CONSIDERATION OF THE ROTATIUN OF THE FUUNDATION IN THE ANALYSIS OF A STEEL
CHIMNEY 130 m, HIGH, SUBJECT T0 SEISMIC MOVEMENT.

BY HANS ROSENFELD

lo- Introduction

l.,1. The Scientifical and Technological Rlesearch Department of the
Catholic University of Chile (DICTUC) has developped in the past time
@ series of studies whose principal object in this first stage, has
been to investigate the design of earthquake resistant structures and
to analize the damages suffered by structures affected by the great

1960 chilean earthquake,

For the conduction of this investigation a Committee was organized whose
members were: Civ. Lnge Prof. César Barros Le; Civ, Eng. Prof, Luis Cri=
Sosto; Cive Lnge Prof. Arturo Morales; Civ. fng. Prof. Herndn Ayarza;
Civ, ling. Prof. Jorge Troncoso. This Committee was responsible for the
direction and planning of the differént studies that had to be developped
by civil engineers and graduates of our University,

During the study of the effects on structures observed in the chilean
earthquake of 1960, we got the opportunity to analize the interaction
between foundation of structures, ground conditions and the structure
of the buildings specially at the locality of Rio Negro. We found that
the mass of foundation in relation to the mass of the structure could
have an important influence on the response to earthquake forces, A
brief and general analysis of such influence was prescnted elsewhere (1)
Later we have to analyse the response to earthquake of the Chimney for
the Copper Foundry "Las Ventanas" whose principal characteristics are
indicated in fig. 1. We decided to investigate this influence.

This is interesting, due to the fact that thig type of structure requires
8 foundation with a mass commonly wore than ten times greater than the
mass of the rest of the structure. Under these conditions, if due to
Seismic action, the soil permits movement of the foundation, so that it
vibrates together with the upper structure, the effect of this foundation
mass on the upper structure, proportionately much smaller, must produce

& resulting vibration very different to the one resulting if we suppose
the upper structure embedded at its base,

(1) Andlisis del comportamicnto de las construcciones escolares en
la zona Sur durante los sismos del 21 Yy 22 de Mayo de 1960 y,
en especial, de las estructuras de Rio Negro. First Chilean
Sessions on Seismology and Eurthquake Engincering hold at San=
tiago, Chile, July 1963. By Civil Engineer Prof. César Barros L.
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Furthermore, & soil not made of rock will always adwit small movements of
the foundation, which will be greater when the soil's compressibility is
greater. We will assimilate these movements to a rotation of the foundetion
around an axis in the same plane as its base, and passing through its center
of gravity.

The influence of the foundation®s rotation on the distribution of stresses
along the length of a steel chimmey 130 me high, when it is shaken by an
earthquakey will be determined heres
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2.~ lypothesis on the foundation's rotation,

2.1, It is mnecessary to determine the foundation's rotation -as a function
of the torque at its base. For this purpose we make the following
suppositions:

a) We suppose that the soil is a perfectly elastic medium, with
a compressibility coefficient Ks + 5,0 Kg/cma, in which the deformations
are directly proportional to the stresses.

b) We suppose that a trapezoidal stress distribution pattern is
maintained in the soil at all times. (see fige 2).

Therefore, we will have:

Foundation rotation = o=4 A:_(_:’:ﬁ 6}' =M M _ ML
£ Ks W “IBL T TE
Where = moment of inertia of the foundation base around axis 0.
L= ML o=_M
Ks .lb /fsfb ('/)
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34~ Dynamic analysis.
3,1 — Scheme of the system under consideration,

We consider three elements in our structural systems

a) An upper structure, which is the chimney proper, in which we shall consi-
der that the inertia by rotation and the deformation due to shear stress are
practically nonexistant.

b) A perfectly rigid foundation, not subject to lateral support.

¢) A bed of springs supporting the foundation and transmits the loads to
the firm soil (see figs. 2 and 3); at the same time, it transmits the soil's
movement to the foundation. This bed of springs renresents the soil immediately
adjacent to the foundation's base, which we have supposed perfectly elastic, with
a compressibility coefficient Kg defined above.

It is considered that the external load indicated in fig. 3 acts on the
system. That is to say, a veriable load 9 (x,t) per unit length along the height
of the chimney, and on the foundation a force Qs (t) acting on the centre of mass,
and a torque Mg (t)e

Nomenclature.

il

X = height of a point of the chimney, measured from its base
S = centre of mass of the foundation.
#s = height of the foundations's centre of mass, measured from its base,
)= mass per unit length of the chimney.
My = foundation mass.
Jx) = moment of inertia of the chimney's sections.
Ip = moment of inertia of the foundation's base.
Is = moment of inertia of the foundation's mass around a horizontal axis
passing through "S*.
£ = Coefficient of elasticity of steel m 2/-/0° 7on/n?
K5 = Compressibility coefficient of the soil, defined in 2.
¢t = time,
c;,[x,é)-: variable external force ner unit length, acting horizontally on the
C-himneyo
&s()= variable external force acting horizontally on the foundation.
Ms(t)m variable external momant acting on the foundation.
y{\’,i)= horizontal movements of the chimney's sections at each instant.
Ys(¢)= horizontal movements of ‘the foundation's centre of mass at each instant.
§(t) = rotation angle of the foundation at each instant.

342 = Theorical development.,

321 ~ Bguillibrium equation.— We can state the following dynamic equillibrium
equation for a djifferential element of the chimney:
L T A (2)
BeR+2~ Generalized coordinates and normal coordinates of the system,— The displa-
cements of the system's mode shapes or normal modes can be expressed in generalized
coordinates. On this way, for the displacements of the n*" mode shape we have:
CHINNEY : Yn (1) = Y}, (t) &, () ) FUKDATION: Yo (2) = Yy () Fsn 5 On(t) - Yo (2)6n 3)

where Yp (¢) is the generalized coordinate, representing the vibration's amplitude
at each instant, at an arbitrary reference point.,
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qﬁ,,fx) and Psn are displacements relative to the reference point, constituting the
normal form of wvibration,

£><n=9é’”/hs is the foundation's relative rotation.

The system's normal cordinates are the generalized coordinates which repre-
sent the amplitudes of the system's different mode shaves,

3983~ Orthogonality of the system's mode shapes.~ Let us consider two mode shapes

#n and &mn o As their movements are harmonic, the forces of inertia can be
expressed as a function of the displacements, In this way, for the system's
mode wWe have:
forces of inertia in the chimney, per unit lengths .&() W3, &n (¥)
inertial force of the foundation : Mr W Psn
inertial moment of the foundation: Is w8 Xn
where (Wp is the n" mode shape's angular frequency.

According to Betty's law, the work performed by tne " mode's incrtial for-

ces, due to the displacements of the m¥ mode , must be equal to that performed by
the forces of the mf mode due to the displacements of the 1t mode.

That is to say: -[L[/“(”)wf, By ()] Py () Alx» M Wfy Bory Fomm + 15 WG X %y =
< [L6) Wiy Fon ()] B () O # Mg Wy o s+l Wiy O

a
and therefore, for ~. NFEM :
? 5 [l)$,6) o Gl #1105 B s # 15 XDy =0 (4)

vhich is the orthozonality condition for our system's mode shapes.

J3.204~ Displacements cxoressed in normal coordinates.— The system's displacements
under the action of external forces can be expressed in normal coordinates, as
follovws: o0

Ylot) <2 Y, () #,00), yjfé){é‘ V. (©bn ; 862 Yy )

n«d

BeRe 5= Oxternal load expressed in normal coordinates,- Ve shall exoress itne
external forces as a functlon of the forces of inertia assoclated with the different
mode shapes, Tuerefore ve have, for the load acting on the chimney, per unit length:
q(x,t)';‘,)’”ﬂ)&)ﬁ P ) (k)
If we now define ac the system's generalized force, for the n
Fn /l') = Yn[f‘)w% ™M .
where??), is a reference mass for the nth mode s vhich corresponds to the
concent of gencralized mass of the system for said mode shape.

We can then write: (x¢) "g 7;',1,{;) & () m(x) (g)

th mode shape:

In the same way, for the exter’gal force applied to the foundation:
Qs) - £, Y, (#)0F Son M -5 TBIEL on mig _ (7)
and for tae Ze:cternal momen}aoplieo to the foundation:
M) E Yy 8) WE 0,15 = L BB o I (8)

3,0.6~ Dquillibridm ecuation in noymal coordinates,- iHeplacing in equation (2) the
displacements y(x¢) and the external load 9 (xt) by their expressions in normal
coordinates, we finally come, by sc.aration, to the well known set of normal equa-
ticns for the system: .
7 ) 'Y;,fé).«w,f}’,',/fbf,%fg o n-1,2,3....... %0 (g)
one for each amplitude ¥n , and in a manner entirely similar to that which
determines the forced vibration of a system with one degree of liberty,which
reduces tne analysis to that of such systems.
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3,207 Detrrmination of the system's generalized forces and masses,- Equations
(8) (7) and (¢) show us two ways of expressing the external loads. For these
expressions to be equivalent, they must give as a result an equal amount of work
for an arbitrary disnlacement of the system; putting dowvn this equality, we can
determine the system's generalized mass and force for each mode shape,

Lot us suppose that the system is displaced according to the M mode
snape vith Y, =1 s then the folloulnf' st holds

f@ﬁ’ﬁ) By (v)clx *Qs{f)?%m + s /t)(x f[[ %/6195”0)/&/))]75}”(,)51,,[[ J‘C‘)‘?ﬁm ml—']?%m *
[E Py/z‘/D(  IsJ5m -z E)_Cﬂ[f & 0) % ﬁr)/af)d)( » Mg Pspy Psm +].50(n°‘m]

Dae to tne orthogorialit; condrblon.
W%L(EZ_[ ,é,ﬂ(x)/u[y)dx,cm 755,,,+]50( ]
If we dm:me the following as the system's generalized mass for the mth
mode shapes m,, ‘f ¢,,,6’)/t€5r)dx*777/_- 7%”7 "ISO(m
Ve have for the system's generalized force for the same mod

Bole) - [ [t) By (x) x5 B (&) Poy + M5 (2) Ky
These expressions supoose that the external load indicated in figure 3 is
acting.

248- Actio a seismic movement on the srstem,— Let us now consider the action
of an earthquake which gives the foundation's base an acceleration y(é )

For the external force we shall then have;

FOnt) () Gy (t) Qs =Gy (t)  Mslt) =
and for the expressions of the system's generalized force and mass, for the
b mode shape z, ()= - 9b(é)[f A (x) Py )tx + Mz Psry ]

7, /Aﬁ)?ﬁz(x)d)u‘ M, 9557,, +7 O(M (/0)
If we now deflne.

4 - Jorats) By 6) el /0 i
7 iale) BEC) AN T, Pon 155y,
and introduce in equillibrium equation (9) a new variable Z,0t)-Y, 1) o
we shall finally haves :*
Zn &)+ W2, (¢) = - 9’5[“) (1)
fOI‘ n = 1,2,5 tesceesonsoca OO

The general solution for this differential equation is given by Duhamel's
integral,

Replacing V), (¢) <[, 2,%) in equations (5), we obtain for the system's
displacements at each instant;

y(’?*) '[;Z:ﬁn‘zﬂ [t)¢ﬂ (x) ys[f}"gl,@n'ny (t)%'/; 0/1‘)”§ﬂ/7'z,7({')0(/7 [’2)
The factors /[, arec determined by knowing the system's mode shapes.

Later we shall realize the great importance of the term Me Psn in the
expression for the generalized forces, when calculatin their numerical value for
the higher modes. This term, which appears due to the foundation's rotation, will
considerably increase the valuc of the factors /@» corresponding to the high
mode shapes, thus increasing the chimney®s internal stresses.

2.0= Shear forces and bending moments in the chimney,— saking use of the normal

coordinates, we can determine the instantaneous shears and bending moments along
the chimney, by superposing the effects of each mode shapes.
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Taus: V& &)« L V(0 V()< 5 B,2, (¢)Vn (x) (3)
Mf)’;i’) =n‘i Yn/f) M, (x) ':Z:, ﬂﬂzn () My (%)

vhere Vp(¥x) and M,(x) are the shears and bending moments associated with the
gifferent mode shapes ¢, , for Y,(¢)=1

These expressions give us the exact values of )/ and M at each section of
the structure and at each instant. llevertheless, in practice we only determine,
for each section, the maximun possible values of V' and M , which are definitely
the ones that interest us for the design, For this, the maximun Z, values are
calculated, corresponding to the participation of each mode in the system's total
vibration, by means of the "Spectrum", which corresponds to the scismic movement
to be considered.

Thus we have that the functions:V (v)f; Zn max and Mn¢)fZ, max cive us the
maximun valucs of the shears and bending moments producsd in the chimney by the
component of the 7% mode, If we now superpose these runctions, determined for
each one of the mode shapes, we obtain the meximun possible values of V¥V and M
along thewchimney. That is to say: -

V)may <2, Vn (%) B 21y mas. M () max. 'n; My () Bn Zn max (’4)

By "Spectrum" we must understand tne family of curves which determine,
for a given seismic movement, the maximun speed S5, of a system with one degree
of liberty, as a function of its natural period 7 , and of its damping, which
serves as a parameter, and which is expresced as a fraction A of its critical
damping. To determine the maximun displacement ve have: Zmgy = (I’J Sy with ¢
being the system's angular fregquencye.

In practice to consider the damping A, of the system in each mode shape,
we apply the Spectrum with the curve corresponding to said damping A,

3,3.~ Determination of liode Shapes and Natural periods.
36301~ Fundamental mode.

Newmark's Methode~ The system's mode shapes have been determined by Newmark's
method of numerical integration. Figure 4 shows graphically one cycle in the method's
convergency process, taking into account the foundation's rotation. As a refercnce
point we have chosen the top of the chimney (@ (¥)=4 for x- 130m.), which is
supposed divided into 4 parts. $® is the supposed mode shapes with which the
process starts. In this way we come to curve ¢/ , with which a new cycle starts,
and like that, until we obtain ¢f°) =) by conversence. After that, the angular
frequency (O and the natural period 7 are determined from the following

expressionss
Xp ¢[\,}_ é ,24 C()Z
n - 144 EIg g
where g = acceleration due to gravity = 982 M/sege
Calculations.— The calculation was done for 10 divisions in the chimney. The
results are given in figure S.

343,2= Hisher modes.,

Purification ovrocess,~ let us analyze first the purification process, to
permit convergence tc} )the higher modes of our system, in the previous methods

Let 952(0) 7 Xz be an approximete form of our system's second mode, from
which we want to extract the first mode's component. We can write downs:

(for any given section) and 7= -%Z

52’;(0)‘ 9’2{0}*“22/ ? 75270)' 95:)‘ Qpy Pr (/5)
O?zﬂ’}-'o(ro)'ﬁ az/ (X, S Mf’)‘o—(‘guj-&2,u,
where ¢f‘) = approximate form of the second mode shape purified of the
first mode. '
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Clpy by = component of the first mode.
How, as the purified second mode must comply with the condition of being
orthogonal with the firfst(n)lode s We have: (o) )
©. =
-fa i f’)ﬁ(’)/aﬁ’)d"* Me Fp oy * I %5 K, = 0
and therefore, using equations (15), we must haves
e 7(e) —(0) L2 2 2
L B (0 G 1L g g [ ) e Ty 5010
o, - o EE) ) ) e B Bert LK 0

14 j4¢ E[ A 2 2
X) {;\*) X + mF ¢ +I_5(X
The iﬁte’grailé in this ex:gressién are also calculated by the numerical

integration methode After the value of tne coefi‘iciogg ) RXzy 15 ;‘ound, cach term
# is multiplied by <, and substracted from ¢, ~, as indicated in equations
(15).
The process is similar for the purification of an approximate third mode
curve, except that now the curve must be purified of the first and second mode,

. —(: o, (a) ~(o)
Therefore we must write downg %o)z ;é_: 343,45, * @30 b, Sty Py APz de

-(2) (o) . (o) —(o
Ky =&y + 03y Xy r 3,0, I Ky'e 3= X -ay,K,

After that, applying the conditions of orthogonality, which the purified

third mode must comp]yLv:it.h the first and sg_co)nd mode, we obtaing
ne) °. = ()
Jo 1 008G sulx) el Wl Py sy I K5

A1 BB (i) oy # Mg 5, +15
= (0, 7 ¢9) “(0)
a2, - LB Je )+ M B Fpr I X

Jo EO) () s + M hop # T2

The same method is used for the fourth and higher mode shapes;
Calculations.~ The higher modes second, third and fourth were calculated, The
results are given in figure 6,

3ede~ Calculation of the factors /3/7

4 v
Bn- Jo () & (3) e+ Mz Bon _Pn(t) [Gp(t)
‘);L/ufx)%f(x)dx + Mg Bant LK Mn N

. In this expression, the numerator multiplied by the seismic acceleration
Y (¢) represents the system's peneralized force, and the denominator renresents
the generalized mass of the same for the corresponding mode shape., These factors
are of vital importance, as the chimney's shear forces and bending moments are
directly proportional to them, according to equation (13) and (14).

The following is a summary of the numerical values;

1st,. mode | 2nd. mode | 3rd, mode | 4 the mode | 'Com, Facts
Jo M) $a () tx 73.3344 | -85.6479 42,0304 | -16.6428 A/129
Mg Psn _ 24,7950 | =27,5000 78,1000 | —210,1899 A/1249
(x) 6, 0)dx+m S 2 | 38,1858 45,8860 46,8218 71,4453 A/y24
Therefores n3.33 o5
. 3344 + 4,7950 78,1294
A 38,1858 38,1858 .
_ =BB.6479 ~ 27.5000 -96,1479
- 45,5860 45,3860 —%.0954
42,0304 + 78,1000 120,1304  _
By - 46.5218 26,6218 25657
-16.8426" ~ 210,1899 _ —227.,0325 .
1y 71,4253 TIoaass - ~oel7TL
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As e had already said in 3.R.8, we can here observe how the term 1, %,
in the expression for the ge{l@ra.lized force increases in size with resvect to
the other term of the same J;,a ¢ndx s a8 the system's mode shape degrec
increases; vith this, the influence of this term on the numerical value of the
gencralized force Pn , and therefore the value of factor Bn s 1s eacl: time
more important. In thils way, this influence which comes to 6,17 in 7, , rises to
28,6 in Ps 4 65,575 in & and 9R.5: in Pz ,

It is very dinteresting to stress this, as the presence of the term m,%,
due only to the foundation's rotation, the influence of which we are trying to
e

is
joterinine in tne structure's benavior and in tne internal loads vhich are produced.

ot
In tne seme way, tie terms 17, ?5&2,, and Is X% , which we find in
the expression for the zeneralized mass, ars due to the foundation's rotation, and
its intylueice in its value also increases as the mode's degree increases; never-—
theless, they are mch smaller than the former. lhus we have tnat tne joint
influence of said terms is 0,047 in !y, 1,02% in lig, 8,1 in liz and 38,3 in M.

How if we make use of the numerical value obtained, and we do not take
into atccouglt the influence of the foundation's rotation on the values of j; B, clx
and f M p, Ax 4 vhich is relatively small (1), we can determine “the values of

4

,Br) anproximetely, corresponding to the condition of mrfect embedding of the
chimney in its base. In this ,case we haveg
)@y (v) A x

ﬂﬂ il 2
K ) x
and with this, the follovrl._%ggfé'}{i%ate valuess = 1,92 (5= 098
PBg=-157 (B4 =-0.38
which means that the foundation's rotation in our case has increased these factor s

by ann imately . . .
7y aprreximatelys 1,07 times in the first mode

1,39 times in the second mode
Ry6R times in the third mode
8,06 times in the fourth mode

Based on this, and taking into account what was seen in (3.2.9), we can
say that the foundation's rotation must mean, when compared to the perfect
embedding, o considorable increasc in the shear forces and bending moments intro-
daced by the hirher modes in the chimney; specially the third and fourth mode.

Cn the other hand, the action of the first mode is practically uninfluenced by
the foundations rotation. These effects of the foundation's rotation will increase
as the foundation's mass increzases in relation to the chimney's mass.

(1) For exemple in tne first mode, the found%tion's rotation produces an increase

N . . o s N 2

of these values of apvnroximately 6% in f dyx and of 47 in
L £ apr v 6 A M 7% > ‘/o‘ M 95/ A x

4.~ Shear forczs and bending moments in the calmney.
4del.~ Calculations,

Determination of the response Zn maxa.~ The "Average velocity sme ctrum" given
by Housner in "Shock and Vibration Handbook", applied to the "E1 Centro" earth-

qualke in Celifornia, 1940, vas used, The damping used was 2;; of the critical damping
for esach of the system's mode shapes.

The followingz values wwere thus obtaineds

7, max = 16,0920 cm.
Z, max = 33,5784 cm.
Z3ymax = 0,6062 Cllle
24 maXe= 0,0580 Clle
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Calculation of maximun displacements at the end of the chimney.— Sec table 1,
Caleulation of mazdimun shear forces and bending moments. Sce tables 2, 3 and 4,

Fizure 7 shows the lour mode shapes calculated B, o> Py anp &5 and
the curve of the relative shears and bending moments |4, (¥) and My, (r) , associated
to said mode shapes.

Table le~ Laximun displacements at the end of the chimney.

Table 2.~ Comaon factors.

Table 3e= liaxdmun shsar forces

Table 4.~ llaximun bending moments.

Aga20— Analvsis of results, Comparison with results obbained witnout considering
foundation rotatione=-

The above results check with what was said in (3.4), as resnects the
increase in the internal stresses produced by the higher modes in the chimney, as
a consequence of the foundation's movement.

We can point out the followine specially significant facts which can be
cbserved from tables 3 and 4, and which confirm what was said befores

1) The stresses produced by the second mode shape are now greater than
those produced by the first mode.

%) The stresses produced by the fourth mode arc on an average approximate~
1y erual to 157 of the total maximun stresses (07 in the shears and 107 in the
bending moments). This is surprising, as in structures such as ours, but embedded
&t their base, the influence of the fourth mode is absolutely unimportant.

3) For design purposes, the stresses introduced in the top part of the
chimney by the third and fourth mode shapes are decisive,

Figure 8 shows our resulting curve of maximun moments (full line) and the
one that results from considering the chimncy's base embedded (dotted line), for
the purpose of comparing the resulting internal stressese

We can observes

First, that along the lenpgth of the chimney, the resulting intcrnal
stresses in our case are very much greater tran those that result from considering
an embedded base, This is due to the considerable increase in stresses introduced
in the chimney by the higher modes due to tne foundation's rotation, as has already
been established.

Furthermore this difference is sneclally great in the top half of the
chimney, due to the action of the third and fourth mode shapes which in our case
have great importance in this part of the chimney, and which in the case of an
embedded base have practically no influence. Observe for example that at elevation
65, the maximun moment due to our calculation is three times higher than that
which results from considering the chimney's base embedded. This clearly shows the
importance of the foundation's rotation in very flexible slim structures as the
one we have just analyzed. This effect will increase when there is an increase in
the ratio between foundation mass divided bytheuppersiructure mass, or in other words,
as the upper structure becomes slimmer, and furthermore, as this structure becomes
more flexible,

6= Conclusion,

From the above comparison we come to the conclusion that in the dynamic
calculation of very slim and flexible continuous structures shaken by, seismic

movement, the foundation's rotation must necessari be considered, when it is
permitted by the soils Hy N i’

11-510



This is because, in the type of structure mentioned, the foundation's
mass is a great vart of the total mass, sc that the inertial force and moment
introduced in it due to small rotation, can become appreciable with respsct to
the rest of the inertial forces mroduced. The effect of said inertial forces of
the foundation on the system's vibration is felt in two aspectss

1) It alters the system's mode shapes, increaing the corresponding natural
pe I‘iOdS ® .

2) It increases the system's generalized force and generalized mass in
each mode shape, in increaing oroportion to the modss! degree.

This last aspect 1s specially interesting, due to its greater influence
on the system's internal stresses. In this manner, the increases in the generalized
forces bring about proportional increases in the internal stresses; on the other
hand, the increases in the generalized masses produce 2 decrease in these stresses,
However, the fundamental fact is that the increase in the system's gencralized
force, in the first four modes, is much greater than the increase in the generalized
masse The conseguence of this is that in said modes the system!s internal siresses
increasee Although the increase of these stresses in the first mode.is small, it
is considerable in the second, third and fourth modes, to a point where it is
decisive for the structure's stability, This increase will be greater or smaller,
depending on whether the structure is more or less slim and flexible,.

In summary we can say that the rotation of the foundation, due to its mass,
which is pronortionately ereat in the tyve of structure we have studied; permits
the higher mode shapes to introduce stresses which are vitally important in the
structure, which have to be considercd in its design.
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Table le- Maximun displacements at the end of the chimney.

n Zn max. Bn y;-)m_a_xf_‘_?mxﬁm
1 16,090 2,0460 32,9240 chme
2 3,5764 =L ,0954 =-7,4940 cme
3 C, 5062 2,5657 1,5554 cme
4 0,0380 ~3,1771 ~0,1207 cme
Table 2o~ Common factors.
2 2.2
n ) VYamar [m] ;/{g;n nmax. ){2@_ Ynmax.
1 0,329240 00,5590 7,673
2 -0,074940 -1,5763 -20,4925
3 0,015554 2,1446 27,8805
4 -0,001207 —25R112 -R8, 7456
Table 3.~ lMaximun shear forces.
Jste MODE 2nde MODE 3rd, MODE 4th, MODE TON.
Secc v x 0,559 v x 1,576 v x 2,145 v X 2,811 |¥=V max.tot
9 8,61 4,81 7,58 11,95 8,49 13,93 5,56 12,30 42,98
8 3,57 13,18 15,58 RG,14 9,95 R1,35 5,11 11,30 71,08
7 35,33 13,75 16,98 26,77 2410 4,50 =5,74 | «1R,69 83,70
6 45,34 R5,34 9,83 15,50 -10,64 | —R2,81] =-13,38 ] =R9,59 03,24
5 54,43 30,43 -4,54 -7,18] -19,96 [ 42,82 =7,01 ] =15,50 85,90
4 61,78 34,54 ~R3,04 | =36,31} =17,31| =37,13 10,14 2R 442 150,40
3 67,05 37,48] =40,91 | —64,49 ~2 494 ~6,3L G, 76 45,90 154,18
2 70,58 39,45] =55,37 | =87,28 16,43 355,23 15,63 54,56 196,51
1 724,56 40,57] =64,65 | ~101,92 33,08 70,94 -1,08 ~R 340 215,82
) 73,33 40,99 =68,65 | -108,21 42,03 80,14 =~16,84 | -37,24 R78,58
Table 4.~ liaximun bending moments.,
Seccl 1ste MoDe 2nde  MoDE 3rde MODE 4th, MODE TON. NT.
M X 7,887 1 x 20,493 M x 27,88 U X 28,746/2=M max,tot
9 8,61 62457 74581 155,2€ 6,49 | 181,05 5,56 | 159,89 558,79
8 32,18 | 233,86 ”4,16 | 495,10 16,45 | 458,53 10,67 | 306,72 1484,21
7 87,51 | 490,58 41,14 | 843,07 18,54 | 516,98 4,93 | 141,73 190R,36
6 2,84 | 820,05 50,97 | 1044,59 7,91 | 220,40 —8445 | =242,87 2327,91
5 167,27 | 1215,83% 46,43 | 951,53]| -1R2,06 | ~336,21 | ~15,46 | —444,32 204.7,69
4 229,06 | 1664,63 R3,39| 479,44] -R9,37 | -818,89 =5,38 | ~152,90 3115,86
3 296,11 [ 2151,93] -17,51| -358,871 =32,32 | ~900,95 15,44 | 443,83 3855,58
2 366,69 | 2664,82] 72,88 |-1493,45] ~15,89 | ~443,02 31,07 | 893,06 5404,35
1 439,25 | 3192,17f -137,53 |~-R2€18,38 17,19 | 497,22 29,88 | £61,39 751,65
0 512,58 | 3725,11{ ~205,18 -4225,15 59,22 | 1651,04 13,14 | 377,73 9979,03
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