Vibration of Visco-Elastic Body .
Hatano, T,

Abstract, .
The fundamental equation employed at present in aseismic design of stpy,.

tures is derived from parallel model of spring and dashpot. But if analyzing

vibrations of miscellaneous visco-elastic bodies, it is revealed that there are
conspicuous differences between vibrational properties, e.g. transmissibility

of acceleration, fraction of critical damping etc. On the other hand if com

piling observed values of fraction of critical demping on real structures, it

becomes clear the treatment as parallel model is not appropriate. Moreover it
was verified by the precise indoor tests. As a consequence, the writer reache
the conclusion, equation of motion adopted to-date must be modified so as to
consistent with actual behaviors.

1, Foreword

It is a common practice to conceive the parallel combination of elasticity
and viscosity as dynamical properties of material of structures and foundations
in the event of treating earthquake engineering. If the parallel combination
namely Kelvin model is adopted, although there is an advantage of facilitating
the treatment of equation, it is doubtful whether the explanation of the vibra.
tion of structures can be conducted essentially or not. Natural period and
amplitude of structures which are most important in aseismic-design can not be
revealed unless elasticity and damping of vibration are accurately assumed.
The writer by employing Maxwell-Kelvin model has succeeded in explaining to a
considerable extent the relationship amongst stress, strain and time of con-
crete.t Although it is conceivable such explanation also can be made on rock
and earth, the necessity of non-linear treatment for the stress condition in
excess of a certain extent may arise. Nevertheless since such treatment is one
that can be reduced to a technical problem of manipulation of computer, the
writer wishes to explain only on the linear range. In the following the att-
empt is made to solve the vibration of visco-elastic bodies of Maxwell-Kelvin
body, Maxwell body etc. in case of forced bending vibration of a bar excited
by a sinusoidal displacement. Secondly, by coverting these solutions to the
form in one freedom system, the attempt is made to study the vibration pro-
perties. Thirdly, upon rearranging the properties of damping, obtained by
the previous tests on real structures, the wiiter wishes to conceive what
model should be selected for such real structures. Fourthly, explanation is
given on the results of indoor vibration tests of concrete plate and steel
pPlate to supplement the data which were observed on the real structures.
Lastly the writer wishes to add the summarization of discussion.

2. The Modal analysis of forced bending vibration of a clamp-free bar
excited by a sinusoidal displacement of the clamped end.
As known to-date, the relation between the stress and strain of visco-
elastic body which offers the basis of equation of vibration can be written
as follows: .

* Chief of Hatano Laboratory, Central Research Institute of Electric Power
Industry, Tokyo.

1) Hatano, "Dynamical behaviours of concrete under periodical compressive
load". Technical Report C-6104., Central Research Institute of Electric
Power Industry, Tokyo.

11-126



Table - 1

Relation between E 67
stress (5 and strain§ o

(1+Es+’l)6«+'l.d6” E, E—Rt‘i——m

Maxwell-Kelvin c ! @pp-t E % {
Model + 0 So()vdx :E]Ef'l T (4 71

Simplified (1+ E‘>6‘+ .,dG E=E lid—— (3)

MK 0 Pt¥
. . E‘ _E |
oot =kt~ YZ»%F ol:?f 'I—TIT—’G
Kzl:in _ wpdt EfE(H‘ 8[3) (31
Model 6-1 E(Ef ZICT:E 5-:_ ,Ké_l(
Maxwell 1@_«*2 _dE E":ET%— (4) {
Model E al lrL a: Kt% YPL
ol 6=EE E~E & %E

The solut:Lo? obtained so far on the vibration of a bar is related only
to Kelvin body.

Now if describing the equation of vibration by employing the general
ratio E, between stress and strain, the following can be obtained.

T:ngor %—gf‘n_ AE‘_% ceeee (6)

Boundary condition is expressed by (7)

x=o ----y=o. _o e @)
x L X3
P R T
Whereas dxa 0, dx3
3— : relative displacement 3. - motion of foundation
§ : weight of unit volume A : sectional area

I: secondary moment of secticnal area
2) Nolle A. W., J. Applied Physics. 753-1948.

Horic M., J. 4pplied Physics. 977-19351.
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(a) Solution to Maxwell-Kelvin body

By inserting (1) to (6), the solution can be obtained as follows, set-
ting 9, = %A wk
Now if setting
Y =Xsin w t + Ycosw t
the following relation can be obtained.

wBLX + BALY, — WX+ wpX = T ey = zo- 20

¥ ¢ = >
-QB% +Ba%’§ +w3T~w§Y*1w‘X~sz ..... (9)

Whereas _ _E_I;S
B="cA

Now if setting as
deX _ ¢ ddY _ ¢
= X e wtY o e (10)

the solution that satisfys (7) can be obtained as follows by using the normal
mode f“(x) .

X=°ﬁ Qn {A,,(Mmlx ~ Aimfmx) + (oS My X —cash m.x)} = i omf,gx )
n=1 i

..... (11)
Y"'z;ﬁii An(bimm, - Aimdl ma) +(Cotm,x-Cosk m,x)} =°f £ fpt)
nei
Whereas CO’SYVL“Q,CWVLWL».L +1l=0
A= Aimmnd —finfm L } ..... 2)
Ol ma L Coth L

By im.serting (11) in (9), the following equation is obtained by using ortho-
gonality of normal mode.

@ = o (0= EXBri- )+ T Brdd ¥ M. 00ax
(Bréd-Tu)+(Briw -+ wp* [ fegde| ...
PPN 0= B Britd~ T Y(Bnto-or wB)  J, hOd
(Bmdd =YY+ (Bmbw - w+wp? | Fooa
Therefore we obtain the following as the solution. o

& S0 simwt, + freswty (1)

{b) Solution to Simplified Maxwell-Kelvin Body

By inserting (2) in (6), similar to (a) the following is obtained.
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o LMW -0) +¥(Bind-Yw?) f fou

(Br=Yw)*+ (Bmiw-w)* —  (fhoar eeenal(15)
£y= 200 W (Bmd V) -¥(Bmsw-w') | S‘.ﬁmdx

(B~ Yu)'~(But w -u?y* ﬁ 1)dx

(¢) Solution to Kelvin Body

An=

By inserting (3) in (6), the following is obtained likewise.

A, =gt (B =0 (ol
(Bm,l w‘):( B Sw)* S;f,lmu 6
£ =z —Bmidw o frfuodx
" (Bmf-w+ (Bmi0)  (t fax
Whereas E{I% b °

(d) Solution to Maxwell Body
By inserting (%) in (6), the followinglis obtained likewise.
Q.= qu(Bm,uJ -0} —yw*  §, foax
T (Bt -w?)? 5' Tl 1)
& =24 ~w () —¥(Briw-0") (o
. (¥w + (Bmiw-0 (L fiooax
(e) Solution to Perfect Elastic Body

By inserting (5) in (6), thF following is obtained.
Qp= LW Sy
Bme-w' Mo
4;& =0

All of the above-mentioned solution can be expressed by the form of the
product of 3 elements viz. acceleration of foundation Zw?= Ci1 , resonance
factor determined by the physical properties of material, dimension of bar
and frequency of vibration of foundation and mode factor determined by the
vibration mode.

ceeeenen ..(18)

3. Vibration Characteristics of the Various Visco-Elastic Bodies in One-
Freedom System including the Structure and its Foundation.

It is well known that the resonance period and damping of vibration are
markedly influenced by the physical properties of the structures as well as
by the physical properties of their foundations. Although the solution men-
tioned in the previous chapter was obtained under the assumption that the
foundation is perfectly fixed, such condition does not exist on real struc-
tures and the energy of vibration is consumed through the foundation. In
this case better solution can be derived by solving the equation in compliance
with the boundary conditions that matches with the visco-elastic properties
of the foundation. The writer, however, wishes without referring to this
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method of computation to proceed on the discussion hergin by conceiving ong
freedom system including the structure and the foundation. .Because the reg-
onance period, damping of vibration, obtained by the vit.Jr'atlon tests on reg
structures (explained in the chapter hereafter) are entirely values for the
case as one freedom system including both the structure and foundation. fqne
dynamical treatment of complicated structure can be extremely simplified by
following the above-mentioned procedure.

The solution of vibration in one freedom system is made available by
substituting Bma‘ in the afore-mentioned solution with w2 and by setting mode
factor as 1, Complying to such procedure, the result computed for, compoung
amplitude by sinusoidal displacement of four}dation, resonance amplitude, res~
onant circular frequency, displacement in case the inertia force acts statical.
ly scharacteristic equation, the stableness of vibration, critical condition of
vibration etc. are shown in Table 2. It is noted that the vibration charac-
teristics differ conspicuously depending on the kinds of visco-elastic bodies,

As for the Kelvin body,w,<24 is established and there is a maximum limit
on the frequencys Also the resonant ampliitude Y s, is in inverse proportion
to the third power of natural frequency. Therefore the fraction of critical
damping R = Y. /211,,,,.. increases in proportion to the natural frequency.

As for the Maxwell body, W,2V/2is established and the minimum limit is
set for the frequency. Also Y., is in inverse proportion to the first power
of natural frequency. .Now if the assumption is made that the fraction of
critical damping h which is defined on Kelvin body is computed also on other

model by '3»./2}.“_ s h in Maxwell body is in inverse proportion to natural
frequency.

Maxwell-Kelvin body and Simplified Maxwell-Kelvin body are provided with
both of these properties in common. In case their natural frequency is large
compared with their physical constant, the vibration property similar to that

of Maxwell body is provided and in the opposite case the vibration property
similar to that of Kelvin body is provided.

For the purpose of illustrating these properties, the transmissibility
of acceleration ‘¢ /'fax. complying to the natural frequency of the structure
were computed respectively for Kelvin body, Maxwell body and Simplified
Maxwell-Kelvin body upon assuming the appropriate physical constants. 'These
are shown in Fig. 1-3. These figures show respectively the extremely diver-
sified results depending on the frequency of vibration of foundation. Also

upon deriving from these results, Fig. 4 was obtained which show how the
values of ‘#¢/;>}m_change by the resonant frequency., From these diagrams,
it is revealed that the characteristics of vibration differ remarkably de-
pending on the kinds of model body.

b, Damping of vibration of real structure.

The writer compiled and studied the results of damping of vibration which

were so far obtained experimentally on the respective kinds of real structures.
A1l of these results w

. " ere obtained by the form of fraction of critical damping
which was computed from resonance curve upon conceiving the Kelvin body of

one freedom system including the structure and foundation.

Fig. 5 is that obtained with respect to various types of arch dams.
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Although Kamishiiba arch d?m3), Tonozama arch dam“), Sasanami arch dam5) have
the dam volume of 35 x 10% - 3 x 10* m3, the values of h were obtained from
the resonance curves derived from extremely wminute vibrations which were ob-
tained from one point excitation by exciting force of the extent of maximum
10 - 20 ton actuating on these arch dams. The reason of providing several
points in the same dam is that the results were obtained for several kinds of
cases such as various vibration E?de, high water level, low water level etc.
With regard to Naramata arch dam®’; the values of "h'" were obtained from the
resonance curves which were obtained by applying the destructive vibration on
the test dam with the dam volume of about 70 m> resorting to the exciting
force of 300 - 800 Kg. Although 2 points of the mean nature at reservoir full
condition and at reservoir empty condition were indicated in the figure, as
the exciting force increases from 300 Kg. to 800 Kg, the value of h increases
by about 10 - 20%. As indicated by the figure, the relation between h and
Wy obviously denys the treatment as Kelvin body. The fact that h increases
against large vibration can be presumed that when assuming the Maxwell-Kelvin
body or Maxwell body the explanation should be made by inducing the non-
linearity in which the values of 7n, or v decrease against large stress.

Fig. 6 shows the values of h7) obtained by computing from the resonance
curves vhich were obtained by applying vibration produced by exciting machine
to concrete piers which were constructed on the foundations provided with
various properties. The relation with we, obviously indicates hyperbola res-
pectively complying to the properties of ground formation, accordingly it is
revealed that the treatment as Kelvin body is a mistake. Also it is reported
that the value of h for the case the pier laid on clay vibrates with a large
amplitude was about 2 times the value of h for the case of the vibration with
a small amplitude. For the case of clay it is observed that the non-linearity
is indicated to be conspicuouse.

Fig. 7 shows the value of h obtained from vibration test by exciting
machine regarding steel piping in steam power plant and also th@ values of h
computed from the observed values of the usual micro-vibration. ) In this
case also the relation between h and Wer obviously indicates hyperbola and
as a result the previous treatment as Kelvin body must be entirely denied.

3) Takahashi, T. "Behaviour of Vibration of Arch Dam' Technical Report C 5905.
Central Research Institute of Electric Power Industry.

4) Okamoto, S. "Observation of Earthquakes on an Arch Dam" Transaction of the
Japan Society of Civil Eng. No. 76. 1961.

5) Takahashi, T. "Results of Vibration Tests and Earthquake Observations on
Concrete Dams and their Considerations' 8th International Congress on Large
Dams 1964,

6) Hatano, T. "The Stability of an Arch Dam against Earthquakes", Technical
Report C 5607, Central Research Institute of Electric Power Industry.

7) Kuto, K. "Damping and Vibrational Characteristics of Bridge Piers' Pro. of
Japan National Symposium on Earthquake Eng. 1962,

8) Tokyo Flectric Power Co. Inc. "Study on the Aseismic Design of Piping in
uclear Power Station' 1962,
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However an extensive change of the h values complying to the magnitude of
vibration can not be observed indicating a different result from that of
concrete and earth structures. In other words, the non-linearity is cop-
sidered to be small.

S. Vibration test by concrete plate and steel plate.

For the purpose of comparing precisely the resonance amplitude and damp-
ing of vibration, 2 kinds of tests viz. forced vibration test on a shaking
table using concrete plate and steel plate and damped free vibration test op
concrete floor were conducted. The summary of these tests is .as shown in
Table 3.

Table 3 - 1
Forced Vibration Free Vibration
Hanged shaking table
A t excited by Electro-magnetic
PParatus | shaker (cap. 150 Kg
5 - 1000 c/s)
Measure- Wire Resistant type Wire~Resistant type
Accelometer on the top oftheldisplacement meter between the
ment plate & on the table top of the plate & fixed point
Vibration Constant Acceleration Damped free vibration given by
Sinusoidal the hand and by the hammer
(1) 150cm x 5 cm x 20 cm
Vertical plate lower end
o fixed on the table by
o steel plate, angles,
2, bolts & nuts.
o (2) 120 ecm x Semx 20 cm  |(2) 120 cm x 5 cm x 20 cm
£ pest plate Vertical plate
= This was made from test This was put on the concrete
‘g’ piece piece (1), cutting its floor attached by the steel
o upper part. plate, angles, bolts & nuts.
(3) 105 em x 5 cm x 20 cm |Natural frequencies were
plate changed by the added weights
This was made from test of steel blocks.
piece (2), cutting its
upper part.

In the forced vibration, for the purpose of obtaining the resonant ampli-
tude, the accelerations of shaking table and the upper end of concrete plate
and steel plate were recorded. And the points that indicated 90° phase dif-
ference for both of these accelerations were adopted. Fig. 8 and Fig. 9 show
respectively the records concerning concrete plate and steel plate. From
these results, the amplitude per unit acceleration of table is conceivable

to be expressed as *3«4.1/01 - Vuﬁr' "t'nu-!?-/CL .

Also from (15) (16) (17) and Yat.in Table 2, the following equation can be
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Table 3 - 2

Forced Vibration Free Vibration

(1) 780 mm x 7 mm x 200 mm
Vertical plate

lower end fixed on the table
by steel plate, angles, bolts

8 & nuts.

';"i Test (2) 650 x 7 x 200 plate (2) 650 mm x 7 mm x 200 mm

. This was made from test Vertical plate

9 | piece piece (1), cutting its This was put on the concrete

pr upper part, floor attached by the steel
(3) 530 x 7 x 200 plate plate, angles bolts & nuts.
This was made from test Natural frequencies were
piece (2), cutting its changed by the added weights
upper part. of steel blocks.

y f
obtained. ‘ﬁ Al P S. (Xdx . f,,(x=£)

2t 2hatts [ froode
Whereas P is the physical constant determined by model. Since the lowest
mode of vibration was adopted in order to avoid the range that indicates too
large resistance of air in this test, n = 1 was set. Then the following
equation is made available.
g~ Ls¢sP

2 ‘&M&.l/CL
The value of P is 1 or ¥/ and Fig. 12 shows the value of h for the case
is conceived as 1, The acceleration of shaking table was about 50 gal for
both cases of concrete plate and steel plate and the upper end acceleration
resulted in 1000 gal - 5000 gal indicating very large vibrations.

In contrast to the above-mentioned, for the purpose of finding the
condition at very minute vibrations, the examples which were obtained for the
test of damped free vibration are shown in Fige 10 and Fige. 1l Although 2
cases, one was by giving light shock by hand and the other by giving somewhat
larger shock than the previous-mentioned by hammer are indicated, the maximum
amplitude is about O.1 mm for the former and about 0.3 mm for the latter.

The values of h for both cases were obtained from logarithmic decrement and
are described in Fige. 12 together with the computed values obtained from
forced vibrations.

The following are in general the findings that were made available
through these tests,

(a) In case of concrete plate. As large vibrations are produced, the
value of h increases and the resonant frequency W, decreases., Also follow-
ing exactly the same as observed in real structures, h is in inverse propor-
tion to w,, and as a result the treatment as Kelvin body is absolutely denied.
In case of damped free vibration although the decrease of h is not so extreme
when W, is large, such result may perhaps be due to the large air resistance.
The trend that h increases as Wwor decreases is indicated when wW,, is small.
In this case since it is conceivable that the air resistance is small and
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also the dissipation of energy through the foundation is small because of the
very small amplitude, it may perhaps be logical to conceive that the damping
of vibration is chiefly caused by the internal viscosity. As shown by the
wrj,terl since it is better to treat as Maxwell-Kelvin body for the concretq
material, the results shown herein can be conceived to be caused essentially
from the properties of concrete material. Althougn tne values of b obtained
by forced vibration are far larger than the values obtained by damped free
vibration, such outcome should be explained by two reasons viz. one is that
the energy dissipation through foundation is large and the other is that nop
lipearity of dynamical properties is provided in the concrete. However as
shown in Fig. 6 if conceiving the points that the values of h differ con-
spicuously by the difference of the material of foundations, it may perhaps

be logical to consider the dissipation of energy through the foundation as
the major cause.

(b) In case of steel plate. ,As to steel plate, the relation between h
and Wer for the case of forced vibration and for the case of damped free
vibration shows a clear difference. For the case of forced vibration while
exactly the same trend as that of piping shown in Fig. 7 is indicated, on the
other hand for the case of damped free vibration the trend that h increases
as Wer increases is indicated similar to Kelvin body. Furthermore when W,
becomes large the values of h bear a close resemblance in either case of large
amplitude or small amplitude. As for the damped free vibration since it is
conceivable that the dissipation of energy through the foundation at very
small amplitude is small, if conceiving that the trend similar to that of
Kelvin body is due to the internal viscosity of steel material and to the re-
sistance of air, the steel material might be essentially a Kelvin body.
Nevertheless in case the energy dissipation through the supporting point as
a structure is concelvable, as in Maxwell Yody it may pernaps e lnterpreted
that a large damping of vibration is caused at low frequency. Also in this
case, however, the writer feels that the elements that should be explained by

non-linearity are very little when compared with the structures of concrete
or earth.

6. Discussion and conclusion
It is revealed that the parallel combination of spring and dash pot which .

was assumed in entirety with regard to the earthquake engineering of structures.
heretofore is not appropriate to explain the vibrations of real structures.

Although acceleration spectrum, velocity spectrum etc. which are adopted
for dynamic design are computed based on Kelvin body, the writer feels these
spectrums must be used after converting to suitable model in entirety.

Also although there is an idea of permitting the aseismic design of
structures setting a certain velocity as the basis from the fact that the
velocity spectrum value of seismic wave by Kelvin model is approximately con-
stant against a certain value of h, such conception is obviously wrong from

the afore-mentioned discussion even though resorting to either Kelvin model
or Maxwell model.

‘ Since the material and dynamical properties of concrete, rock, earth etc
~can be given a better explanation by treating as Maxwell-Kelvin model as
~mentioned previously, the structures made of such material and structures
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set on foundation of such propertics can be given s clearer cxplanntion on

actual vibrational phenomenn by treating as Maxwell-Kelvin model than that
done heretofore.

However in case of structures made of steel material especially in case
of piping sSystem as mentioned in this paper, even if admitting at least that
the explanation as Maxwell body is more suitable as a practical explanation
the questions such as wliy does it essentially admit so? Is it better to
conceive as some other better model ? etc. are the remaining problems to be
studied hereafter. ’

The conclusion of the afore-mentioned is summarized as follows:

(a) Although a solution of bending vibration of visco-elastic bar is
available with respect to that of Kelvin body, the solution also for Maxwell-
Kelvin body, Maxwell body etc. was made obtainable by the modal analysis.

(b) By treating the structure including the foundation as one freedom
system and as Maxwell-Kelvin body, Maxwell body and Kelvin body, the char-
acteristics of vibrations were studied utilizing the solution mentioned in
(a). As a result it was revealed that while in the Kelvin body which hereto-
fore is assumed in the aseismic design the resonant amplitude Y..s is in in-
verse proportion to the third power of natural frequency w, and the fraction
of the critical damping h increases in proportion to uw, , in the Maxwell body

Yau is in inverse proportion to the first power of W, and h decreases in
inverse proportion to uw, and in Maxwell-Kelvin body the properties of both
Kelvin body and Maxwell body are indicated.

(¢) After examining the tests conducted so far on the real structures
of dams,piers of bridges and steel piping systems, if rearranging the relation
between h and wor, all of these relations exist on hyperbola, indicating that
the previous treatment as Kelvin body is wrong. Also in concrete structures
large values of h against large vibrations were observed and as a result it
is presumed that the non-linearity of concrete and the material of foundation
earth are the grounds of explanation.

(d) The writer confirmed the explanation of (c¢) from the results of in-
door vibration tests of concrete plate and steel plate. However non-linearity
of steel structures is conceived to be small and in case the dissipation of
vibration energy through the fixed section is conceived to be small, the
value of h indicated the trend to increase together with the increase of wer.
From such trend, the damping characteristics of vibrations, the mechanism of
energy dissipation of the steel structures are presumed to involve many
subjects that still need to be clarified.

(e) It is necessary to convert the computation of acceleration, velocity,
spectrum which heretofore were employed in the dynamic computation according
to a proper model.

Also the treatment of non-linearity which was not referred to in this
paper is particularly essential for the case of aseismic design that assumes
a large seismic acceleration. Concerning this problem, the writer wishes to
explain at another opportunity.
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Fig. 1 Frequency Response
Kelvin body
(One mass system having the same physical constant§
and variable mass m )
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Fig. 3 Frequency Response
Simplified Maxwell Kelvin body
(One mass system having the same physical constants o, ¢,
and variable mass m )
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Free Vibration Test of Vertical Steel Plate on the Floor

Fig. 11

Fig.lO Free Vibration Test of Vertical Concrete Plate on the Floor
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Relohon in the Resonance Test
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QUESTION BY:

AUTHOR'S REPLY:

VIBRATION OF VISCO-ELASTIC BODY

BY T, HATANO

E,A, SPENCER -~ NEW ZEALAND

I should like to kmow if in fig. 12 you show values
of damping calculated from a resonance test. When
you conducted this resonance curve was the amplitude
different for each point on the curve or was the
amplitude the same? I think it is possible from
results I have found testing reinforced concrete
members and trying to establish their damping, that
one can get different answers for the % of critical
damping at each amplitude. The fact that the
amplitude is different in each case would itself
introduce a difference that might tend to disguise
the effect that you are showing i.e. that it is
dependent upon the frequency.

Relationship between maximum amplitude and fraction
of criticel damping in the test results shown in
Fig. 12 is presented in the following Table 4.
Maximum amplitude in this table shows those on the
tops of the plates; a concrete plate 1200mm in
height and a steel plate 650mm in height, under
the various conditions of vibration.

Table 4
Concrete plate (ht. 1200mm)
sec -1 mm
WOI‘ h max. amplitude
83 0,044 1.4 forced vibration
90,3 0.0125 0,3 free vibration
44.6 0.0130 0.3 "
40.2 0.0132 0.3 "
37.0 0.0133 0.3 "
92,6 0.0092 0.1 "
46.3 0.0094 0.1 "
41.3 0.0095 0.1 "
37.7 0.0104 0.1 "
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Steel plate (nt.650mm)

=

Worsec h max, amplitude ™

85 0.0068 T.3 forced vibration
107 0.0057 0.3 free vibration

68 0.0048 0.3 "

53 0.0049 0.3 "

39 0.0045 0.3 "
108 0.0046 0.1 "

68 0.0046 0.1 "

53 0.0045 0.1 "

39 0.0044 0.1 "

ifhen these values are plotted in a figure,
there seems at a glance to be correlation
between max. smplitude and fraction of critical
damping, but actually, there is little correl-
ation, for example, in the case o! free
vibration.

The seme analysis on a real structure is ment-
ioned in the following example. This is taken
from tne result of a field test on Naramata
Arch Jam in Fig. 5. Two points of N in Fig. 5
represent the average value of 4 points eachy
the details of these values are explained in
reference 6. These 8 points sre the test
results in the same mode with different exciting
forces and reservoir conditions. Relationsghip
between the fraction of critical damping and
emplitude converted into amplitudes on the same
point of the dam is snown in Table 5.
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Naramata Arch Dam

Tadble 5

sec-1

wor b amplitudemm reservoir exciting forcekg
78.8 0.087 0.33 empty 800

" 0.081 0.24 " 650

" 0.094 0.43 " 800

n 0.068 0.32 " 500
67.1 0.108 0.34 full "

" 0.101 0.23 " 300

" 0.108 0.32 " 500

" 0.089 0.26 " 30C

When these values are plotted in a figure, it
might be made clear that there is no correlat-
ion between amplitude and fraction of critical
damping, and that the relationship between the
natural angular frequency wor, and the fraction
of critical damping is in inverse proportion,
depending upon the magnitude of the exciting
force.

Fig. T presents the test results in the case of

a large amplitude of steel piping by an exciting
machine, and in the case of a very small ampli-
tude is ususl micro-vibration. It can be consid-
ered that there is no correlation between ampli-—
tude and fraction of critical damping, on the
basis of the fact that test results are plotted

on one hyperbola line.

The writer comsiders that the inverse proportion-
al relationship between W,y and fraction of
critical damping comes out wien tine main cause

of damping of vibration results from the vibrat-
ing energy dissipation from the base of the
structure, and that another result would be brought
about, when resistance of air and coulomb frict-
ion lead to main causes of damping of vibration.
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