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ABSTRACT

The first n natural frequencies and mode shapes of an N degree of
freedom structure (n<N) are derived from the solution of a reduced eigen-
value problem of order smaller than N. The reduced eigenvalue problem is
formulated by using experience to select approximations to the first n
modes desired. Accuracy is improved when more than n modes are selected.
The method is illustrated by a study on an 18 story building.

INTRODUCTION

The analysis of a tall building subjected to dynamic excitations fe-
quires the knowledge of its natural frequencies and corresponding modes,
The computations for these frequencies and modes can be accomplished by
formulating an eigenvalue problem representing the undamped free vibration
of the building and solving for the eigenvalues and corresponding eigen-
vectors. The order of the eigenvalue problem is equal to the number of
degrees of freedom of the building, Thus, for a 20 story building with
one degree of freedom per floor, the resulting eigenvalue is of order 20,

In most cases the response studies of a tall building are acceptable
with only the first few modes being considered. If, for instance, only
the first 4 natural frequencies and modes of a 20 degrce of freedom
structure are considered sufficient for purposes of analysis, then it is
shown in this paper that using experience to predict the first 5 mode
shapes the eigenvalue problem of order 20 can be reduced to one of order 5.
The solution of the reduced eigenvalue problem of order 5 yields the first 4
natural frequencies and mode shapes with sufficient accuracy to be accept-
able for all practical purposes,

In general a reduced eigenvalue problem of order n will yield accept-
able results for the first (n-1) natural frequencies and modes. This
greatly reduces the computational efforts and permits experience in pre-
-dicting behavior to be entered as part of the problem solution, This
should prove .very useful in design as well as analysis.

A study of an 18 story building illustrates the method, The periods,
frequencies and modes computed from reduced eigenvalue problems of orders
3,4,5 and 6 are compared in tables and figures with those obtained from
the solution of the eigenvalue problem of order 18,

FREE VIBRATION OF A TALL BUILDING

Consider the N story building of Fig. 1 with the mass lumped at the
floor levels, For free vibration in the north-south direction, the
building has N degrees of freedom; one at each floor level., In free vi-
bration the only forces acting on the masses are the elastic spring forces

{F}= - [k] {u} ey

*
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in which {F} and {u} are respectively the vectors of forces and displace-
ments at the fioor levels and [k] is the corresponding stiffness matrix,
The minus sign in Eq. (1) results from the fact that the forces acting on
the masses are opposite in sign and equal in magnitude to the forces [k]{u}
that act on the building frames at the floor levels, and cause a dis-
placement {u} (see Fig, lb). According to Newton's 2nd law of motion the
forces =-[k]{u} acting on the masses are equated to the product of the

mass matrix ['m ] and the floor accelerations vector {u}

(kKl{u} = [ m] {u} (2

where [ ] designates a diagonal matrix with non-zero elements on the
principal diagonal only.

For the N degree of freedom building of Fig, la, Eq. (2) forms a set
of N linear second order differential equations. The solution is given by
{u} = -w?{u} (3

in which ¢ 1is the angular natural frequency of the building vibrating in
a natural mode represented by {u} . Substituting Eq. (3) in (2)

k] fu} = wlfm] {u} (4
Premultiplying each side of Eq. (4) by [k]'l results in
ful = W?k]~1f m] (u} (5)

since [k]~! = [a] where [a] is the flexibility matrix corresponding to the
lateral forces and displacements at the floor levels, Eq. (5) becomes

(0] {u} = 25 (u} (6)
where w

(D] = [a] [m]

Eq. (6) represents an eigenvalue problem, The quantities I/m2 are
the eigenvalues. The number of eigenvalues satisfying Eq, (6} is equal to
the number of degrees of freedom. To each eigenvalue 1/wi (i = 1,2,...,N)
there corresponds an eigenvector (u(1) } which represents the ith natural
mode of the vibrating structure.

SOLUTION OF THE EIGENVALUE PROBLEM

1. Classical Approach

Eq. (6) can be written in the form
(1 - 25 ) w = (7)
in which [I] is the“unit matrix. For a non-trivial solution the deter-
minant
1
| (0] -ty 1 ] =8

" . w
must vanish, i.e.,

A =0 (8)
Eq.,(8) is an Nth order polynomial in 1/w2 from which the eigenvalues
1/wj (1 =1,2,...,N) can be solved for. The mods shapes {u(i)} are found

by substituting the corresponding eigenvalue 1/”1 in

(10 -2 )

wj
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and computing any column of the adjoint matrix of({p}
1)}

1
- ;;7~[I]> « Any such
column is proportional to the desired mode shape {u 1

2. Matrix Iteration

The natural frequencies and mode shapes can alsc be found from Eq. (6)
by matrix iterations?l)(Z)The iteration begins by selecting a trial column
{u}¢] Tor the Tirst mode and carrylng out the mulrip)iTation (D) {u}e;.

The resulting column vector {u }., is used as a second tflal'column_in
carrying out the multiplication ~[p]{u} ¢2. This operation 1is continued
until a new trial column is proportional to the preceding one, that is until

{v] {ulgp= {u}t(rd-l): Aubep

where A= "lf , and tr designates the rth trial column.
w

1

Using matrix iteration, Eq. (6) will converge to the first mode,
Using the condition of orthogonality of the natural modesf the iteration a
procedure applied to Eq. (6) will yield the higher modes in ascending order, )

When each side of Eq. (6) is premultiplied by MZ[D]'I. then
(01-} {u} = w? {u} (9
where
1t = tmy7ta)-! = f 0 )olK]

Matrix iteration applied to Eq. (9) yields the highest frequency and cor-
responding mode first, The lower modes can be obtained in descending order
by applying the conditions of orthogonality.(l)

GENERALIZED STIFFNESS MATRIX

When a structure, such as the one shown in Fig. 1, is subjected to
external forces {F} the strain energy stored in the structure can be ex-
pressed by

v=1 = Fu, (10)
z i=p 11

in which u;(i = 1,2,...,N) are the displacements on which forces F;
(i~#1,2,...,N) do work. Eq. (10) can be written in matrix form as

U=z (AT (t1)

Using the stiffness matrix [k], force vector {F }and displacement
vector {u }can be related by the equation

{F }= [k]{u} (12)
Recalling that [k] is symmetric the transpose of Eq. (12) is
(F}T = (uTx) (13)

Substituting Eq. (13) into Eq. (11)
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1
U=3 Wit [k] {u} (14)
Applying a linear coordinate transformation

{u} = [¢] {a} (15)

where‘displacemgnts u;(i=1,2,...,N) are expressed in terms of generalized
coordinates q;(i=1,2,...,n), with n < N, then Eq. (14) becomes

<L T
U =5 {a}(k]lq {q} (16)
in which
[k1g=[41T[K] [ 4] (17
Matrix [k], is the generalized stiffness matrix of order nxn in the q co-
ordinate system. The strain energy in the u and q coordinates, expressed

by Eqs. (14) and (16) respectively, is identical because it is invariant
under a coordinate transformation,

GENERALIZED MASS MATRIX
The kinetic energy, T, of the structure in Fig. 1 can be written as

1 ~
= o "2
T 5 ;Zl my uf (18)

where &i is the velocity of the ith floor mass. Eq. (18) has the matrix form
T=2@Tn] @) (19)

Applying a linear coordinate transformation as expressed by Eq. (15)
{u} = [¢] {q}
then
{u} = [¢] {q} and )T = {(I7[e)T
Substituting for {u} and {1}T from the above in Eq. (19) gives
T=3 @) (@) (20)

in which
[mlg = [4)7tn] [0] (21)

is the generalized mass matrix of order nxn in the q coordinate system., The
kinetic energy in the u and q coordinates expressed by Eqs. (19) and (20)
respectively, is identical because it is invariant under a coordinate
transformation,

GENERALIZED STIFFNESS MATRIX IN FREE VIBRATION

Consider the structure of Fig. 1 undergoing free vibration in the
north-south direction. The strain energy is given by Eq. (10) which is
written as

U = 7 {ulT(p) , (22)

Using the flexibility matrix [a] vectors {F} and {u}l can be related by

{u} = [a]{F}
Recalling that [a] is symmetric the transpose of the last equation is
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)T = {F17{a] (23)
Substituting Eq. (23) into Eq. (22) gives

U = 3 (FYT[a]{F} (24)
The forces {F} in Eq. (24) are inertial forces in the case of free
vibration and are given by (see Eqg. 4)

{F} = w?[ m J{u} (25)

Transposing each side of Eq. (25) and recalling that [ m ] is diagonal,
then

(F}T = mZ{U}T[ m ] (26)
Substituting Eqs. (25) and (26) into Eq. (24) gives
V=3t mfallm] (u} (27)

Applying a linear coordinate transformation as expressed by Eq. (15)
and substituting for {u} and {u}T in terms of {q} in Eq. (27) yields

U =7 o @761 TE m ] m 61 (@)= 7 (@T[K] (@)
in which
= 4ra3T _ 4
[Klq = w11t m 1l E m 110] = w* (0] (28)
is the generalized stiffness matrix in the q coordinates.

THE REDUCED EIGENVALUE PROBLEM

Consider the structure of Fig, 1 subjected to a dynamic excitation.
Let the response of the structure be determined by the normal mode method
using the first (n-1) natural modes and frequencies of the building.
Using the Rayleigh Ritz method (1) {3) the first (n-1) mode shapes are assumed,
and the actual mode shapes can be approximated from an eigenvalue problem
formulated through the use of the assumed modes. The accuracy of the re-
sults is improved when more modes are assumed than the number of modes de-
sired. Let n modes be assumed; then the displacement vector {u} can be
written as in Eq. (15) where each column {¢(1)} of [¢] represents an as-
sumed mode shape. (See Fig. 2.) Matrix [¢]) is of order Nxn with n<N,
The q's are the generalized coordinates associated with the assumed mode
shapes. The assumed modes can be based on experience in predicting be-
havior or on the knowledge of the natural modes of structures similar to
the one under consideration.

The equations of motion for free vibration in the q coordinates are
-[KIq {a} = [mlgla) (29)

This equation is identical to Eq. (2) except that here the equations are
formulated in the q coordinates while Eq. (2) holds true in the u coordi-
nate system. The generalized mass matrix [m], and the generalized stiff-
ness [K], which appear in Eq. (29) are given by Eqs, (21) and (28) re-
spectively. Substituting from Eq. (28) the value ma[c] for [K]q into

Eq. (29) and using the relation

{q} = - w?{q} _
which holds true in free vibration, Eq. (29) becomes
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[m], a}= w?[G]{q} (30)

or
1
D] {q }= -3 {q} 31)
where w
[D] = [ml; 6]
Eqs. (30) and (31) are analogous to Eqs. (4) and (6) respectively., Note
that [m], in Eq. (30) is analogous to [k] in Eq. (4), and [G] in Eq. (30)

is analogous to [m] in Eq. (4). Egs. (30) and (31) represent the formu-
lation of an eigenvalue problem of order n<N, For instance, if only the
first four modes and frequencies are desired, the first five mode shapes may
be assumed so that [¢] in Eq. (15) is of order Nx5 and the resulting eigen-
value problem of Eq. (31) is of order 5 instead of order N as it appears in
Eqs. (4) and (6) in the u coordinates. The solution of Eq. (30) or (31)
can be accomplished by the classical method or by matrix iteration as dis-
cussed earlier. Matrix iteration applied to Eq. (31) will yield the lowest
frequency first and then higher frequencies. If convergence to the nt
(highest assumed mode) mode is desired first, then the iteration should be
applied to the equation

D1 M = w? (a) (32)
Eq. (32) is obtained from Eq. (31) by premultiplying each side by mz[{)]‘l.

Once the n natural frequencies and corresponding eigenvactors {q(l)}
(i=1,2,...,n) are computed from Eqs. (30), (31) or (32), the mode f?npes
in the u coordinates are obtained from Eq. (15). The first_mode tuyis
obtained by substituting {q(1)} in Eq. (15); similarly {u 2)}is obtained
from {q(2)} and finally {u%n)} from {q(M}, A comparative study of the
natural modes of a tall building obtained by this method follows.

NATURAL MODES OF A TALL BUILDING COMPUTED FROM A
REDUCED EIGENVALUE PROBLEM

The reduced eigenvalue problem expressed by Eq. (31) is now used to
compute the natural frequencies and modes in the north-south direction for
the 18 story framed building of Figs. 3 and 4. The following cases are
studied:’

Case 3 The first 3 modes are computed from a reduced eigenvalue
problem of order 3.

Case 4 The first 4 modes are computed from a reduced eigenvalue
problem of order 4.

Case 5 The first 5 modes are computed from a reduced eigenvalue
problem of order 5.

Case 6 The first 6 modes are computed from a reduced eigenvalue
problem of order 6.

Case a All 18 modes are computed from an eigenvalue problem of
order 18.

The case numbers 3,4,5 and 6 arc chosen the same as the number of modes
computed, for ease of reference. The 18x18 flexibility matrix [a] of the
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building in Figs. 3 and 4 was derived accounting for joint rotation as wel]
as axial deformation in the columns.(4)

The assumed shapes used in Cases 3,4,5 and 6 were those of a uniform
slender cantilever beam which are given by
y [cosh8H+cosBH][sinhBH(%)-sinBH(%J]-[sinhBH+sin8H][coshBH(%ﬂ~cosBH(%)]
u(gp= 2(sinhBH cosBH - coshfH sinpH) (33)
where u(ZJ is the displacement at a distance y from the base of the building
relative to the displacement at the top of the building (taken as unity for
convenience). H is the height of the building., The value of BH in Eq. (33)
was approximately taken as

g =221 4 (34)

wher¢ o is the mode number. Thus to determine the first assumed mode shape
{¢(1)} the va%g? BH = m/2 was substituted in Eq. (33). For the second as-
sumed mode {¢ }, BH = 3/2m was substituted in Eq. (33), and for the
sixth assumed mode {¢(® }, BH = 11/27 was substituted in Eq. (33)., The

six assumed modes are given in Table 1.

The matrices [m], and [G] as defined by Eqs. (21) and (28) respectively
have the following forms for Case 6:

7831.65 1086.43 1116.54 1158.80 1179.00 1231.71
1086.43 7897.29 1170.97 1151.92 1262.03 1188.56
_ {1116.,54 1170.97 7916.26 1290.92 1125.88 1420.42
[m]q_ 1158.80 1151.92 1290.92  7883.85 1468.90 1036.87
1179.00 1262.03 1125.88 1468.90 7786.28 1696.46
1231.71 1188.56 1420.42 1036.87 1696.46 7643.9%J

5756.40 238.08 337.67 328.96 371.16 392.40

238.08 357.78 73.93 61.78 65.03 69.97
[G] = 337.67 73.93 155.49 71.70 60.78 64.30
328.96 61.78 71.70 97.72 65.99 58.74
371.16 65.03 60.78 65.99 85.56 69.96
392.40 69.97 64.30 58.74 69.96 80.26

The matrices [m], and [G] for Case 5 are obtained from the above by
striking out the 6th row and 6th column of each matrix. Similarly for Case
4 the last 2 rows and columns are eliminated from the above matrices, and
for Casec 3 the last 3 rows and columns are eliminated.

The [¢] matrix as defined by Eq..(15) has the form of Table 1 for Case
6. Matrix [¢] for Cases 3,4 and 5 is also obtained from Table 1 by using
respectively the first 3,4 and 5 columns corresponding to the first 3,4 and
5 assumed mode shapes.

The natural vibration periods and frequencies computed for Cases 6,5,
4 and 3 are listed in Tables 2 and 3. The first (n-1) are found to be in
good agreement with the same quantities found from the solution of the eigen-
value problem of order 18, (Case a). The mode shapes computed for each case
are compared with the corresponding modes as computed from the eigenvalue
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problem of order 18 in Figs. 5 to 22, Here again, in general, the first
(n-1) modes appear to agree very well with those computed from the eigen-
value problem of order 18 (Case a).

CONCLUSIONS

An examination of Tables 2,3 and Figs. 5 through 22 indicates that using
assumed modes, the first n natural frequencies and modes of a tall, slender
framed building can be obtained with acceptable accuracy through the solution
of a reduced eigenvalue problem of order (n+l), The assumed modes in the
example of this study are those of a uniform slender cantilever beam, al-
though the actual stiffness of the building varies greatly with height,

(Fig. 4). This did not affect the computed periods and frequencies very
much. The computed modes, however, are more sensitive to the choice of
assumed modes and will be more accurate when more care is taken in selecting
the appropriate assumed shapes.

Because it is generally acceptable to consider only the first few
modes when the response of a tall building is studied, there are two im-
portant features in the approach presented here:

1. The analyst or designer has an opportunity to enter
his experience in predicting behavior as part of the
problem solution,

2. The order of the resulting eigenvalue problem is
greatly reduced, thus simplifying computations.
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TABLE 1. Assumed Modes for the Building of
Figs. 3 § 4 Computed from Eq. 33.

Level | 1st Mode | 2nd Mode | 3rd Mode | 4th Mode | 5th Mode | 6th Mode
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 0.9254 0.7412 3.5763 0.4091 3. 2465 0.0903
17 0.8559 0.5016 0.1943 -0,0947 -0.3388 -0.5219
16 0.7866 0.2678 ~-0.1484 -0.4725 -0.6421 -0.6356
15 0.7176 0.0453 -0.4213 -0.6520 -0.5744 -0.2423
14 0.6492 -0.1594 -0.5971 -0.6031 -0.1979 0.3461
13 0.5817 -0.3399 ~-0.6586 -0.3544 0,2891 0.6961
12 0.5156 -0.4901 -0.6027 0.0114 0.6414 0.5519
11 0.4511 -0.6051 -0.4426 0.3796 0.6832 0.0144
10 0.3887 -0.6812 -0.2057 0.6366 0.3925 -0.5326

9 0.3290 -0.7171 0.0697 0.7032 -0.0891 -0.6985
8 0.2725 ~-0.7133 0.3405 0.5579 -0.5263 -0.3646
7 0.2196 -0.6726 0.5652 0.2428 -0.7049 0.2297
6 0.1710 -0.6001 0.7107 -0,1490 -0.5365 0.6589
5 0.1272 ~-0,5029 0.7574 -0.5033 -0.1013 0.6145
4 0.0889 -0.3902 0.7033 -0.7189 0.3919 0.1253
3 0.0566 ~-0,2726 0.5643 -0.7405 0.7111 ~0.4659
2 0.0310 -0.1621 0.3739 -0.5784 0.7184 -0,7537
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 2. Periods for the Building of Figures 3 and 4.

Periods (in seconds) com- Periods (in seconds) computed from a
Mode {puted from an eigenvalue reduced eigenvalue problem (Eg. 31)
Number |problem (Eq. 6) of order 18. |of order
6 ) 4 3
CASE (a) CASE 6 CASE S  CASE 4 CASE 3
1 3.7348 3.7346 3.7346 3.7346 3.7338
2 1.3115 1.3111 1.3109 1.3096 1.3089
3 L7506 .7500 L7580 L7580 .7484
4 L5206 .5202 .5186 .44996
5 .3900 .3806 L3640
6 .3057 .2682

TABLE 3, Frequencies for the Building of Figures 3 and 4,

Frequencies (in c.p.s.) com- | Frequencies (in c.n.5.) computed from
Mode |puted from an eigenvalue a reducud eigenvalue problem (Eq. 31)
Number |problem (&q. ) of oxder 18. | of order

6 5 4 3
CASE (a) CASE 6 CASE 5 CASE 4 CASE 3
1 L2677 .2678 L2678 L2677 L2678
2 L7624 L7627 .7628 L7035 L7640
3 1.3164 1.3175 | 1.3192 | 1.3192 | 1.3362
4 1.9206 1.9222 | 1.9283 | 2.0015
5 2.5640 2.5364 | 2.7470 ;
6 3,2711 3.7289 i
i
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AN ENGINEERING APFROACH TO COMPUTING THE NATURAL MODES AND

 COMMENT BY

UESTION BYs

FREQUENCIES OF A TALL BUILDING.

BY M.F. RUBINSTEIN

G. HOUSNER - U.SOA.

4 gtudy by Dr. E. O'Kelly of the California Institute
of Technology shortly to appear in the Bulletin of
the Seismological Society of America, shows that when
applied the method of Professor Rubinstein does give
conveyance to the exact mode shapes.

D.A., LAWS — NEW ZEALAND

1. Why not use Equation (17) instead of (28),
to substitute into Equation (29)%

2, It would seem possible to give theoretical
reasons why Professor Rubinstein's method
may be expected to give good results.

The method appears to be equivalent to this: Constrain
the building so that the only shapes it can go into

are the assumed mode shapes, or superpositions of them;
then solve for the actual modes of the constrained
building, Thus we must ask, are the first four mode
shapes of the unconstrained building likely to be
approximately superpositions of the assumed mode shapes?

Where a building has one degree of freedom per floor,
the, say, six assumed modes provide for the description
of possible building shapes in a certain degree of
detail, (If we guessed more modes, their nodes would
be closer together and they would represent perhaps
excess detail), If we are trying to piece together
the true fifth mode shape, say, then perhaps our
assumed fifth mode errs in having its nodes too far
apart in the top part of the building, so that the
agsumed sixth mode must be called upon to help describe
this part of the true profile; but less likely the
assumed seventh or eleventh mode, if we have estimated
these. In the same case the assumed fourth mode may
help in describing the lower part of the true fifth
mode.

Considerations such as these make it plausible that
the superposition of six estimated shapes will indeed
give us good approximations to four or five true mode
shapes. Experiment apparently confirms this.
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AUTHOR'S REPLY:

On the other hand the results obtained, even by
repeated application of the method, can never go
beyond the range of the linear combinations of
the initial input shapes.

I think thaet perkaps some considerations such as
these are implied but not expressed in the paper,

1.

Equations (17) or (28) may be substituted
into E. 29.

Equation (17) utilizes the stiffness matrix
of the system and Equation 28 utilizes it
flexibility.

The question raised here is certainly a good
one and is best answered in a recent paper:
"Analysis of the Convergence Properties of
Rubinsteinte Method for the Determination of
the Lower Modes of Vibration of a Multi Degres
of Freedom System", by M.E.J. O'Kelly, Bull.

Seis. Soc. of Amer. Vol 54 pp 1757-1766,
December, 1964.
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