torsional effects which
increase the diff'iculties of measurement and analysis.

Towers and ecantilevers are attacked by close resonances of the
building, whiech may be transverse or lonzitudinal, These two forms of
building resonance may make it difficult to design a tower with no close
perieds,

This work should be extended by calculating more curves of the type
given in Fig (7), based on mean values of several earthquakes. The curves
should also be drawn for various sizes of the two resonators and for various
damping values, The simple tower system should be investigated by another
approach for the case where the tower dauping is high, say 10, and the

building damping is low, say 2% to .
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UNBALANCED BUILDINGS, AND BUILDINGS WITH LIGHT TOWERS,
UNDER EARTHQUAKE FORCES.

BY R.I., SKINNER, D.W.C. SKILTON AND D.A. LAWS

QUESTION BYs V.A, MURPHY -~ NEW ZEALAND,

Would Mr, Skinner explain further about the differences
in acceleration between those measured at the base and
those at the top of the building, particularly where
depth of foundation rock varied a great deal.

AUTHORS® REPLY3 The 100 foot shear-walled building of Fig. 9, was
founded on a pad on weathered rock and clay with piles
down to foundation rock. The depth to the rock varied
from a few feet at one end to about 35 feet near the
other end, Despite the varying depth to the foundation
rock, the accelerations throughout the ground floor were
only a few percent of the roof accelerations, for each
of the normal modes excited by a vibrator.

QUESTION BYs R, SHEPHERD = NEW ZEALAND.

Would Mr, Skinner care to comment on the measurement
techniques he used, Specifically what method had
been used to determine the proportional critical damping.

AUTHORS' KREPLY: Three building parameters were measured during tests
with a building shaker; the natural periods, the

shapes of the normal modes of vibration, and the
damping of the normal modes. A normal mode was
excited and displacement at & pair of points in the
building recorded continuously on a central recorder.
The frequency of the vibrator was slowly adjusted until
a natural period was reached, as indicated by the
amplitudes and relative phases of the movements at the
two recording points., By moving one of the recorders
to meny stations we obtained a set of displacement
ratios, which give the smace of the normal mode. The
damping was obtained by suddenly removing the drive
when a normal mode was being excited, and then measuring
the logarithmic decrement of building movement.

QUESTION BY: 0,A. GLOGAU — NEW ZEALAED,

What would be the magnitude of the effects of the
torsional and tramslational coupling in an earthquake
of L[l Centro intensity when damping is higher gggwthsf“”
building goes into the ductile range. This is

important to designers.
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AUTHORS® REPLY:

An increase in damping will not change the
coupling between torsional and translational
modes of resonance but will result in a smaller
increase of forces due to tue coupling. Waen
considerable plastic deformation occurs, the
unbalance in the stiffness of tue building is
almost certain to increase due to unavoidable
variations in the yield point and subsequent
flexibility of the building components and the
fround,
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