DESIGN SEISMIC FORCES FOR
REINFORCED CONCRETE BUILDINGS

by YUKIO OTSUKI

INTRODUCTION

The Japanese Code requirements for the design seismic force specifies
the use of a seismic coefficient, K, calculated as a percentage of the
gravitational acceleration, g. The Code requirements were contained in an
article by the writer presented to the First World Conference on Earthquake
Engineering held at Berkley, California in 1956 (1).

This form of specification is simple to apply to actual design calcu-
lations and gives reasonable results for average building structures as
long as the buildings are squatty and fairly rigid. But the writer feels
somewhat sceptical about the validity of applying the same requirements to
non-squatty or slender buildings, the vibrational behaviors of which are
obviously so different.

The design seismic force for a particular building structure should
be determined from the vibrational characteristics of that building. A
remarkable achievement in utilizing such building characteristics is the
recent San Francisco Building Code requirements in which the design base
shear coefficient for a building structure is given as a function of the
structure®s natural period of vibration. The form of representing this
force coefficient is as percentages of gravity acceleration similar to
other existing Code requirements.

Up-to-this time, therefore, whether or not the natural period of
vibration of the structure is taken into account, all Code requirements
specify the statical equivalent coefficient which is expected to give
appropriate values for the design storey shears. Sometimes this procedure
results in excessive overturning moments for the lower portions of the
building, particularly as the height of the structure increases. Some
special procedurés become necessary to handle such large moments.

A fact that earthquake ground motion is not steady indicates that a
building structure will never vibrate accordingly during an earthquake.
Therefore, the most adverse conditions will never occur simultaneously
throughout the building structure. If the coefficients are so specified
as to insure sufficient strength for the upper portions of a building, then
the lower portions of the same building certainly will be overdesigned, and
"vice versa. Such contradicting tendencies can be eliminated by the intro-
duction of some localized design conditions in addition to overall require-
ments.

Further, current design methods in which a building structure is
assumed to deform in the shearing mode during an earthquake have never been
proved inadequate. Supposing therefore, that a certain storey of a building
structure is deformed in the shearing mode, it is obvious that the force
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in.ced in this storey will be equal to the product of the amount of storey

PR

Jdeformation and the storey rigidity.

Therefore, when the vibratiomal pattern of a building structure can
te determined with reasonable accuracy, it is possible to calculate all
storey deformations, and hence the storey shears if all storey rigidities

are known.

This becomes the basic philosophy of this proposal. The important
quantities in this proposal-are:
Natural period of the structure
Natural period of the site ground, and
Design velocity of the structural wvibration.

GROUND MOTION AND STRUCTURAL RESPONSE

In order to cope with the problem dynamically, it is necessary to
define the ground motion during an earthquake. As described previously,
the ground motion during an earthquake is not stationary. The best way to
define the effect of the ground motion is to define the structural response
instead of the ground motion itself. Then, considering the ground, or sub-
soil, to be an elastic medium, a stratum or strata has its own natural
period of vibration. Accordingly, a structure which is built on this soil
will be excited in its natural modes of vibration by the earthquake ground
motion which has been modulated by the vibrational nature of the site strata.

This is equivalent to what Messers. Martel, Housner and Alford main-
tained in the discussion of a relatively small slender tower on top of a
building (2). Mr. H. Tajimi has made an extensive study on this problem
(3). He has concluded that tendencies coinciding with Housner?s results
(4) occur only if the abscissa of Fig. 6 of Reference (4) is changed into
the period ratio of the structure to the ground, Ts/Tg, in place of the
simple structural period, Ts.

The response velocity certainly will vary with the structural damping.
However, for practising engineers, it is a difficult problem to assume an
appropriate value of damping for any structure under immediate consideration.
However, if the scope of application is limited to cover only reinforced
concrete structures, with or without encased fabricated structural steel
frames, the range of damping will be limited to within a comparatively
narrow range that can be deducted by formula.

It is well known that shear walls placed in a building structure are
very effective in minimizing the structural deformation under earthquake
loading. The shear walls will be the first elements to become overstressed
when the building vibrations become violent. They then dissipate energy
and prevent the rest of the structure from becoming greatly .overstressed.
Further, it has been observed that when shear walls have been provided in
sufficient numbers in a building structure, the amount of shear deformation
is reduced to a remarkable extent as compared to the integral-unit movements
such as rocking and swaying displacements. Both of thése shear wall factors
mean an appreciable increase of damping.
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Soil conditions must be carefully considered also; past experience
shows that the intensity of the earthquake shock is always greater on soft
aluvium than on harder soils.

Mr. H. Kobayashi®s studies indicate that the taller the structure, the
greater will be the velocity of vibration. The empirical relationship
between the height of the structure and the vibrational velocity can be
expressed approximately as the two thirds power of the height.

Considering all the contributing factors expressed herein, it is pro-
posed that the design vibrational velocity be calculated by use of Eq. (1).

NATURAL PERIOD OF A BUILDING STRUCTIURE

In order to define the vibrational velocity of a building structure,
the correct assumption of the natural period of the structure is of para-
mount importance. The requirements of the San Francisco Code gives an
underestimation of the period giving a margin of safety. In this proposal,
underestimation of the period will not result in such a margin of safety.
Therefore, a more accurate formula for the period estimate is a necessity.

Accumulated vibration test data (6) clearly indicate that the majority
of the existing buildings tested rock and sway, and behave differently from
a fixed base condition. In the case of a shear beam, the natural period cf
the beam is theoretically proportional to the product of the square root of
the tip deflection under the force of horizontal gravity and the length of
the beam. It is to be emphasized that the deflection of the beam tip con-
sists of two components: the deformation of the beam proper and the dis-
placement due to the deformation of the support. Therefore, it is a sug-
gestion of this proposal that the total displacement of the building top
be divided into two parts: the elastic deformation displacement of the
superstructure and the displacement due to the deformation of the sub-
structure.

Another factor to consider is the fact that a very flat structure such
as a machine foundation where the height, H, is practically zero, still has
its own natural period, which is finite.

Considering all the pertinent factors, a formula something like Eq.(2)
is developed.

In the determination of the magnitude of factors which represent
structural deformation and subsoil deformation, it is best to avoid becoming
too theoretical such as in the assumption of the rigidities of structural
members or the spring constant of the soil. Eq. (2) is absolutely empirical,
therefore, but never the less it can be expected to predict the natural
period of a building within about twenty percent; which considering the
possibilities of error is quite close.

The natural period so predicted is the natural period of small ampli-
tude, or the initial period. It has often been noted that when the ampli-
tude becomes large as in a violent earthquake, the period of a structure
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will be elongated appreciably. This is probably due to localized damage of
both superstructure and substructure. However, until such local damage
does occur in a structural system, the structure will certainly be sub-
jected to a force system consistent with the initial state.

In case where the period becomes elongated because of such local
damages, such elongation will be inversely proportional to the square root
of the rigidity. As long as the period ratio of the structure to the
ground remains less than unity, the design velocity is proportional to the
natural period, again inversely proportional to the square root of the
rigidity. This means, the overall deflection, hence the storey deformation
is inversely proportional to the rigidity. Now, since the storey sghear is
given as product of the rigidity and the deformation, the storey shear will
remain unchanged as long as the natural period of the ground remains con-
stant. For the range where the structural period is longer than the ground
period, the design velocity remains constant, and therefore the elongation
of the structural period reduces the design shear.

For reasons stated previously, it is proposed to use the initial
period of a structure as the basis of the design analysis.

It may be pointed out that the natural period of the ground also will
become longer in a violent earthquake. However, the elongation of the
ground period always tends to the favor of the situation.

In this proposal, it becomes necessary to estimate the period of the
second mode vibration. It must be born in mind that although the end con-
ditions have appreciable influence on the fundamental period, they have
but little influence on the second mode. Therefore, the second mode period
can be computed using Eq. (2.6).

NATURAL PERIOD OF THE GROUND

Since the design velocity is given as a function of the period ratio
of the structure to the ground, it is equally important to know about the
predominant period of the ground. However, as mentioned previously, the
accuracy of the ground period will not matter as seriously as in the case
of the structural period. The elongation of the ground period tends to
decrease the design shear, and therefore, it is proposed to take the initial
period as the basis of the design analysis. Such predominant period of the
ground can be determined from the frequency distribution of small ground
tremors (7). Where such data is unavailable, provisions are made so that
one can choose an appropriate standard value according to the formation of
the subsoil strata. It is needless to say that the more accurately the
ground period is estimated, the more reasonable the design shear that can

be obtained. In any cases, the ground period should not be assumed as
excessively long. i

DEFORMATION PATTERN OF A BUILDING STRUCTURE

Si?ce‘the natural periods of a building structure and the subsoil are
known, it is possible to define the design velocity by assuming the quantity
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of wall elements to be provided in the building referihg to the structural
plans. The next step then is to find out what deflection pattern of the
building structure is both in the fundamental and the second modes.

This can be done only if the rigidity distribution along the height
becomes known. This process may be quickly done by use of a computor.
Even if such facilities are not available, the modified Stodola method (8)
and Holzer method (9) will give both a quick and good approximation for
design purposes for the fundamental and the second modes, respectively.

THe next step then is to calculate each storey deformation. For the
second mode, the storey deformation cam be obtained readily from the de-
flection curve by subtracting the deflection of the certain storey in
question from that of the upper and adjacent floor level. But in the case
of the fundamental mode, since it contains also the bodily displacement
due to the soil deformation, it is nacessary to calculate the pure structur-
al deformation by subtracting that amount from the apparent deformation.
When all of these procedures are complete, a table can be set up in which
all of these storey deformations are listed.

DESIGN SHEARING FORCE

When all storey deformations are calculated, the last step is then to
calculate the design shear for each storey. It is done simply by multi-o
plying each storey rigidity by the corresponding storey deformation.

Now, there are two components for each storey deformation, one for the
fundamental mode and the other for the second mode. The former is to be
used to calculate a force system with the equilibrium of the complete build-
ing structure while the last is for local adjustment disregarding the equi-
librium as a whole. This adjustment is applied in such a manner that the
storey shear calculated from the fundamental mode is multiplied by the
ratio of the sum of the absolute values of the fundamental and second mode
storey deformations to the fundamental storey deformation. The adjustment
is to be applied storey by storey, and the adjusted shear should not be
considered as exerted simultaneously for all storeys.

A question may arise then as to what the appropriate value is for the
rigidities of storeys to be used in this step. The answer is the rigidity
which is consistent with the design natural period which is given by Eq. (2)
of this paper.

In the course of calculating the vibrational mode, it is necessary to
assume storey rigidities, or at least rigidity ratios for all storeys.
But since this assumption is made quite independent of Eq. (2), the com-
puted value based on those rigidities will not coinside with the predicted
period. Therefore, correction as shown by Eq. (6) should be applied.

PROPOSED METHOD FOR DETERMINATION OF EARTHQUAKE FORCES

Scope of Application: The following provisions are applicable to framed
reinforced concrete building structures with or without encased fabricated
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structural steel which are taller than 16 meters above the g€ <Y  1ifferent
such a building the structural nature of which is comparative P application
from the conventional structure and considered inappropriate
of the current Code provisions.

' 73
Design Velocity: The design velocity is to be determined ffaﬁ
following formula:

\]:O'xczxcjxvox(__%)’f, (1)

3 IME a8
where C; is a coefficient due to locality of the site, amx<cd *
specified in the present Code (5).
Cy is a coefficient which is determined as followss
, ¥re the
Let Tg be the natural period of a building and Tg&
natural period of the ground, both in seconds,
T s (1.1)
< -
a) For —1—§—=I~O, Cz"":'ra")
(1.2)
b) For —% > 1.0, ¢, = 1-0.

¢) For soft ground, the natural period of which i S lf‘”;w;:: t}:‘tn
0.6 seconds, or if it is difficult to define its natux & & period,

then >
for Ts = 0.5 seconds, Cp = 1.0, and

(1.3)

n

for Ts £ 0.5 seconds, Cz 2 Tg .

d) When the soil is definitely of hard formation, but is diffi-
cult to define its natural period, Tg can be assumed e«juaal to
0.25 seconds.

Cz is a coefficient which is a function of the wall grraritity and
is given as follows:

= w
Ca - 1.3 - 75—- y (1.4)
where w is the wall quantity per unit floor area in tTexms of

em / m®, in respective directions. The value for w =kwm 1 1 he the
minimum for all storeys in the respective directionss .

Vo is the basic velocity which is given as follows; acogrding to
the nature of the subsoil formation:

a) For tertiary or older 12 cm/s

b)  For deluvial formation or alluvial formation, the ¢ nickness
of which is not deeper than 5 meters 15 cm/s

c) For alluvial formation the thickness of which i s

LS to,
or deeper than 5 meters qual

20 cm/s

Natural Period of Building Structure: The natural period of

L n
structure shall be computed by the following formula: building
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Ty = 0.007 (H+15)/f + £f2 (2)

where | .
H = H, +-§'Hu‘ {m) (2.1

He = Building height above the ground in meters.

Hy = Depth of basement in meters.
£, =0.07 (20 - w) (2.2)
2
+ X
fZ=KlXK2Ki—X_—_/ (2.3)
Ry = (15 +w) H / 2000 (2.4)
for direct foundation on base rock, and
Ky = (25 +w) H/ 2000 (2.57
for foundations other than above.
K, = Coefficient due to type of substructures given as
follows:
Direct foundation on base rock 1.0
Bearing piles or piers
Length in meters
0- 35 5 - 10 10 - 15 15 and up
Piers 1.0 1.1 1.2 1.5
Piles 1.5 1.5 1.8 2.5
Friction piles 2.5
Direct foundation on other than rock 3.0 - EF/25,
where F = Allowable bearing power in t/m2,

X = H/D, where D is the depth of building measured along the
direction under consideration, in meters. Where H/D is
less than unity, A is assumed to be equal to unity.

Ts; = 0.4 T$) . (2.6)

where Ts =0.007 (H+15) Jfy 2.7

Observed periods for various buildings are shown in Table 2 in com-
parizon with the computed periods by Eq. (2).

Natural Period of Ground: The natural period of the site ground is to
be determined by the frequency distribution data obtained from the micro-
tremor observations at the site. Where such measurement is not feasible,
the following figures can be used;

Hard rock 0.15 seconds
Soft rock 0.25 seconds
Deluvial formation 0.40 seconds
Alluvial formation 0.60 seconds
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Determination of Design Shear:

a. Design velocities V| and V. and natural periods Ts; and Tszare to be
calculated for the fundamental and secand modes of vibration by Egs. (1)
and (2).

b. Deflection patterns for the above mentioned modes, X, and X, are to
be determined. The following constants then can be determined.

ZW’s Xh.
= M—————T—-—' )] (3.1)
/5' Z Wi )&ﬁ
ﬂz = 1 __/_,,! ) (3.2)
c. Top deflections for the respective modes are determined as follows:
VI_TSI
= 4.1)
lfrr f% f) 5} (
Vz Tsz
YZT = 2T 'FZ . (4.2)

The complete deflections are then calculated for the respective modes
as follows:

i TVt X', and (5.1)
Y2 = Yoy X2 (5.2)
d. All storey deformations are to be calculated for respective modes.

e. Storey shears are to be determined by multiplying each storey rigidity
by the storey deformation obtained. The rigidity figures as herein used
must be consistent with the natural period used in (c).

Let R be an assumed rigidity and R* be the corrected rigidity which is
consistent with the natural period used in (c). Denoting the computed
period basing on R by Tp, and the period as given by Eq. (2.7) by Tg; , then
it follows:

R/ ‘(Ts:)'g )

f. The fundamental mode shear is to be used for calculation of the equi-
librium state of the building as a whole, while the logal shear, which is

the sum of the absolute values of the fundamental and second mode shears,

is to be applied locally to each corresponding storey.

NUMERICAL EXAMPLE AND COMPARISONS
A sample calculation in accordance with this proposal has been carried
outt and the results are compared with current Code values, and additionally
with triangular distribution in which the base shear coefficient is adjusted
to be equal to 0.2.

It is observed, as shown in Fig. 1, that this propesal requireg more
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shear for the upper part of the building, but less for the lower part than
has been required by current Code. , The general tendency of the design
storey shear distribution is similar to ome calculated from triangular
distribution. However, a comparative difference can be seen between these
two for the overturning moment distribution., Such tendency is expected to
become remarkable as the building height increases. The shear distribution
pattern is generally similar to the results in References (10) and (11).

Because of the factor C, , as the building height becomes taller and
the natural period of the fundamental mode becomes longer than the period
of the ground, the ratio (p/C; will increase, i.e., the contr1but1on of the
second mode is expected to become pronounced.

CONCLUDING REMARKS

This proposal was drafted initially by the asuthor and has been dis-
cussed at the meetings of the Vibrational Committee of the Architectural
Institute of Japan. Messers. K. Kanai, T. Hisada, K.Nakagawa, H. Kobayashi,
N. Ando, T. Tajime, H. Tajimi, Y,  Osawa, Y. Murata, T. Iwashita and T. Pu-
kuchi participated in the discussions. To date, the committee has not been
able to reach a final conclusion. However, the author believes that the
following three points have been generally accepted by the committee members:

1) The design shear for a building structure is to be determined
according to its vibrational behaviors, such as the natural periods of
both the building and the ground.

2) The introduction of local treatment presents a good solution for
the present problem.

3) - Eq. (2) for the prediction of the natural period of a building
gives a good approximation.

One of the main points of those discussed at the meetings was that
the proposal seemed to be a little too complicated to be uniformly applied
as a Code requirement. Another point was that the requirements in the
proposal were not uniform; some parts are too theoretigal as compared with
some other more practical parts. Some members prefer to give a seismic
coefficient form to the present deformation and rigidity proposal,

) These discussions are very worthy in that they represent the thoughts
of men fully qualified. The scope of application is therefore limited to

tall or otherwise unconventional building which are best designed only by

well qualified structural engineers.

The non-uniformity of the requirements can not be avoided because of
the nature of the proposal, unless of course all emperical requirements
can be replaced by those more theoretical and competently handled. It is
to be stressed that this proposal tries to specify requirements in simplest
form as long as is possible without such simplification resulting in the
invalidation of the problem.

It would not be impossible to specify the design seismic factor in
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terms of seismic coefficients, with a certain adjustment for local shear
due to the higher modes, if a simple formula can be established to give
appropriate values, The author feels, however, that a representation such
as seismic coefficients would not be effective for any building structure
in which the rigidity distribution along the height is unconventional.

This proposal requires more time for design shear calculations than
engineers are required to expend when following the simpler method deline-
ated by most present Codes. The time required for the calculations follow-
ing the method outlined herein will be somewhere between two to six hours
according to experience. This is, of course, only a fraction of the time
required for the complete structural analysis. It is believed that the
added time spent compensates in that it gives the engineer a more complete
grasp of the general structural behavior pattern of the building during an
earthquake.

The author hopes that this proposal will help to provide a design
method satisfactory enough to alleviate the present Japanese Code restrict-
ions against buildings for the taller buildings of this type of construction,
although the Code restriction is not for the structural reasons. It is
hoped also that it may help those persons in other seismic countries who
are forced with the same problenm.
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NOMENCLATURE
Coefficient of excitation, fundamental mode
Coefficient of excitation, second mode
Coefficient due to locality of the site
Coefficient due to period ratio of building to the ground
Coefficient due to wall quantity
Depth of building m
Allowable bearing capacity t/m*
Factor representing structural deformation

Factor representing building displacement due to foundation yield

Building height m
Building height above ground m
\

Depth of basement below ground level m

Coefficient representing foundation yield
Coefficient representing foundation yield

Inertia factor

Overturning moment t-m
Design shear t

Rigidity of building t/cm
Corrected rigidity of building t/cm
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Natural period of the ground

Natural period of building

Period corresponding to assumed rigidity

First mode period

First mcde period for fixed base

Second mode period

Design velocity

Basic velocity

Design velocity for fundamental mode

Design velocity for secqnd mode

Wall quantity in one direction

Load at i-th floor level

Normalized deflection, fundamental mode

Normalized deflection at i-th floor level, fundamental mode
Normalized deflection, second mode

Normalized deflection at i-th floor level, second mode
Design deflection, fundamental mode ,

Design deflection at the top of building, fundamental mode
Design deflection, second mode

Design deflection at the top of building, second mode
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sec
sec
sec
sec
sec
sec
cm/s
cm/s
cm/s
cm/s

cm/m2
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APPENDIX

The welknown Stodola method was primarily prepared for the bending

vibration of a beam, but the same principle can apply to the vibration
of a shear beam.

The following tabular form is self explanetory and convenient for
the mode calculation for the fundamental mode.

W@ @] @ | & (6 n ® D)
N | v | W | @x) | [ nimd | )/ | 45 | (2)/)
R} mmmmm oo | e bl deaem | e
N =—eme | e | e L4 e - {mm——-
N-1l | === | ;e | mmee: | ] e | e
2| e o ——— JENNUUUETUREEE R A SR SNV, [
1 0 | ~==-- 0 0

In the above Table, column (8) gives the figure for yypy , and Dy
denotes the rigidity figure as given by Dy= Ri/(12EKp).

The similar calculation is to be repeated until all of (-y!“%'-)lvalues
become uniform. Then, it follows

2 W
('2'11{‘) = (—é‘;)x 12EK, 3.
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TABLE 2

COMPRESSION "TENSION

STRUCTURAL | 2400 kg/cmt
STEEL (34200 psi) | 2400 kgsem®

2/3 OF 1710 OF
CONCRETE | COMPRESSIVE | ALLOWABLE
: STRENGTH COMP. STRESS |




