SEISMIC FORCE EFFECT ON SUBMERGED BRIDGE PIERS
WITE ELLIPTIC CROSS SECTIOKS

By SETMA KOTSUBO*

ABSTRACT

4 thecretical sclution of dynamic water pressure during earthquakes on
submerged structures with circular or elliptic cross sections such as bridge
piers and intake towers is obtained and the results of calculation are shown
in disgram. Then, by using a theoretical solution of dynamic water
pressures on them during their elastic vibrations, s exact solution of free
vibrations of bridge piers with arbitrary loaded weights and water level are
obtained, and a convenient diagram for computing the natural periods of
vibrations of submerged bridge piers are shown. Furthermore, a formula
giving the magnitude and the vertical distribution of added mass during vib-
rations is obtained, enabling to calculate the natural period of vibration
of submerged structures by energy method.

INTRCDUCTICN

A most important matter for us in designing submerged structures is to
decide the dynamic water pressure on them during earthquakes. It is al-
ready known that when the submerged structures vibrate, & part of the water
around the structures acts upon them as a added mass, and for a case of a
gtructure with a simple cross section such as a circular cylinder, a theo-
retical three- dimensional solution of dynamic water pressure has been
ocbtained and verified with experimentsl. But, for a case of a structure
with 8 rectangular cross section or for a case of a plate, a theoretical
three-dimensional solution has not yet been obtained and even in the case of
two-dimensional theory, a large difference lies between the theoretical
values and the experimental wvalues.

That is to say, by analyzing two-dimensional potential flow about a rod
of infinite length having a rectangular cross section and moving broade side
on, Riabouchinsky® found that the added mass of plate was 1.05 times as large
as the mass of fluid inclugded by the cyl%nder having the radius of equal size
of the width of the platé€," T. E. Stelson’ confirmed it by model experiments.
#hile, R. W. Clough4 reported in his paper that the added mass of plate was
about 1.3 times as large as the mass of the cylinder of fluid having the
radius of the same size as the width of the plate.

It seems that the difference between these results of expe}imenta depends
upon various factors, such as methods of experiments and conditions of experi-
ments. The author obtained a theoretical solution of three-dimension
about the dynemic water pressure on the bridge piers and the intake towers
having cireular or elliptic cross sections, and furthermore, confirmed the
theory by model experiments, making clear the dynamic water pressure ( esdded
mass ) on submerged structures during earthquakes and elastic vibrations.

* Asst. professor of Kyushu University, Fukuoka, Japan.
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THEORY OF THE DYNAMIC WATER PRESSURE ON BRIDGE PIERS
WITH ELLIPTIC CROSS SECTION

1, Differential equation

As showh in Fig. 1, we consider amelliptic cylinder of length, f the
major axis,?a, and the minor axis, 2b, standing in water of depth, h.
In order to transform the rectangular coordinate, x, y, intc the elliptic
coordinate, ¥ , 7 , putting as,

= £ m'gg cx7 } (1)
Y= §sink§ ainy |

the coordinate of the surface of the ellipse will be expressed by
€=% =Tlax’ —”—f,% (2)

and the coordinate § = O will express the straight line of length, 2x,
the distance between both focuses vf the ellipse.

The differential equations of motions of the water particles may be
expresged as follows.
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Where, w., is the specific weight of water, E, the volmetric modulus
of water, g the acceleration of gravity, p the water pressure, t the time,
and u, v, and w the displacements of water particles towards the coordinate

¥,%7, and z reapectively.

Now, expressing the dynamic water pressure with §, the differential
equation about ¢ may be expressed by the following equation, which is
ocbtained by using the equations (3) and (4).

Fr, Fr T w I,
» 27 0= (6)
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2. voundary condition

Assuming the earthquake as a stationary sine form uve,(o(g/af)ainwt,
the boundary conditions will be as follows.

In case of the earthquske in the direction of the minor axis of the
elliptic cylinder;

(1) (9 )2_— =0 (i1) (0’)2:{—:0

(111) ( ()’)7_ =0 (iv) (%21 =§=0
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In case of the earthquake in the direction of the major axis of the
elliptic cylinder;
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3. Solution of the differential equation

(8)

) m solution of the differential equation {6) in case of the earthquake
im the dimtim of the minor axis may be obtained as follows.
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and se, (¥,q,) and ao,(?,‘q,,) are Mathieu funct ong, and Se, (¥,qm), Self,-q.)
Ge,(¥,qm) and Ge, (¥, ~Ga) ArTe wodified Ma*thieu functions.

[herefore, the :wrultant fcrce of the dynamic water pressure in the
direction of easthgiake pe:r unit lensth of the elliptic cylinder may be
expressed by the next formula.
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In the same way, the resultant force of the dynamic water pressure
per unit length of the elliptic cylinder in the direction of the major axis
may be obtained as follows.
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F is the function of t/a, h/2a and z/h, showing the ratio of added rass

on the elliptic cylinder tc the mass of fluid included by the circular cylin-
der having the diameter cf length, 2a.

CA§ )= Ce/ T fm) Fes (%, Z»z)

4. Result of computation

Fig. 2 shows the values of F com,ute? by using the formula (10) or (11,
by changing the ratio b/a and h/2a various.y. 4s is seen from the figure,
in case the ratio h/2a is small, the smaller the ratio b/a becomes, the
larger the value of F becomes, but in case the ratio h/2a is large ( i. e.
for slender cylinder ), the value of F approaches to 1 with no relation to
the value of the ratio b/a. 'his phenomenon is different from the analy-
tical results by Riabouchinsky and the experimental values by Clough.

Arranging tne value of F intc one formule by using the ratio b/a, h/za
and z/h as factors, it may be expressed by the next formula.

;::C(/~-§~)/3 (12

#nere, U and 3 are tne functionsof the ratio b/a and h/2a, and are
shown in Fig. 3.

By using the equation (12), the shearing force S and the bending moment
¥ due to dynamic water pressure at a arbitrary point (z) of the elliptic
cylinder, may be calculated by the next formula.

4 /-z2Y°""
'S*f;. PdZ = (U a’c%%ﬁ (13)
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. (B} s+2)

346



ELASTIC VIBRATION OF BRIDGE PIER WITH ELLIPTIC CROSS SECTION

(1) Exact solution
1. Differentisl equation of free vibration

Expressing the lateral displacement of the pier with y, cross sectional
area of the pier with A, specific weight of the material of the pier with w,
and flexural rigidity with I, the differential equation of free vibration

of the pier will be as follows,

¢ WA z
F1.2d MR~ Pz (15)
o2t F 9t
:here, P(z,t) is the resultant force of the dynamic water pressure rer
unit length of the pier in the direction of vibration, and will be expressed
by the next formula by assuming that the pier will vibrate as y = Ysinnt.

Irn case, z ). ?:0
In case, h22z>0, for the vibration in the direction of minor axis,
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%1

2, Hatural period and mode of vibration
Now, expressing the mode of vibration of a bridge pier in the air
having a loaded weight W at the top with @Pulk.z) (&« =1, 2, 3, iy

the deflection of the pier under water may be asgumed as followg, because
not only the naturel frequency but also the mode of vibration will change

during the vibration under water.

)/: iA/u @«(@2) (1e)
M=/

#here, A,is unknown constant, lg,[ eigen value.
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Introducing the esuation (18, into the eguation {15} and integrating
about z from © to ¢ after multiplying ¢,(k,, z) on both sides of above equa-
tion, the next relation will be obtained by using the orthogonality of eigen

function.
. ”CL\ ___'S_VA_L/:S\—DA(‘ A
Voo WA ®,

Where, M,y 13 the na..ural c:.rcule.r frequency of the 2/-th order of the
bridge pier in air. 3, '3 and ’S’}“ are expressed by the next formulsa.
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In the same way, the solution for the vibration in the direction of
major axis will be obtained as follows.
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The equation {13) is the simultaneous eguation sbout 4, (v =1, .,
and frow these equations, we are able to calculate the natural circular
frequency n of bridge pier in water. And then, the relation between A,,
Az, , will be calculated and the mode of vibration of the pier in
water may be obtained.

3. Results of computation

Fig. 4-a shows the results of computation of elongation of natural
period of vibration due to water in case of b/ a=0.5 and W=0, by changing
the values of wxa/wh, f/2a and h/f variously.

Fig. 4-b shows the results of computation of elongation of natural

period of vibration due to water in oase of b/a=0.5 and wx4/wA=1.0, by
changing the values of W/wA{ , {/2a and h/{ variously.
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irom these figures, the next matters may be concluded.

(1) As the ratio [/2& becomes smaller, the effect of added mass upon the
;lg'tural period of vibration becomes smaller.

() In the vibration of the primary mode, the elongation of the natural
eriod of vibration becomes smaller with the drop of water level, but in
the vibration of the secondary mode, the change of the elongation of the
natural period is small for the value of h/j =0.6~0.8, and the elongation
of natural period becomes rapidly small for the value of h/{ =0.5.

(3) In the neighbourhood of h/f =1.0, the elongation of natural period is
almost equal for both the primary and the secondary modes of vibration, but
in the region where the value of h/f is small, the effect of water upon the
natural period is greater in the secondary mode of vibration than in the
primary mode of vibration.

(4) The usual method of calculation that a constant volume of water will
be added to the structure during its vibration may be a mistake, because the
elongation of natural period of wvibration in the primary mode is much differ-
ent from that in the vibration of the secondary mode. That is to say,
for the purpose of explaining the elongation of the natural period by the
added mass, we must consider the vertical distribution of the added mass.

(5) The mode of vibration in water varies much greater in the vibration of
the secondary mode than in the vibration of the primary mode.

(6) The elongation of the natural period of vibration of the bridge pier
due to surounding water may be computed easily by the next formula.

T s C
A “l// * gy Con 7 (21)
Yhere,

J=uwmajwh , &=WwAl

and the value of ‘% and ¢ will be obtained from Fig. 5 and Fig. 7, respec-
tively, and Cp s is the value of C for b/as(‘.S. Fig. 5 is derived from
Pig. 4-a and Fig. 4-b, and Fig. 7 may be explained later.

(I1) Approximate sclution by added mass
1. Added mass

In case the bridge pier has a uniform cross sectional area, the elon-
gation of the natural period may be computed by using the equation (21),
but in case the bridge pier has not a uniform cross sectional area, energy
method will be used and for this purpose, it is necessary to make clear the
vertical distribution of added mass.

The author calculated the dynamic water pressure which occurs when the

‘dbridge pier vibrates in the various type of mode of vibration, and the
results of calculation are shown in Fig. 6. From these results, the
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adiei mass, W, , which will produce the eguivalent dynamic water pressure
1on the pier may be expressed approximately by the following formula,

pes oy
Wa=u, Ta C(/-%7K) (22)

The value of (% and C may be cbtained from Fig. 3 and Fig. 7 respec-
vely. A more or less error takes place at the bottom of the rier,
4 the error at this part has little effect on the natural period of
ibration. les Fig. 4. For hﬁ@(LO.A, the effect of water may be neglec-
A

2. Approximate solution of natural period by the use of added mass
PP

The t.ack polnts in Fig, 3 shows the elongation of the natural period
of vitratiorn which were computed by energy method by using the added mass
shown ir egquation (2.,

It is clearly seen that the approximate values fairly coincide with
the values computed by the theoretically exact solution.

FORCED VIBKATION C¥ BRIDGE PIER DURING EARTH.UAKE

L4

(1) Exact solution

Assuming the earthquake as ( qg/w')sinwt, *he dynamic water pressure
as a external force may be expressed by the equation (10) and (11).
Therefore, by introducing

Y=Y smwt (23)
into the differential equation (15) and using the equation (18), the simul-
taneous egquations about Ay(L" 1, 2, ----- ) may be obtained as follows.

{,‘ I ”0V>Ay wﬂd Z ASZJ# * /S A/«

\
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v & ~ .
#here, ¥, Syu and Syu are expressed by the formula (20), and in the
vibration in the direction of minor axis,
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In the vibration in the direction of major axis, I

- Z»ﬂ IV G BN A 5ot 0 can 7 iz
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- - (251)
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- Zr+ -
s (UITGLS, ;"){Z( Baw) g
Computing A,, Az, -- - , from these simultaneous equations, the
elastic deflection Y may be calculated by equation (n) Fig. 8 shows

the state of increase of the amplitude of the forced vibration of the pri-
pary mode of the pier according to the increase of the water lavel, express-
irg the ratio of the amplitude in water, y,, , to the amplitude in air, y, .
Tt is shown for the case of b/a=0.5, f/2a=10, WX R /wA=1.0 and %/ wh £ =0,
For the caue of arbitrery values of b/a, u;xa’/n«. and #/wAf, the vslue, ¥,/
Yo » may be expressed approximately by the next formula.

oy

1~

Y 26)
/12\6‘5‘3’?’ (

3y using the equation (26), we are able to understand the state of
increasse of the amplitude and the bending moment of the submerged pier dur-
ing earthquskes,

EXPERIMENT
1., Experiment for the elliptic cylinder

The purpose of this experiment is to verify the theoretical solution
of dynamic water pressure obtained by the author. First of all, in
ordar to verify that the dynamjc water pressure does not depend upon the
value of b/a when the ratio, ,//23, is infinitely large, models of elliptic
cylinder were made as shown in Fig. 9 (type I) and Table 1. Hanging
these models in water by plate spring, measuring the difference of natural
period of vibration and demping coefficient in water and in air, the added
nass W, was obtained by the next relation.

VW )6 (1)
Wo M T (&)Y

Where, ¥ is the vibrating mass in air, 77, and My the natural cir-
eular frequency in air and in water, £,/X, and &,/%v the damping constant.

The black points, I, in Fig. 10 show the coefficients F which are
computed from the added mass Wy . The experiments were ocarried out
with peried of 0,2~-0.3 sec., and the amplitude of about 0.2~ 3 mm. and
~ the values of £,/ were about 0.2~0.3 %.




By the author's theory, the value of F is equal to unity with no
relation to the value of b/a, and the experimental value is larger than the
analytical value in case of plate or of elliptic cylinder having a small
value of b/a.

Such & difference between the theoretical value and the experimental
value seems to occur because of the ignoring of viscosity of water in the
theory. Fig. 11 shows the theoretically calculated distribution of
tangential velocity of water on the surface of ellipse, which is drawn by
taking the velocity of vibration of elliptic cylinder as unity.

As is seen clearly from the figure, in case of elliptic cylinder having
& small value of b/a, the velocity of water on the surface of elliptic cy-
linder is so large that the viscous drag becomes large and the water around
the oylinder camnot flow smoothly as in the theory. Therefore, a greater
part of water than that obtained by the theory will be added to the
cylinder.

2. Experiment for the rectangular or other sections

The size and the type of models are shown in Fig. 9 and in Table 1.
The results of experiment are shown in Fig. 10. As is clearly seen from
the figure, the results of experiment for type II are nearly equal to the
results of experiment for type I. In the limiting case where the value
of b/a becomes to O, the results of experiments for type I, II, and III
should coincide with each other. Considering these phenomena, it may be
recognized that the experimental values are fairly larger than the theoreti-
cal values for small value of b/a,

The cause of this phenomenon will be the ignoring of viscosity of water
in the theory, and the difference between the theoretical values and the
experimental values will be larger in case of thin sections than in case of
thick sections. It seems to depend not only upon the shape of the cross
section, but also upon the amplitude of vibration and the roughness of the
surface of the cylinder.

3. Consideration for the prototype

The difference between the theoretical values and the experimental
values puzzles us in adoption of the value of F in designing a structure.
In order to solve this problem, a law of similarity must be satisfied for
experiment or tests for the prototypes should be performed. Though it is
very difficult to satisfy a law of similarity for model experiments, it is
seen that in the range of the author's experiments, the smaller the ampli-
tudes of vibration become, the nearer the values of F approach to the theo-
retical values. Therefore, in case of prototype where the ratio of the
amplitude to the width of the pier is small, we may be able to use the theo-
retical values obtained by ignoring the viscosity of water even when the
value of b/a is small. :

CONCLUSION
From above mentioned matters, the following :'ems may be concluded.
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(1) The dynamic water pressure on submerged structures during earthquakes
are functions of the shape of the structures, the ratioc of thickness to the
width of the sectioms, b/a, and the ratio of the depth of water to the
width of the sections, h/2a.

{2) In cese of elliptic cylinder, for small value of h/ZL, the smaller the
ratio, b/a, becomes, the larger the dynamic water pressure becomes, but for
large value of h/2a, it does not depend upon the ratio, b/a.

(3) For the case of small value of the ratio, b/a, of elliptic sections, or
for rectangular sections, the experimental values are always larger than
the theoretical values. This may be due to the viscosity of water, and
wve must consider a law of similarity to obtain a exact results of experi-

ment.

(4) But, in case of prototype, the effect of viscosity may be able to be
ignored and the theoretical value may be used without large error.

(5) The elongation of the period of vibration differs in accordance with
the mode of vibration and it is not right to consider that a constant amount
of water will be added to the structure. In order to explain the elon-
gation of period of vibration for arbitrary mode of vidbration, the longi-
tudinal distribution of added mass should be considered.

(6) The viscous damping due to water is very small.

(7) The submerged structures are disadvantageous ones because they are
subjected to larger seismic forces than those in air.

Though a stationary vibration has hitrerto been dealed with, the tran-
sient phenomenon of dynamic water pressure must be considered in order to
solve the response of the submerged atructures during earthquakes, and this
problem will be left to future studies because of the difficulty of the
theoretical solution.
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