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ABSTRACT

The paper deals with 3 method whereby a transition from
systems with several degrees of freedom to a system with a
single mass may be effected, using to this end equivalance
coefficients.

The structures investigated have been classified accor-
ding to their dynamic rigidity (characterized by the fundamen-
tal period of vibration), namely: rigid, semi-rigid and flexi-
ble structurese.

For practical purposes tables of direct values of equi-
valence coefficients of masses are given.

The results obtained refer to multiple storeyed struc-
tures. The equivalence coefficients have been computed for n -
gstoreyed structures.

The experiments which have been effected confirm the
validity of the hypothesis admitted.
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T. THLRODUCTTION

4 series of problems related to civil enginncripg seig-
moloyy huve been investigated theoreticully wnd exprrimentally
4t the vibrution luaboratory of the Chuailr Dega?tmgnt‘oi Civil
snrineering Mechunics of the Tnstitute of Civil ﬁnylneerlng,
Huéuurest, Rumania. an important part gf the work Lus been de-
votad to the applicution of the mechanical equivulent on the
untiseismic computation of structures.

Tn presenting their work to the 5rd Tnternational Con—~
ference of Engineering Seismolopy the autpors pnlve un account
of the theoretical solution snd the exparimenial evldenge
which corroborates the results obtained in connqqpign with
the direct determinution of the equiValgncc cogL;xcuents of
nusses 48 & function of the dynumic risidity of structures,

Knowing the numericul values of these coefficients sim-
plifies materially the computation of the buse sheur,

The authors have also determined the numericul Walues
of the distribution coefficients of the buse sheur for struc-
tures up to 4o - storeys high so thut seismic stresses alony
the structure height may be obtained directly.

By applying the results obtained the desipner will u-
chieve in some cases a considerable saving of time in actuul

computations and will quickly master the method for the com-
putation of seismic forces.

The experimental researches have been curried out ut the
Department of Civil Engineering Mechuwics in colluborution
with the Research Center of the Tnstitute of Civil Enyinee-

ring, Bucharest., Further experiments with the sume object in
view are being effected.

IT. VARTANTS FOR THE COMPUTATION OF SBISMIC
FORCES

Two variants are offered for the determination of seis-
¢ forces acting on a structure during an earthquagke, Both
riants are based on a dynamic computation which takes into

count the elastic characteristics of the structures and the
namic properties of the seismic motion.,

Tn the first vuriant of the computation the floor seis-
iic forces (acting along the structure height) are determi-
ned, while in the second variant the base~shear acting on

the structure at the foundation level is first considered,
and then distributed over the height of the structure,
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Refering to fig, 1 and 2 & brief account of the method
for the computation of seismic forces by applying the two va~-
riants will be given.

l. Direct computation of the seigmic force

The inertia force acting on a structure at a certain
floor X may be determined from the dynamical theory of elastic

systems subjected to any perturbation of the earthquake type
which appears at the base of the structure., Thus:
a.~ In the case of structures with distributed mass

(fig.l) the earthguake force at the floor x corresponding to
the vibruation mode i, is

(1) Fety =CUTi)-ax ()9

where , ?x=mxg } |

.L ﬁjx}&@QCiY '__dl QXEQOOO&
fo ”n‘;)x S/)f(/') ok ok « /o ng Y20)dx

b.~ Tn the case of structures with concentrated masses

(fig.2) the earthquake force at the floor k, corresponding to
the vibration mode i, is:

(3) Fety=C(Ti).0,()- Q,

(2) Q, ()=

where 0£= mk -9
s n ) n '
| f‘:, My Yy (1) | g;/ Q. %, @
(4) @) = — — Y00 = =5 ; Yy, @
%;,mk Y 2 Qi 0

b
-

Tn_ these expressions the gravitational load corresponding
to the floors x and k has been noted by q_ and respectively,
and the ordinates of the normal vibration®mode i corresponding

to the floors x and k, by yy (i) and i (i) respectively,

C(T;) represents the earthquske spectrum coefficient
whose valde is dependent on the natural vibration period Ty
and which corresponds to a one-mass oscillating system, The va-
rigtion of the coefficient C(Ty) as a function of the period
Ty represents the fundamental easrthguake spectrum the variation




of which (fig.3) agrees with the analyses effected by M.a.Biot
and E.C.Robison 5 .

The earthquake spectrum coefficient C(T,) may be expremad
by means of the velocity spectrum Sv as follo%s:

7 <
C(y;.)=_/_ 2/ sz_.
g VT
in which « is a numeric coefficient, and T; the natural period
corresponding to the i normal mode,

This variant for the computation of earthquake forces is
used in the URSS design regulations for structures located in
earthquake zones 6 .

2., Computation of earthquake forces by means
of the base sheagr

Tn this case the computation is effected in two steps,
namely: the base shear is determined in the first step while
in the second step the base shesr is distributed over the
height of the structure. This approach to the problem has been
included in the american code for the State of California and
has been later adopted also by other countries [5][7]. The base
shear and the earthquake forces are of the nature of inertia
forces, Their expression is a problem of theoretical dynamics
and will be given below.

a.— In the case of structures with distributed mass
(fig.1l) the base shear corresponding to the vibration mode i,
is:

(5) F(’)":C(Z)Oe () .

where ég(i) represents the equivalent load obtained by trans-
formin the real system with an infinite number off degrees

of freedom in a single mass (one-mass) system:

(6) Qe (1) = li) q ; /u,//')é {

. In the gbove formula the eguivalence goefficient gorres-
ponding to the vibration mode i has been noted by/AL (i), and

the total load on the structure by Q 1i.e.:

a-/g,0x

In the third part of the paper more will be said about
the way for determining the equivalence ooefficienE/L(i).
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The earthquake coefficient C(T ) in expression (5) has t
the meaning previously given and who@e variation mode is shown

in fig. 30

The floor earthquake force is obtained by distributing
the base shear over the height of the structure; the distribu-
tion is proportional to the ordinates of the vibration mode i,

(7)
N Eiy - S
[ Qx %f’) ox

b.— Tn the case of structures with concentrated masses
(fig.2) the base shear is computed again by means of formula
(5) where n

0= Z Qk
and expresdmn (7) beoomesk=/

ki)

" (r)
(8) Rl = z@;ﬁ/_ F ()
z-1 Ok yk(/}

From (7) and (8) there follows that the base shear is
distributed over the height of the structure in direct propor-
tion to the product of the floor gravitational load Q by the

corregsponding ordinate of the curve which characterizes the
normal vibration mode yk{i).

Therefore the fraction which multiplies the base shear
F(1) may be looked upon as a distribution coefficient of the
total earthquake force which will be noted by g.

In this case expression (7) becomes:

(9) Fli) =0 ). F1)

whe re

(10) OIX(,‘ / - ”?x yx (,/
/ 9 Jz/x(/) dx

and expression (8) becomes:

) ) -dii)- Fli)
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where

R,y (i)
d&(’) = o A ‘%

(12) 2: Qb yk ()

k={
3, Utilization of the eguivalent earthquake
spectrum

For immediate design purposesit is advisable to compu-
te the equivalent load by means of a single quivalent coef-
ficient & (i) average or limiting) obtained through approxima-
te calcilation, Tn that case the equivalent load is

Qe(/’) =/&_’(/}‘ Q
and the base shear:
(13) Fi) = Cr7;)- j(i)- A
By putting: -
C(r)=C;). @)
expression (11) becomes:
(14) Fi) = C(T;).Q

The variation of the earthquake coefficients G(T;) re-
presents the equivalent earthquake spectrum (see fig.47.

It is quite obvious that the use of the single equiva-~
lent coefficient ;L (i) is fairly approximate. The value of
the coefficienté/u,(i) depends both on the number of storeys
of the structuré and on the dynamical rigidity of the latter,
whereas/u(i) is single,

However, in order to simplify to a large extent the com~
putation of earthquake forces some regulations take into con-
sideration single equivalence coefficients thus implicating
as a computation basis the equivalent earthquake spectrum
C(Ti). Tn the wake of these simplifying assumptions it may
be also considered that the distribution of the base shear
over the structure height is effected by assuming that the
first vibration mode varies linesrly. In accordance with these
assumptions the exact determination of the normsl mode of vi-
bration is excluded while the fundamental period is computed
by means of empirical formulas., Thus the computation of earth~
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uake forces is effected directly but the computation itself
is howerer rather gpproximate. Therefore the distribution

coefficients (lo) and (12) may be written:

(15) L Qx'XdX
- Q} hr
Ai) = 7
\ iz; 625/6k

TTT. GENER4L EXPRESSIONS OF THE EQUIVALENT MaSS
AND E QUIVALENCE COEFFICIENTS

!

The passage from a system with several degrees of free-
dom to a system with a single degree of freedom (one-mass), has
been achieved by applying the fundamental theorems of dynamiocs.
Tt has been namely considered that for the two gquivalent sys-
tems the impulse varistion and the variation of kinetic moments
are equal, Similar results are obtained by applying the prin-
ciple of the conservation of potential gnd kinetic energies of
the two systems analyzed [1],[4].

1. Systems with an infinite number of degrees
of freedom (fig,l)

%h@ general equivalent relations between the system with
an infinite number 6f degrees of freedom (real) and the one-
mass system (equivalent) corresponding to oscillations in the

vibration mode i, are established by:

— equating the impulse variations

I) = fH (1)
(16) H/L( ) He
- equating the variations of the kinetic moments

(17) /C/L(// = fC (1)
may be expressed as functions of the speed variastion namely:

e H;_ Ciizgfﬂv
Hy - [’"X_JF" o
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iy o U (1)
Hali) = mgli) ACIA

=~ H _ du M)
Kﬂ(/}=/o Y1) iy mz;;’ dx
> L dFEL
/Ce(// =ye (1) mal(i) _____C?';‘J___/_i

For the wave corresponding to the vibrutlion mode 1 assu-

~ med to be in a steady state, one may consider a solution of

the Fourier type, with separate space and time variables, i.e,:

AL

and
(1) =y (1). i
Hence, onemaze'v{rite ye( ¢f(} .
dv i) _ () @)
and df yx dfz
et (1) 2 P()
= \ye(// 2

By substituting these expressions in the general equi-
valence gquations {16) and (17) one obtains

i - d2Q, () ' - d? ¢f(i)
(18) [mxyx(/) o’fzf olx =mell) %/l} W“g'}?"
v J* 1) J* ()
e . ) . :
or H 1 _ : : -
(20) [ my ‘Zc(/) dx = me(i) .(1)

ot g - :
(21 / Dy yj(/):dx = me(1) y;(/)

To



Tn these two equations the elements of the equivalent
system appear as unknown quantities, ngmely: the equivalent
mass m_(i) and the elongation y_(i). Eliminating y_(i) from
these two equations one obtdlﬁs the general expr%s51on of
the equivalent mass correspondinc to the vibration mode i:

)__// e 3 (0 Ix [

/ xy(/}o’x

The ratio of the equivalent (or reduced) mass to the to-
tal mass of the real system, shall be noted by/u/ (i) and be
called equivalent or mass reducing coefficient.

Therefore me(// _ me(/}

m /  Ox
and taking into account (22), one obtalns the general expression
of the equivalent coefficients

(230 aufi) = // i % (’)d"/ ;
[ st ]

It is obvious that the formulas (22) and (23) are greatly
simplified when the mass of the system is distributed uniformly

(22) me(/

)<t

Ei = m = constant

In that case the equivalent mass becomes

(24) me(/')_.// }/ (/) o/x/ -
y () dx

and the equivalent coefficient-

U s>

H/ Y 2(i) ol

2. Systems with n degrees of freedom (fig.2)

(25) /U“(’) =

The general expressions of the reduced mass and of the
egquivalent coefficients corresponding to systehs with n degrees
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of freedom are obtaimed directly from the preceding case by
transforming the integrals into sums, Hence,

[ m i

) .
;‘j? WA

- for the equivalent coefficients
Z,__? 2
m (/')]
(27) N [k—-f k Jr
M) = T i[5 e o
myl. m (/}]
[2: s} s

In the ticular case when the masses of the resgl syé~
tem are equalp?g case wh({'ch is fairly frequently met with ¥n

practice)

— for the eguivalent mass

(26) me(/')_—;

ml=m25-¢o=mk=o-.=mnﬂm

the expressions (26) and (27) become:

[i'/ y k (/.} ] 2

20) (i) =BT

&0 i/

.12
(29) (1) ___M ; () <!
£ 5o

3. General case of gystems with distributed mass
concentrated masses

N When an elastic system is loa«déd slmultaneously with
~ distributed mass and concentrated masses, the ”dom‘putz‘h fon for-
~ mulas for the reduced mass and the gqquivalent coefficients awe
by a general equivalent relations

- NOW :the} operations




ﬂ(/;ﬂ i g 9§ my )
(31)

//OHF?X dx :Zl; mk///o”rﬁx %:‘(/') o’x;:mkyl‘:‘(/)/

For the particular case of a uniformly distributed mass
and of concentrated masses of equal magnitude the expressions
become

(32)mfr)= / ’721”%((/) ot mg T2 (/}/ 2
- ° n'%[”yj(/)dx + mg YE()
- n‘v[#yx(// ox + mé yk(/)/z
(55)/“(’/"/r?;H+nm/.[n‘q///yxz(,y ox + mkzn' y:(/'//
° !

Note: if in gll the expressions obtained the mass is re-
placed by loads

o=gq/8 ; m = QS8

one obtains corresponding formulas for reduced or equivalent
load and for the equivalent coefficients of the loads.

IV. DIRECT DETERMINATYON OF EQUIVALENT COEFFICIENIS.

With a view of establishing practical computztion formu-
las for the equivalence coefficients of the masses , but ta-
king into account the elastic properties of the structures, the
authors have worked out a method whereby a direct evalution of
the coefficients, approaching reality, can be effected.

The theoretical basis of the method which allows a di-
rect numerical computation toghether with the results obtai-

ned, is given below,

1. Computagtion assumptions

In working out the computations, a series of simplifying
assumptions have been made which are generally admitted in
earthquake engineering, namely:
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- are considered to be concentrated at the
{lggeg.laggegagh floor and to be uniformly distributed

over a vertical direction;

— there are no marked abrupt chunges in the variation of
the relative rigidity between floors;

—~ the first normal vibration mode is considered to be
prédominant over the dynamic response for all types
of structures;

- the floors of the structure are equally spaced;

— +the oscillations are linear being in the range of
small displacements.

Account has been taken also of the structure type, charac-
terized by the dynamic rigidity of the latter.

2, Classification of structures from a dynamic

point of view

The equivalence coefficients have been computed taking
into account the behaviour of the structure from & dynamic
point of view., In a dynamic state the behaviour is churacte-
rized by the fundamental vibration period Tl.

4 classification of structures according to their dyna-
mic behaviour when acted on by ground forces, 1s suggested,
namelys

- rigid strctures, for which

‘1‘1 < 0,3 sec.,

- semi-rigid structures, for which

0,3 < Ty 1,2 sec,

- ¥lexibles structures, for which

T17 1,2 sec,

As may be seen in fig, 3 and 4, in the interval corres-
ponding to rigid and flexible structures, the values of the
seismic spectrum coefficients are practically constant. Tt is
only in the range of semi-rigid structures that the response

nsﬂpgcgguxg shows a hyperbolic variation in the sense stated by
OA. ° L]

The fundamental vibration period may be found by apply-
ing the classical methods of the dynamice of structures of' by
other approximating methods such as those due to Rayleigh,
Dunkerley, Vianello-Stodols, Holzer, a.o.
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Starting from the empirical formala

H

which has been adopted in many standards and regula tions, and
from the conditions mentioned above, one may make an overall
characterization of structures fron a dynamic point of view,
by considering the geometrical dimensions over g vertical line
(H) and a horizontal line (B) in the direction of the vibra-
tion considered. One obtains thus the following criteria of
classification:

- rigid structures:
H 3,3 {B
- semi-rigid structures
3,5 VB< HL 13,2 /B

-~ Plexible structures

¢H>13,2 VB

In these relations H and B are expressed in meters. The
authors consider that the gbove relations characterize to a
satigfactory degree the dynamic rigidity of a structure as com-
pared with other proposed relations in which the classification
of structures is based on the ratio H/B.

3. Equations suggested for the variation of
the first normal vibration mode

The equations proposed for the description of the funda-
mental forme of vibration have been obtained through a stati-
cal computation, Thus, it has been assumed that the fundamen-
tal form corresponds to the elastic line of a bar loaded with
a static load and having a linear variation, nil at the base
and maximum at the end, p, (fig.6). The determination of the
elastic line has been effected by considering the preceding
dynamic classificagtion., It should be pointed out that loading
with a linearly varying load approaches very nearly the real
state of things during an earthguake and that therefore the e-
lastic line will deviate only slightly from the fundamental
form of vibration.

In determining the elastic line, due consideration has
been given to the fact that in rigid structures the predomi-
nant strains are caused through shear, in semi-rigid structu-
res through shear and bending moment, while in flexible struc-
tures the strains are caused only through the prevailing ben-
ding moment. The equations obtained for the elastic lines and
for:the fundamental modes are as follows:
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a) For rigid structures

onsidering that the displacements are caused only throy
shear,cthe follo%ing expression has been obtained for t%e reafgh

displacement in a horizontal direction Iy (see £iz.6):

kT
(32) o/yx = —G—f- olx

or

(35) Y Z/G%E o’x+C=5‘}/7;o’x+C

Since cﬁNf _ 7-
— —Ix
dx
expression (35) becomes
RM
(26) yx'—‘—G'Z‘x +C

In these formulas the following notation hé% been used:

~ shearing force in the current cross section x,
- bending moment in the current cross section x,

transverse modulus of eluasticity of material,
- area of cross-section,
- form coefficient of cross-section 4,

—- integration constant depending on the cond&tions under
which the bar is supported.

Q " ek o =5 3
»
|

By introducing the relative coordinate:

J=xX/H

the expression of the bending moment Mx nay be written:

(37) MX_______é_IbOHZ(/_J)?—(2+])

and the displacement Yy f

2
‘ k;,// g
=—LP (4 2+7)+
Yom Zoo (1=3): (GeT)nC
The integration constunt is obtained from the support
condition at the base cross-section. Thus, for

»,‘x=0'or“j=o,,;‘yx‘$0.
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kpH®
3GA

The general expression of the actual displacements be-
comess

(38) Y = ZGA [2- (/]) (Zj)]

Tn the case of rigid structures (38) and assuming a con-
figuration similar to that of the gstatic deformation, the varia-
tion of the first normal mode of vibration has been considered
to be of the form:

(39) jjf or yXR=2~(1-j)2[2+j)

where:
]:

S

hemee (T =

in the case of g distributed mass

and

il

mlwp‘ taef 1Y

k
=", B = 1.2, aee 1, %n thg case of concen-
n rated masses,

b) Semi-rigid constructions

In senl-rigid structures the deformations are caused both
by the shearing force and by the bending moment. It is found by
computation that in that case the variation of the horizontal
displacements approaches very nearly a straight line., The authors
consider that this assumption, accepted by numerous investigators
may characterize the fundamental form of vibration. The equation
corresponding to the first mode of vibratiom will be therefore

(4-0) SR =

X
in the case of a distributed mass and
41 = szz,_
( ) y ‘ n J ’ y 4~
in the case of concentrated masses,.

¢) Flexible structures

the computation of the elagtig e of flexible gtruc-
1tures only the ggformat?ons caused gy %h %endlng momen% ﬁa

been considered,'starting from the differential equation:

7(,43); i V'd?z;___,_‘___' M,
S rolnk s



where E is the longitudinal modulus of elasticity (Young's
modulus), and
T is the principal moment of imertia of the transverse
cross section,

By successive integration of (42) the rotations and dig-
placements expressions are obtained:

oy, M
(43) ’&%‘2—/ELO/X+C

and
M
(44) ‘%(:——/dx —E—Z,&—O/)(*C;X*Cz

Substituting the value of the bending mom:nt (57) into
(44) one obtalns:

W) Y = %[5(/-])4_(/_p5/+C,(f—])+Cz

The constants of integration C, and 02 have becn deter-
mined from the following conditions Por the® fixed-end cross-
section:

(a) for x

i}

d
0 or /]’=(7 ‘_4221:=(7

30 or)7=0 };’*O
_ b H 1Mt H*
[;'—'——__ijr—' and (:2 = Hb i1

The general expression for displacements (45) becomes:

(46 ) yx= %[__[//—/5(/7)+5(/.J)‘f_/,__j)5/

Therefore we have considered for the fundumentual vibra-

tion form corresponding to flexible structures, the following
equation:

o yeeig B felealicg)o(r7)”

Some times, in design calculations, the elustic line is
determined by considering a uniformly distributed load ower the
vertical. It is throught that the triangular loading on which

the p?eceding equations are based brings some additional accu-
- racy into the problem,

(b} for x

Hence:

. Note.



Note.

Tn. determinin e bration mode. f rigid strugtures one
may consider curve %47? V%h % conCav1 N regerseg gth respect

to the straight line which characterizes the vibration form of
semi-rigid structures. Tn that case:

jyﬁ’ 2 SR, F
=2y
Substituting into the above relstion expression (46) and

expression (40), multiplied by the factor 11 representing the
maXe dlsplacement as deduced from (46 ), one obtains:

(45) yx Or‘y} =4+7J‘5("]) ’*("J)

Practically it has been found that this curve characteri-
zes fairly well the variation of the first normal mode of vi-
bration for rigid structures.

4, Numerical computation of eguivalence coefficients.

For the fundamentzl mode of vibration (i = 1), formula

(27) becomes:
[(Zg’(? ’
k=7 §\92]/

/;;):—, Qk]/; &%)

The numerical value of the equivalent coefficients are
given in table 1, their computation is based on the initial
assumptions made and on the previously established modal equa-
tions.

/L/=

It will be seen that these coefficients show a pronounced
varigtion depending on the number of storeyes and on the dynamic
rigidity of the structure (see fig.7). 45 the nmumber of storeys
increases the coefficients &4 approach a limiting value; for
this reason it is suggested that for current design purposes
use shall be made of the coefficients ghven in table 2,

The limiting value of these coefficients which would
correspond to structures with an unlimited number of storeys,

have been determined by means of formula (23) corresponding to
the fundamental modes:

) [[o5.%]
STl k]
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These limiting coefficients are given in table 2,
Tt is obvious that the variation of the coeflicients A~

is more conclusive in the range of 1 ... 15 storeys. (n = 1,2 ,,,
R 15)0

V. DIRECT DETERMINATION OF DISTRIBUTION COEFFICTENTS

The numerical computation of the distribution coefficients
d has been effected starting from relation (12) which corres-
pDonds to the first mode of vibration (i = 1) and taking into
account the classification of structures in three proups depen-
ding on their dynamic rigidity:

g __ U %
k N
& b

The numerical values of these coefficients obtained from
previous results are given in tables both as function of the
" number of storeys and of the type of structure. They allow to
find directly the base shegr without any additional computa-
tions.

Owing to lack of space the tables could not be included
in the present paper; however they will be given in full in a
work to be published shortly in Rumania,

V1. BXPERIMENTAL RESULTS

Experiments were carried out intended to confirm the pos-
sibility of using the dynamic equivalent in the computation of
structures and also to check the numericgl value of conventio-
nal equivalence coefficients,

The main results are summed up in tagble 3.

The tests have been carried out under laboratory condi-
tions on metal models., Dynamical testing of the models has been

achieved by means of a vibrating table having three components
and variable amplitude and frequency.

Records were obtained with a single channel cathode oscil-
lograph,

ISt Experiment

The ex@eriment refers to the way in which g successive
bassage may be effected through equivalence from a complex
structure with two degrees 6f freedom (model T/3) to a struc—

_ ture with a single degree of freedom (model I/3) and finally
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to a one mass system (model I/1).

The experimental results are in good agreement with the
theoreticual data. Tt has been possible glso to point out the
effect which the msss of the elustic support comsisting of the
frame proper is exerting on the natural oscillation frequencies.

IInd Experiment

The second experiment was intended to check the equiva-
lence coefficient for a complex structure with four degrees of
freedom (model TT/1).

Tn the determination of the equivalent load (Q,) use has
been made of the equivadent coefficient sv = 0,7087 cOrrespon~
ding to the flexible structures group to which such a structu-
re belongs and which is considered as the model of the reagl

structure,

The sume frame (model II/2) was used as an elastic sup-
port for the one-mass system. The location of the equivalent
lozad has been determined by means of the formla

X, 25

The preceding formula has been established by equating
the base bending moments of the real structures and the one-
mass equivalent system.

The following notation was used:

X - distance from the base to the location of the equi~
valent mass

n - number of storeys

( - distance between two successive floors.

It may be mentioned that for the theoretical treatment
of the problem an analog computer has been made use of, for
determining the eigenvalues corresponding to the structures II/1.

The general system of differential equations and the coef-
ficients have been determined by applying the principle of vir-
tual work,

' 11174 Experiment

/ This experiment has confirmed the validity of the limi-
ting value of the equivalent coefficient for flexible structu-
res | = 0,6159)., Taking into account the mass of the elastic
support, the results obtained are satisfactory. The location
of the equivalent load (Q,) has been found by applying the re-

lation ‘
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X = 0,835 H
obtained by equating the potential energies of the two systenms,

X
X X

Owing to lack of space no details are given regarding
the experiments effected under various conditions of loading
and mass distribution; the results only, are presented in ta-
ble 3,

In fig, 8 the oscillograms are shown which were recorded
in the course of experiments carried out for obtaining the fi-
gures given in table 3. The numerical calculation have been ef-
fected by means of an electric calculating machine.

FTurther experiments are being effected for the purpose of
cbecking the values taken by A oWer a larger range, They will
be followed by checks carried out an actual structures and pos-
sibly by work in connection with corrective factors for equiva-
lence coefficients,

VII. CONCLUSIONS

The analysis of the theoretical and experimental results
leads to the following conslusions:

1. The general relations of equivalence show that the
real system and the equivadent one-mass sysfem have the same
vibration pulse and implicidy the same natural period.

2. The total inertia force (equal to the base shear) is
the same in both systems because the pulse variations are iden-
tical in the two situations. In this way the use of the equiva-
le?nt seismic spectrum is justified in the antiseismic computa-
tion of structures. Hence, the bgse shear for a given structure
may be determined through the equivalent one-mass system.

3. The equivalence coefficients for masses, 4, can be de-
termined dlrectly only as functions of the number of storgys
and of the dynamic rigidity of the structure.

4, There is a certain likeness between the limiting va-

lues of the coefficients computed by the guthors and the u-

nique coefficients obtained by M.Ludwi by considerin,
a uniform distribution over the lenghtgoé‘s‘{l’le 3brar.nghus, M%

Ludwig obtained
Sp=0.810 i Mosp=0.712 ] /u,F=0.5/3

and the authors
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The differences are as follows:

- for rigid structures + 0,0715 %
- for semi~rigid structures - 5,07 %
- for flexible structures - 0,043 %

Considering that/asp.ﬁas been determined by M.Ludwig as
an arithmetic mean of Apand Mrand comparing his value with
the arithmetic mean of the same coefficients as given in the
present paper (o0,7lol), there results a difference of 0,0268 %.

5. The coefficients obtsined by M,Ludwig and on which the
Californian code is based [5], do not teke into account the mim-
ber of storeys, being unique. It is considered that for structu-
res with a lower number of storeys the computation values of the
equivalence coefficients play an important practical part since
their differences from the limiting values are fairly great
(see table 1).

6. The experimental results have confirmed the practical
validity of the current equivalence coefficients. The small dif-
ferences pointed out in tgble 3 are quite Justified if one con~-
siders the inaccuracies which are bound to occur in the manufec-
ture of models, the effect of temperature and moisture changes
on the factors involved, and possible recording errors.

It should be pointed out that the assumptions which are
at the base of the computations effected in the elastic range
leave out a series of secondary factors whose effect is some-
times of the order of experimental errors,

The effect of axial forces and of damping on the natural
frequencies of oscillations have been also left out,

X
X X

The esent work is part of a_ langer program of investiga-
tion on enggneering seismogogy which is cargleg out gt the la-

boratories of the Chair of Structure Mechanics of the Institute
of Civil Engineering, Bucharest, in collaboration with the
Applied Mechanics Institute of the Rumanian Academy. The work
will be. completed, the effect of the following factors being

in coorse of investigation:

a) Effect of two or multiple step set backs over the ver-
tical direction of structures.
b) Effect of higher vdbration modes.

¢) Effect of rotation of the foundation caused by the
interaction between ground and structure.

d) Checking with instruments the behaviour of real struc-
tures,
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TABLE 1

EQU LVALENCE GOEFFICIENTs AL=Me/M
n Rigid 5emi-rigid Flexibie
Numbers of Structures Structures Strucvures
floors TL0e3 sece 063« T Le2 sec, T>1l.2 sec.
L T L 1
2 0,9587 0, 9000 0,8075
3 0,9324 0,8571 0,7287
4 0,9128 0,83%% 0, 7087
5 0,9007 0,8181 0,6874
6 0,8915 0,8076 0,6729
7 0,8831 0, 8000 0,b666
8 0,8773 0,7941 0,6605
9 0,8704 0,7894 0,6565
lo 0,8690 0,7857 0,6521
11 0,8671 0,7826 0,6485
12 0,8637 0,7800 0, 6459
13 0,8606 0,7(77 0,6434
14 0,858 0,7758 0,6414
L5 0, 8568 00,7741 0,6387
16 0,8552 0,7727 0,6367
18 0,8531 0,7702 0,6342
20 0,8509 0,7682 0,63%29
22 10,8487 0, 7666 0,6312
24 0, 8487 0,7653% 10,6299
30 0, 8454 0,7622 0,6276
40 0,8400 0,7592 0,6245
pnlimited 0, 8043 0, 7500 0,6159
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DESIGN VALUES FOR THS BQUIYVALERCE

2ABLE 2
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PROBLEMS RELATED TO THE DESIGN OF EARTHQUAKE RESISTANT BUILDINGS
AND STRUCTURES IN RUMANIA

BY A, A. BELES*

DISCUSSION

Until 1940 the last important earthquake in Rumania was the earth-—
quake of October 26, 1802 mentioned in history as "the great earthquake"
which caused damages in the country and some collapses in Bucarest, the
Capital of the country. Among the collapsed structures was the historieal
tower: "Turnul Coltzei'. But soon its effects were forgotten and nobody
cared about designing buildings to resist earthquakes.

Before 1900 buildings in Rumania were of traditional make with loade
bearing brickwalls and wood floors, with ties and floorjoist anchors.
Since the beginning of the century and especially after the first world
war, reinforced concrete was introduced and many buildings were provided
with reinforced concrete frames; but generally no horizontal forces were
considered in designing,

Meanwhile some earthquakes of little importance occurred, but as the
damages were insignificant, no attention was paid to them. Therefore,
when in the early morning of November 10, 1940, a very strong earthquake
shook a great part of the country there was a general surprise. Bucarest
especially suffered severe damages. One of the most important and gquite
new buildings, "Carlton", collapsed completely and many other buildings
with reinforced concrete frames suffered important damage.

It is interesting to note that Bucarest is situated in the open plain
and is crossed by a river called "Dimbovitza" with a main bed of some
hundred meters wide. In the plain, the soil is formed of a loessial elay
set on a deep layer of sandy gravel, the underground water being at a
depth of 5 to 10 meters. The allowable stresses of the foundation soil is
of 2 to 3 kg/cmz. In the valley of the river on account of the alluvial
layers of silt, fine sand and clayey sand the allowable stresses of the
s0il drops to 1 to 1.5 kg/cmz. During the earthquake of 1940 the build-
ings situated in the lower part of the town, that is in the main valley of
the river, were by far less affected than those in the upper part of the
town,

Concerning the system of building, one observed that in general, old
buildings with solid load-bearing walls had less to suffer than the new
ones, even those having reinforced concrete frames, So for instance, the
"Carlton" building with 12 stories and reinforced concrete frames collapsed
completely whilst just opposite the street, an old six storied building
with load-bearing brickwalls showed no visible deteriorations.

The examination of the different damages produced in buildings and
structures, showed that either a poor conception of the project or a bad

* Member of the Rumanian Academy of Sciences, Bucarest, Rumania,
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execution was the starting point of the collapse or of the damage.

Soon after this earthquake, official building regulations were issued,
based on the "static method of design". Horizontal accelerations of 5%
and 10% g with uniform distribution along the height were adopted.

After 1945 on account of the high economical progress of the country,
when new industries were developed, new factories built, new towns and:
especially new living houses erected the necessity of new regulations for
earthquake resistant designing appeared. The new experimental regulations
which were recently introduced are based on the "dynamic metnod" which is
adopted in U.S.A., U.S.S.R., and recently in France.

The paver presented to the Congress by Prof. Dr. S. Balan, M. Ifrim
and C. Pacoste : “The direct determination of equivalence co—efficients of
masses in the antiseismic computation of structures" gives a metnod for
reducing a system with several degrees of freedom, as for instance, a
multistoried building to a system with a single mass. For practical
purposes tae equivalence co-efficients are given for several types of
structures with different rigidities. This work is one of the different
studies made in Rumania to facilitate the use of dynamic methods of design.

Althougn the design of structures to resist horizontal forces is of
great importance for the safety of structures built in seismic zones, the
damages produced by earthquakes in Rumania and recently in Agadir, Skopje,
Anchorage and Niigata, showed that the most important causes of collapses
and severe damages are due to errors in projects or to bad quality of
execution,

One cannot deny tne importance of calculation of structures to horizon-
tal forces produced by eartnquakes, but the best mathematical calculations
give only a raw approximation of the reality. One must not forget thnat
tne mechanical characteristics of the eartnouake shocks differ from one
earthquake to another and consequently tne numerical values accepted by
the different codes may differ essentially from reality.

Also the elastic and plastic behaviour of structures is based on
assunptions which differ from reality. At tne 50tn Anniversary of the
"Deutscher Beton-Verein" it was snown that the lateral rigidity of
different kinds of buildings rises from 1 to 20 and even much more if one
considers the structural frame alone or one takes into account the effect

of floors, walls, roofs and all the different constructive elements of the
building.

Besides this, there are different elements which cannot be taken into
account with sufficient precision for the designing. For instance, the
evaluation of tne intensity of the earthquake shock, the mechanism of the
propagation and the distribution of the stresses produced by the shock,

the real cause of collapse, are all elements which have not yet been clear—-
ed,

i L]

The real behaviour of structures during the earthquake shocks, depend
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on so many random factors that one has tried to introduce probabilistic
methods of calculation. However, it must be observed that statistical
data are insufficient to draw valuable conclusions,

As was already said, observation of earthquake damage has shown the
prominent importance of errors in conception of buildings and structures
and weax points in execution as the main causes of these damages.

These two deficiencies have been pointed out by specialists who have
investigated the effects of eartiquakes and many of such aspects have been
issued in various publications. I find that it would be of great utility
if different and illustrative examples from differsnt earthquakes could be
collected and publisned. Such a work could be easily done by the co-
operation of Unesco and the International Association for Earthquake
Engineering. In such a work, where damages produced by earthquakes with
the necessary explanation would be given, the architect, the engineer, the
designer and the builder could find the necessary information for design-
ing and erecting of structures with most chances to resist earthauakes,
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