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Ik1§2. the evaluation method for vibration characteristics of piping
systems are studied, and several examples are shown. In §3. the machine
structure is simulated into analog computer with two-degree-of-freedom
system, the response spectrum analysis is performed and the general princi-
ple of aseismic design is investigated. It is discussed that the method to
obtain the maximum acceleration amplification factor for various parameter
by statistical approach with the assumption, the earthquake to be a random

process in$4.

§1. Introduction

At a nuclear power plant even a slight damage of the piping system
which is related to primary coolant system in reactor core or radioactive
fluid system would leads to serious hazard to human life. To prevent such
a hazardous accident under a strong earthquake condition a new design con-
cept of piping system and machine structure should be developed. (1

The authors have been developing them for these several years under
supervising of Professor Fujii, the University of Tokyo. A part of our jobs
has been done as an activity of the Sub-committee on developing of aseismic
design of machine-structure in the Japan Society of Mechanical Engineers.
At §2 the authors mainly refer to the job of Dr. Shibata and Mr. Shigeta,
and § 3 and §4 to the job of Dr. Sato.

The flow chart of the ascismic design is as Fig. 1. The first step of
the aseismic design is the evaluation of natural frequencies (or eigen-
values) and mode shapes of the structure. To evaluate those of a piping
system is more difficult than those of other structures. In some cases the
frequency of its fundamental mode may be extreme low and one or several
higher modes may co-incide with dominant frequencies of the building and
ground motion. Moreover, by the effects of additional masses and spring
occasionaly several modes may concentrate in very narrow range.

If the piping system is attached to the building-structure, lower mass
system, the whole system will be able to simulate as two-degree-of-freedom
system. As for piping system each natural frequency can be dealt with as if
it is one-degree-of-freedom system. As the result of analog computation of
such systems for earthquake record several principles for aseismic design of
general machine structure was made clear. And it is proposed that a simple
evaluation of response acceleration using table by a statistical computation
about the maximum,

§2. Evaluation of Natural Frequencies and Modes (2), (3)
§2.1. Approach to coding and Computation
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The authors use the assumption that each portion of the piping system
js treated as a simple beam, that is:

1) neglect the effect of an axial force on the flexural rigidity.

2) neglect the effect of the shearing force and the rotating
inertia.

(3) neglect the unbalance of the forces (including the gravity
force) caused by the geometric deformation of the structures,

%4; neglect all sorts of internal dampings.

5) the cross-section should be annular.

6) neglect the distributed mass for the torsional vibration.

The transfer matrix of each straight section can be written by a
matrix}Ml;e The transfer matrix of a whole piping system or beam is
obtained by multiplying the matrices from one end to the other end.

(Moo= M # (oae —<[m], (2.1)

According to the boundary condition of both ends, some quadrant of the
transfer matrix acts as the eigen value or the frequency equation of this
system.

{ML,D: Mad | Mag

(2.2)
M| My M, 0

det IM"W, =0 for "Fix-Fix" condition (2.3)

We can not solve this equation explicityly, but can get the roots
through the step by step change of it and iteration method. The accuracy
of each root checked as the relative one between the n-1 th iteration
step and the n th step.

(=1 __ (m)
€ :> l-*—ips—l— (2.4)

The elements of the individual transfer matrix of a piece are usually
some combination of trigonometric function and hypabolic one. (Table 1)
Vector CQ represents a dimensionless displacement and force vector.

=Y |= L : displacement (2.5)
R EA RV d
« & oA : gradient L : length
—_ ipr
‘F 'P,//Aﬁéf £ : force EIl : flexural rigidity
= ANEL
e 4@@// L C: moment ‘ P : line density

In the transfer matrix of the original form (4), derivatives or
integrals of the vector elements with respect to the co-ordinate ¥
appear as such forms, N simA % or 1—7\ Sin 7\%
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but, to keep the order of the values of each element uniform, the authors
eliminate the linear terms of A as shown in Table 1.

The values of the determinant of the eigen-value equation is smaller
than a value of each element of the matrix at the neighbourhood of its
roots. So the lowest significant digit of each element must situate at
the lower order than that of the determinate in the iteration process,

A type of the numerical calculation in the determinant corresponds to

cosh’ Kg—sinhl A —1 =0 (2.6)

in the case of a simple beam., If the lowest significant digit of cosh’Aj
or Sinh*A{ is larger than unity, the value of the equation %6) does not
have any meaning for its comparison to zero. The straight line in Fig. 3
is given by the following equation,

ong(nwmber of dt%ifs)z ,Qo?&c — 2x\ x ﬁo;e (2.7)

x marks in Fig. 3 also show numbers of significant digits required in the
case of Z shaped beam (cf. Fig. 5) for the accuracy 5 x 10-4. Two chain
lines show the limits, the upper one comes from the word length of the
computer (length of double precision word of IBM 7090 is 16 digits) and

the lower one comes from the accuracy, which required, of eigen-values g
In the section beyond the point at which the upper limit crosses the straight
line, an approximate root may not situate in the neighbourhood of the real
root with the given accuracy £ . Because the approximate root which has
been obtained in this section only means two successive values of an approxi-
mate root standing within the accuracy £ by chance on an iteration process.

If we use single precision arithmetic for this computation, in the case
of 5 x 1074 accuracy, we would obtained the correct approximate roots only
for the section less than li is 12,

To obtain the mode shape for each root of the eigen-value or the
natural frequency, we have to solve the equation of the supporting condition.
The equation in the case of "Fix-Fix" support condition is as follows:

[(Mag) [Fo) =(0] (2.8)

Because the determate of F1df is equal to zero, we can choose arbitrary
one out of the elements in vector Fo and put it as a unit. It is as easily
as the whole matrix to obtain the transfer matrix from one end to a point
on the beam. The displacement and force at the point‘g are given by the
following equation,

[D] = [Ma] x [FR)
Pl Mg)os

$2.2 Effect of Additional Masses, Dash pots and Springs

(2.9)
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There are two ways to take the effect of them into account. One of them
is using the transfer matrix expressed as the impedance of the additional
element or the branch at the junction point. Of course, for dash pots or
other sorts of energy dispersion devices the matrix should be expressed
with complex number. The impedance of the branch fixed at the other end
can be written as

z = [Mf][Mag)” (2.10)

and h4d§ are parts of the transfer matrix from the fixed end to the
junction.

The other way is as follows: We assume that we already knew the
natural frequencies V; and their normal modes XJ(l)of the system, and
that we would plan to add some additional elements (masses My, dash pots
Cx and springs R ) to it. The frequency equation is given by the follow-
ing form.

dat

1 mnPQ—hn - LCKP -
o W L T T XiloX )= 0
}

lLk=1-----n See=1 Hor L=k (2.11)
§ie=0 for L%k

How the region of 4 (the number of terms) should be is not definite,
but for the minor additional elements only the first term or the first two
terms should be considered.

§2.3. Evaluation of the forces and moments under an earthquake loading .

To obtain the moment distribution on the piping, we must calculate the
exiting co-efficient I; and the amplification factor A A= 0‘/0&3_
ref. § 3.) I; can be calculated from the summation of displacement, of
which the direction is parallel to that of the external acceleration, weight-
ing with its mass distribution. €N represents the factor of normalizing the
displacement. Then the displacement and force vector under an external

acceleration-f becomes.

Aij' (1. L x

y | = ‘ NEL © 4
“ mi —;Q%II; r 3 (2.12)
f FL/M; « 4
™ L PLYN =
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2.4. Examples of the eigen-values and modes

* Simple beam; To check the program, the authors choose a simple
straight beam. The eigen-value of the fundamental mode of the fixed beam
is calculated as the three pieces one. It is not necessary to divide a
strait section to smaller ones as this example. Here, the authors only
want to check the effects of matrix multlpllcatlons. The interval of steps
is 0.1, and the accuracy is changed from 5 x 10~%4 to 5 x 10-9, (Table 2. §
Dr. Young (5) at Texas University got the value in the last row of Table 2,
and he guaranteed the accuracy of 8 digits.

* Zghaped beam; The second example is shaped beam, which consists
of three pieces, shown in Fig. 4 and Fig. 5. The eigen-values of the vibra-
tion parallel of the beam to the plane and the perpendicular one are shonw,
The values in the lower rows Table 3 are the experimental values obtained
with models which are made of steel wire. The eigen values vs. the length
of the third leg are shown in Fig. 4. This figure may be use for judging
the approximate natural frequency of a complex beam. The examples of mode
shape are shown in Fig. 5 and Fig. 6. The former one is that of the plane 7
shaped beam and compared to the deformation curve plotted from the photograph.

*|,shaped beam; To check the effect of longitudinal vibration, the
authors use the in plane vibration of the isosceles |, shaped beam. x marks
in Fig. 7 are the values which computed by Professor Takahashi, Yamagata

University.

The authors conclude that the code of this program works properly from
the results of the several examples above mentioned. For these examples,
Computer ‘enter of the University of California at Berkeley offered their
subsidized time to us.

3. The building-machine structure system response.

The response spectrum of single-degree-of-freedom linear gystem is
precisely studied by G.W. Housner and his co-workers (6), which simulate
the building-structure. In our country when the atomic power plant con-
struction had been started, the dynamic behaviour of the piping or other
machine-structure during earthquake and its aseismic design were newly
discussed. To analyse these problems the analog computer was used, the
building, machine-structure system can be simulated two-degree-of-freedom
system with appropriate damping coefficient and small mass ratio. The
differential equations are given by (3-1)

i im'f QMnﬁmim +00.;sz - (_.meﬁm ;(.b‘*‘ (J»:Lb) e (t) (3.1)
~Y (20 O )+ Lt (200 B 2one) £ + (0T W05 ) = - X ()

when the suffix m, b mean machine and building, that is, upper and lower
system respectively, m : mass, ¥ My M maSS ratio,

h : damping ratio to critical dampifg, @); no-damped circular frequency,
: relative displacement to the ground of mass

Fig. 8 is the response spectrum of upper mass for E1 Centro earthquake
(May 18, 1940) in which the abcissa is the period of the upper system

I1-556



that corresponds to the machine-structure, the ordinate is the maximum
response of the upper system response.

6:(7means that lower system has no force reaction from upper system.

Points are plotted by the maximum value of responses and the parameter

of several curves is the period of lower mass system. To look over this
results, we need to refer the response spectra of one mass system.

Fig. 9 shows it and it has the extreme value at the period 0.2, 0.5, 0.9 sec.

Now let Tp be the period of lower mass system, Tp that of upper mass
system and Tg the ground dominant period. About the spectrum of Tp=0.2 sec
in Fig. 8, the acceleration amplification factor A which is the ratio of
the maximum response to the maximum ground acceleration attains to the
maximum at Tp=0.2 sec and for other Ty's it shows also the maximum at
Tp=Tm except such example that in case Tp=0.8 sec the maximum does not
occur at same Tp, but at Tp=0.9 sec. These show that the coincidence
of both structure periods should be evaded at first from the viewpoint
of the aseismic design of machine-structure.

0f the velocity and the displacement the fact that when Tp=Tp, the
response reaches to the maximum for a Tp, is not applicable, for example
about the displacement response spectrum in case T is rather small it does
not give the maximum but the extreme at Tp=Tp and the maximum occurs at
longer period.

It seems that the period 0.2, 0.5, 0.9 sec have any relation to Tg from
Fig. 9, so its effect to the upper system through the lower system must be
taken into consideration. Thinking of the spectra of Tp=0.2, 0.5 sec in Fig.
8. At first about the former, at Tp=Ty=0.2 sec the amplification factor
reaches to the maximum and the spectrum near Tp=0.5 sec does not decrease
steeply but holds rather constant, then it can be supposed that the upper
system receives a little effect of Tg. About the latter at Tp=0.2 sec it
does not seem to be given the effect of the peak at Tg=0.2 sec. To study
these effect, the relation among Ty, Ty and Tp are examined which will be
mentioned later. Moreover a statistical computation makes it clearer.

About two-mass-spring system in case that the damping of the upper mass
system is very small and Tp=Tp, the time that the maximum occurs in the
response of a oscillator is further lag than that of earthquake record.
Because the mass is so small that the behaviour shows quasi-resonance and
vibrate nearly with the first mode.

In anyway as for the acceleration, Tb=Tm makes the worst condition,
now another spectrum which is shown in Fig. 10 can be driven from Fig. 8 by
connecting such points. .The ratio to critical damping is selected as para-
meter. Though the amplification factor is larger than that of one mass
system, figures are analogous to it, let us call it Tp-Ty response spectrum
of two-mass-spring system, The same spectra about the velocity and dis-
placement are also analogous, such as the velocity spectrum is constant and
the displacement increases with period.

The effect of damping is remarkable in Fig. 10, this means that in case
the coincidence of both system periods cannot be evaded inevitably, the next
method is to attach the damper between both structures. This can be done be-
cause the machine structure or piping is usually much smaller than the build-
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ing-structure.

These analysis are also performed about Kushiro (Dec. 24, 1961),
Saitama {Feb. 14, 1956), partly Taft (July 21, 1952) and some resulis are
obtained. for ¥=0, 0.01, hy=0.07

1) When Tp=Tp or Tp=Tm, the response of the machine-structure shows
the worst condition especially in shorter period about the acceleration,
in longer period about the displacement.

2) A at Tp=Tp has the maximum at a period where that of one mass
system becomes the maximum.

3) When one mass system response spectrum shows bi-extreme
characteristic, in case of two mass system it has the tendency that the
maximum occurs at shorter period.

4) The Tp-Tp acceleration response spectrum has a maximum for a Ty.
J 5) The Tb-Tm velocity and displacement response spectrum show that
it is nearly constant and increases for larger period respectively.

6) The tendency that A increases for small or hp is remarkable near
Tb=Tmo

7) When hpy is large, the maximum values of Typ-Tp response spectra
are constant for any earthquake records.

8) If Ty, Ty are the period where the amplification factor is a half
of the maximum for a spectrum of Ty, then (for hy=0.02)

12Tss To/-t2 Tofpoe, hsT: Tofp-le Tof-07

9) If the ground dominant, building-structure, machine-structure periods
are know, we can guess the response spectra of two-mass-spring system from
Tp-Tp response spectra using 8) without computing it precisely.

Such response spectrum computation was also studied in case that only
the building structure has the elasto-plastic characteristic. Generally
speaking, the amplification factor of machine-structure decreases even when
Tp=Ty because the restoring force of lower mass system is limitted. But
the period of lower mass spring system is changed apparently, so it makes
sometimes the condition worse than that of the linear system considering the
number of the repitition during an earthquake. By the analysis of response
spectra for El Centro earthquake, the next formula can be induced.

B
Am = & 'F,; Ab (3"2)

where Ap : A of one mass linear response spectrum. Ap: A of Tp-Tp
linear response spectrum. Fp: Lower mass acceleration which corresponds to
yield force. Fg: Earthquake maximum acceleration. Fj: Response acceleration
of one mass linear system (which can be given from spectrum) F2: Response
acceleration that can be given from linear Ty-Ty response spectrum. FN2: Upper
mass acceleration that can be given from Th-Tm response spectrum of lower mass
system nonlinear. Am: Acceleration amplification factor of lower mass system
nonlinear Typ-Tp response spectrum.

= (Fu/ )/ (Fo/F)
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hp = 0.007 :. & =0.8—2.0
by = 0.02 : £ =0.8—1.5
bp = 0.1, 0.2 : kR =0.8—1.2 (3-3)

Thus if we compute linear and nonlinear acceleration repsonse spectrum
of one mass system and the linear Tp-Tm response spectrum, the rough esti-
mation of Ay can be done.

4. The statistical computation of response.

To generalise the response computation and to make it easy to kmow the
acceleration amplification factor, a statistical computation (7) was tried.
The earthquake was supposed to be a random process which is the stationary
time function with gaussian distribution at the basement, has the constant
power spectrum, and the ground has the characteristic studied by Kanai (8).
Moreover to compute reasonably the high and low pass filter is attached to
it, that is,

Wik S} 4
S+24R S+ (I+¥sy (I+ysy

Hg(s)= 4-1)

\H;Yz are decided from the breakpoint of the filter characteristic.
It is supposed that the maximum will occur when the extreme probability
density functlonp(g)become small enough. 'p(g) is given as (9) (10)

PY)=7 aw]o( 29)4—3%}0 i)(lwrj ) 4-2)
(+-3)

e=l- 1 - - (4%) I
=—:E*L‘ﬁ((ﬂ)dl.\) Iz:‘ﬁtL'AHLszL hiw)do I+"5{ ‘ﬁ;jw*ktw)iw (+-4)

vhere [ : the amplitude No : the number of zero with positive slope
Ne: the number of extreme
As for the machine structure f(w)is,

(20 has b s
A= | s

&-5)

A= 54 | 20,5 1 (T 200mhny} 57
HL05 (D WG + 20 Ry 20uha} S
{0 20w hm + 03 208 }S 1 w0 02

The integration is performed by the formula shown in (11)

Fig. 11 is an example of the extreme distribution of an earthquake
record. € can be given py the number of zero and extreme, for the
same £ (4-2) aleso can be computed. Comparing with both curves, maximum

of both dlstnbutmn were coincided with., After then where ?(&)‘ 0.01
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and 6 where the distribution about earthquake record is equal to zero are
refered. The result is shown in Fig. 11 (b). It shows that °fﬁ(§)=
0.01 is quite a good measure appropriate as the representation of the
maximum. For the random process that corresponds to the earthquake and
the response for it, }ls are computed as gn, && respectively and the
response amplification factor is given

A z_gﬂ.:‘/},‘:‘_h 33‘. (4-6)
" % \/}—0; ‘j',}

The response spectrum and the statistical computation above mentioned
are compared with in Fig. 12, (a) is as for one mass spring system, (b) is
as for two mass spring system. In any case the statistical computation
covers the response spectrum as an evelope. But about the latter when the
hm is very small, the amplification of response spectrum is smaller than
that of the statistical analysis. It seems to be so because of the dis-
crepancy which the real earthquake is not statiomary though the supposition
of statistical computation is stationary.

Taking into these supposition, the table by the statistical computa-
tion for the various parameter will be useful for the estimation of the
machine-structure response acceleration. The effect of the ground period
characteristic to the machine-structure through the building-structure is
also clarified. By Fig. 13 if Tb}Tg , the effect is hardly seen, and
when Tb<(Tg, the spectrum has two peaks, that is where Tp=Tp and Tp=Tg.
But at any rate it shows the maximum when Typ=Tp.

In Fig. 12 the spectrum of a model earthquake is also shown. It
realises the statistical computation experimentally using the analog com-
puter and a noise generater.

Such statistical computation can be extended to a nonlinear system
with elasto-plastic characteristic. The system model is shown in Fig. 14.
The equation is,

mi: —uxl, --f *MO(U:)

e |
:,:33 o F< IF) (4-7)

O el S
g1
where m : mass, [ : damping coefficient, fe : spring constant
X : relative displacement to the ground of the mass
% : relative displacement to the ground of the upper part of spring
: yield force
ol t): earthquake acceleration

The block diagram of the system is also shown in Fig. l4. If Z=A-}

and for nonlinear element the equilinearized method (12) is used, the next
equation can be written.
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2, a1,
v~z E ==l T (4-2)

Is=gg) 7o)l (4-9)

N Wy ~10
Le)= e HWE+ 2R, ) S + 0y (210,k, <) Hys) (4-10)
X is equi-linear gain of nonlinear element by the criterion so as to
minimise the integration of square error by the substitution. Solving
(4-8) and (4~9), I, is given. The I.is calculated using ©

| X" dw “@-n)

L= ,zu:g

where
X G *—-(H-— LS)Z&S) ($-12)

JI; is proportional to the displacement response, so it is necessary to
make the value nearly equal to the displacement properly. Fig. 15 shows
an example as Ty=0.5 sec, some characteristics can be seen in it.

1) The displacement spectra becomes larger in longer period.

2) If ol becomes small, which means the yield force becomes small
and the nonlinearity strong, the displacement of the nonlinear
system is larger than that of linear one in short period.

3) At the same time the cross point of both response spectra moves
to longer period.

4) I1f of becomes large, the figure of the nonlinear system comes near
to that of the linear system, in short period from larger side,
in longer period from smaller one, the cross point transfer to
shorter period.

These are also found in the results (13) (14) that have been studied

by the response computation.

Using Fig. 15 the optimum seismicity (15) also can be explained and

from (4-12) the spectrum of velocity vs. the period can be obtained.
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THEORETICAL

87318
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11-563

EiGN VALUES oF Z-SHAPED BEAM IN PLANE



THE THIRD LEG

T » X< « X< & 40
4 @
> i[9} % % w X x .nw Hc;. -
W @ M AMn 3 3 _.n_ 7 M
gu 3 2 = X . x5 g m o X e ox -5m 3y
' > > 2213 ]
ot 10 o > £3 = EE
A9} o s
&S 290 & 2002 ¥ 52
| @ < o & «iK = £ o g g e« X A¢E OF
W 5 ile} > o 1o M < g @ W EL
= [qV] Q ] X oX g5 2 oX T ..
- M o W Q ° g gz 8
3 3 ©° 2 w® ax x m 35 - ® x Mg =
51 S8 8 z « §u3
2 g @ o ox oX ... e Xe X y o
3 K = m ™ i @ = XM oede ox {N , 8
< {9Q o o 1% >
- O & xo X X 4 X iy
W b3 X o oX X . X wwv
2 uw O X e o X X e X [}
o 4 o O K o« * % eax & R 41—  WN
40O X ° ° X X e X
0 O ; Vo) AVWA 3 m.mxx NAXAH M <
o o T = o & : L mwﬁ. I VAR 1 .AXM.& 1 VN Vo S
A1INS3Y 40 AOWHNOOY LIOIA¢ ¥Od4 Q3uind3Yy T m n|/~. MVI [v0) (o] =
43Q4QO 40 H3AWNN Y 3NVA N39I3
Wv3g Q3dvHS NOISIQ ONSIISY 40 1¥VHD MOT4 OILYWIHOS | "9l
X3TdWOD) 40 SIUNLYIONIWON ONV WW3HOS 2 ‘ol
Z NOILOW NOILOW
INVNOH LYV INYNOHLEYT
0anasd ONOYLS IHL
40 SISTHINAS 40 SISKIWNY
W\_. ~ gl /. \
©® A X W3LSAS
3 SSYW _ 0
s [IN] —e VINILIYD JFIOHM 40
< ONIAG ) \ NOIS3(Q | |3SNOJS3Y 3HL|| 300 HOVI NO|| 3dvHS 3aop
N % 3HL LSNIVOV oL 3SNOJSIY[|  WILSAS IHL ANV AONINOZS
AN 1~ ASNOJSIY HOV3 3HL|| 40 3sNods3y WENLYN
- N@x 3HL 40 MO3HD | | dN SNIWANG| |40 NOLVLNGWOD| (40 NOILUNIVAT

I1-564



! ]
[20 150 180
® ANGLE OF BEND

30
160 (PROF. TAKAHASHI)
1

v____,,._v————v—

~

f——
33
A
+
\4
X
!
30 60 90

—o-00—o— o

0
1
0

o 0 ~ © 0 <+
Y 3NYA  N39ig

Wv3ag Q3dvHS -7
YNOISNIWIQ 33YH] 40 3dop ¥ 9 9l

0]

a A

-

d § _l« Vﬁf, ¥

Fie. 7 EIGEN VALUE OF L SHAPED BEAM

VvS. ANGLE OF BEND
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Fie.Il (a) AN EXAMPLE OF THE EXTREME
DENSITY DISTRIBUTION OF AN EARTHQUAKE
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FI1G.15 THE STATISTICAL COMPUTATION
FOR NONLINEAR SYSTEM &
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