DESIGN CRITERTA FOR SHEAR AND OVERTURNING KOMENT

by John E. Rinne*
Introduction

Criteria for earthquake-resistant design in Californie have varied
considerably over the fifty~four years since the San Francisco Earthquake
of April 18, 1906. In the early post-quake era, earthquake resistance was
achieved through design for increased wind forces. While some structural
engineers designed for accelerations applied to gravity loads, it was not
until 1933 that earthquake design was written into the State laws. The
Riley Act provides for minimum lateral earthquake forces of 2 per cent of
the vertical design loads. The Field Act, also passed in 1933, following
the Long Beach Earthqueke, is applicable to schools and other institutional
buildings under the jurisdiction of the State Division of Architecture.
The rules established under this Act are much more stringent than the
Riley Act. The latter is generally applicable stotewide where more strin-
gent requirements are not prescribed by local ordinances. Most of the
cities and counties do impose much more involved design criteria in their
building codes.

As this is being written, the Los Angeles and Uniform Building Codes
are considering adopting the recommendations of the Seismology Committee
of the Structural Engineers Association of Californis. These recormenda=
tions are the subject of another paper at this Conference. 41l of the
modern codes have recognized the need for variable coefficients for seismic
shears, with higher coefficients for low, rigid buildings; lower coeffici-
ents for high, flexible buildings. In the Los Angeles and Uniform Building
Codes, these coefficients relate to the number of stories sbove the story
under consideration and are applied to the dead load generzlly to arrive
at the story earthquake shears. Overturning criteria correspond to 80
per cent of the story shear multiplied by the height to the center of
gravity of the loads sbove the story under consideration.

Following the report of the Joint Committee on lateral Forces (san
Francisco Section, American Society of Civil Engineers, and Structural
Engineers Association of Northern California) known as "Separate 66",

San Francisco adopted a code vhere, for the first time in California at
least, earthquske forces and shears were directly related to the fundamen-
tal period of vibration of the structure. The overturning moments were
recognized not %o be cumulative without limit. An arbitrary limit on

design overturning moment was given:

"Provision for overturning moment shall be made for the speci-
fied earthquake forces in the top ten stories of buildings or
the top 120 feet of other structures, and the moments shall be
assumed to remain constant from these levels into the founda-

tions."

The "overturning moment" at any horizontal plane is the moment on
tlge structure as a whole resulting from the dynamic earthquake forces
above the plane, giving due regard to signs of the modal forces.

*Structural engineer, Standard 0il Company of California, San Frencisco
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The Joint Cormittee was well azware that this was an interim provision
and recommended that further resesrch was needed for tegtablishment of a
design criterion for the overturning effects in earthquakes, based upon
dyparic corsiderations.”

The author undertock a study of shears and overturning moments of
stack-like structures end more recently, as part of the work of the Seis-
melogy Cormittee of the Structural Engineers Association of California,
extended this work to include shear deflection type structures. From
these studies, criteria have evolved for design overturning moment. It
is the purpose here to present the reasoning leading to these criterisa.

Steps in the inalysis

® correlate the ensuing discussion, the following outline of the
steps in the development may be helpful toward an understanding of the
significance of these steps and of the assumptions made.

1. Determine squivalent spring-mass systems representative of the
nodes of vibration for uniform cantilevers which deflect (a)
due to bending moments exclusively, and (b) due to shear exclu-
sively.

2. Establish a modal response spectrum which indicates the response
of the simple spring-mass systems to earthquake ground motion in
terms of relative lateral force, or base shear, on these structures
as a funciion of the period of vibration.

3 Determine the combined modal response of both moment and shear
type structures, and for both base shear and base moment. Compare
the base moment response with the base moment correspording to
the SEAOC code provisions for base shear and overturning corres—
ponding to that base shear. @

4. Indicate a criterion for reducing the base moment to reflect the
ratio of the base moment response to the base moment correspond-
ing to the design base shear.

5. Recommend 2 basis for reducing the design overturning moment from
the base to the top of the structure.

6. Recomend a basis for distributing the design overturning moment
to the vertical resisting elements of the structure. :

The response of & complex structure to earthquske ground motion theo-
retically can be determined at any instant during an earthquake by the ,
superposition of the responses in the different modes in which the structure
can respond or vibrete. Each of these modes can be represented by a spring-
mass systm of period egual to that of the mode under ¢onsideration, and a
mass which is a certain proportion of the total mass of the structure.

For w.nh.lever structures of uniform distribution of mass or weight,
¥r, Hilton Iudwig has determined these equiva.;ent spring-mass systems for
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moment deflecting structures and for she i i

his pem$§ion, Mr. ILudwigts developmenta;sdgizfxti]ig d:ttargih‘;;e:ﬂe Elﬂ;ndix
The resulting equivalent masses of the modal Spring-mass systems tcgzther )
w:f.th tl-le ratios of the higher mode periods to the fundamental pe;iod are
given in TABIE I.  Grephically these are shown in Figures 1 and 2 wt’lich
indicate heights of the spring-mass systems such that the modal shears

multiplied by these heights give the respecti 5
moments in the dctual structure, pective modal hase overtuming

It is seen by the summation of W /W columns of TABIE I that most of
the mass of either type structure, but particularly the shear type, is
assigned to the first three modes. For purposes of relating design shear
to design overturning moment, s simplifying assumption can be made that a1l
of the mass is assigned or prorated to the first three modes. The higher
modes contribute little to overturning and even the third mode is nof very
sign.;iisz.can’c in this regard. The result is shown in TABIE IT and in Figures
1 and 2,

Response Spectrum

The spectral or maximm responses of spring-mass systems to a mmber
of recorded ground motions have been determined for both undamped and damped
systems, using analog compubers. It bears repeating that the spectrsl res-
ponse is the maximum response during the entire earthquake. As units of
measursment, the spectra may be in ferms of displacement, velocity, acceler-
ation, or functions related to these units. For this analysis, the acceler-
ation spectrum is particularly useful since this spectrum is directly related
to the lateral force, or the base shear, on the spring-mass system.

Reviewing a number of undamped spectra, which qualitatively can indicate
the response of structures within the elastic range, the striking similarity
between these is interesting. A response spectrum which seems to envelop
quite adequately the spectra from a number of earthquakes of varying inten-
sity is shown in FIGURE 3,

An assunption will be made in this analysis which is admittedly not
entirely accurate. It is that spectral responses can be added to get the
combined modal response., The maximm respcnses in the second and third
modes do not necessarily occur at the same instant as the spectral funda-
nmental response, But it is probable that the higher modes are making a
significant contribution at that instant. The accuracy of this as§umptn.on
is probably well within the accuracy of several other assumptions inherent
to this kind of an analysis.

Combined Modal Responses

. The relationship between base moment and base shear in the first

" three modes is shown in TABIE III. The calculation qf the modal base
moments and the ratio of these to the moments corresponding to the design
base shear is given in TABIE IV for moment structures, and TABIE V fc?r
shear structures. These calculations have been made for certain periods
selected either arbitrarily or to cre;'ge thznds maximum r(;sp:z:etin g’g: :econd
or third modes. For example, T, = 1.56 sec was selec 0

secondrgxode period, T, = 8.25 f%r the moment type structure, at which paried
the second mode reapogso is a maximum as seen from FIGURE 3.
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Moment Reduction Criterion

The results of TABLES IV and V are plofted in FIGUER 4. Alsc showm
thereon is the proposed base moment reduction factor, J.

FIGURE 2 indicates that if the base shear for design is given by a formula:
V=CW whereC =k/ T3

and if this base shear is resolved into forces Fx by the formla:

N "‘Aj
"
3
tal
ol

and if the modal response to earthquake ground motion is given by FIGURE 1:

S 0.25/ T for T greater than or equal to 0.25

and S = 0.30 + 2.8T7T for T between C and 0.25
and if it is a reasonable approximation to assume that the maximum response
of the structure is the sum of the speciral modal respomses, then the design
base moment M can be given by:

M = JZFxhx

. i — o) 23
where J =J, for buildings = 0.5/ mﬁ/ with 5, ' = 1.00
and J‘b ma.= 0.33

and J = Jm for moment deflection structures, like stacks
_ /2 -
3 =0.6/ /% with I nep,= 1,00

Jm ... = 0,40
The J factor is in the same form as the factor k suggested in the author's
earlier paper, but is somewhat lower.

_ /2 _
k = 0.7/ T2 withk = 1.00

k . = 0050

min
The difference is attributable to the difference in the criteria for the
base shear coefficient C. Here the formula advocated by the Seismology
Cormittee of the Structural Engineers Association of California has been
used. Earlier, the formula for ¢ = 0.08 / T,.

It would have been possidle to fit empirical curves much closer to
the response curves in FIGURE 2. A degree of conservatism has been intro-
duced to account for the possibility that the modal response might peak at
a period somewhat higher than 0.25 seconds. Most of the spectra pesk in
the range of 0.20 to 0.30 seconds. The recommended formula for J recognizes

this contingency.
Basge Shear k
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The SEAQC Seismology Commitiee's recommendation for base shear is:

0.05/ 73

0.67 to 1.33 for buildings,
depending upon the type of
construction

X = 1.50 for structures other than buildings.

While the recommended code places no lower limit onm the value of C as
given by the formula above, it does place a ceiling or meximum value of C
as that corresponding to T = 0,10 seconds. This is C = 0,108, Cne and twe
story buildings have a fixed € = 0,10, A € = 0,10 maximum for all structures
is a2 simpler and more consistent upper limit. Depending upon the type of
-structure and construction, the combined K ¢ factor then would vary from
0.067 to 0.15. For the base shears so determined, the base moment ¥ can
be defined by the formulas given sbove.

V = XKCW vwhere C
and X

1]

The Moment M, -

The variation of the overturning moment on the structure as a whole
over the height of the structure deperds upon the relative importance of
the fundamental and higher modes of vibration. This could lead to a
quite involved relationship which hardly seems justified. For a moment
deflection structure of the uniform cantilever type it has been shown that
a straight-line diminishing moment from the bottom to the fop of the
structure provides a reasonable design criteriom. For more rigid structures,
where the fundamental mode predominates, this straighf~line variation is
conservative. However, recognizing that overturning considerations do not
usually impose difficulties to the design of low structures, and in the
interest of simplification, it is suggested that the moment Mx at height hx
be given by: ’

¥ =(1- P
X
i
The code further recommends or stipulates that the total moment at
any level x shall be assigned to the vertical resisting elements in the
same proportion as the shears. Further amplification of this is to be found
in the manual which explains the cods in more detail.

Conclusion

It is believed that the SEACC criteria for shear and overturning
moment are more refined and more realigtic than like criteria used herstofore.
However, it must be acknowledged that experience in applying these criteria
to date have been very limited. Hence, it might be expected that further
modifications in the code will be forthcoming with further experience. For
now, the criteria appear to be a sound step forward in the resclute progress

of earthquake-resistant design.
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Nomenclature

¢ Base shear coefficient in ¥V =X C W

}."‘x Earthquake lateral force at level x

hx Height to level x from the base of the structure

B Total height of the structure from the base

J Base moment reduction coefficient

J‘b J as applied specifically to buildings and structures other than
those structures which deflect primarily due to bending, like stacks.

‘Tm J as applied to moment deflection type structures

K Coefficient for type of structure and type of construction
in determining the base shear, V=K C VW

M Base overturning moment for design; also the base moment response
in Tables IV and V

¥; Base moment corresponding to ZP: h,

)lx Overturning moment for design at level x

S Relative spectral response of spring-mass systems

Tn Period of vibration in mode n

v Base shear; also the base shear response in Tables IV and V

V; Bese shear corresponding to C = x/ Tl/ 3 in Tables IV amd ¥

¥, That part of the total weight of the structure which is at or

X is assigned to level x for gurposes of lateral force design
¥  Total weight of the structure
W Proportion of the total weight V of s unifors cantilever

®D  assigned as an equivalent spring-mess systss for mede n.
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TABIE I

BQUIVALENT MODAL SPRING-HASS SYSTEMS*

Jode loment Deflection Stmc*mresl Sheaxr Deflection Structures

WA : ‘ 4

n e/ g fu T n/Tl ¥ e/w v v T n/;l

1 0.613 0.613 1.00 0,811 0.811 1.00

2 0,188 0.801 0.160 0,08C C.2C 0.33

b 0.065 0.866 0.057 0.0%24 0,533 0,20

4 0.033 0.8929 0.029 0,0166 0.050 0.142

5 0.020 0.919 0.0176 0.0100 0.960 0,111

6 0,013 0,932 0.0117 0.0067 0.967 0.0%1

*Por cantilevers of uniformly distributed weight.

Ne/ W = proportion of total weigh* assignable to the indicated
mode's equivalent spring-mass system.

T n/ T1= ratio of the modal period to the fundamental period.

TABIE II
PROPORTIONATE ASSIGHMENT OF ALL VWBICHET TO- MODES 1, 2, 3
Mode Moment Deflection Structures Shear Deflection Structures
n W | ZwWe/M | Ty/Ty Wo/W | IWe/W To/Ty
1 0.708 0.708 1.00 0.869 0.869 1.00
2 0.217 0.925 0.160 0.0%6 0.965 0.33
3 0.0 1.000 0.057 0.0 1.000 0.20
1,000 1.000
© TABIE III
BASE KOMENT - BASE SHEAR RELATIONSHIPS
Mode Moment Structures | Shear Structures
M/VE* ¥
1 0.729 0.636
2 0.209 0,212
3 _ 0.127 0.127
%ihen H = 1, ¥/VE = ¥/7
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TABIE IV ,
UGAT  RI/PCGHSE FOR LGRENT  DOPIECTION STRUCTULIS
Iié:n Description YE‘v.mdanental reriod, Tl
0.25 0.50 1.0 1.56 3.00 4,38
S1 Response 1.00 0.50 0.25 0.16 0.085 | 0.C57
%) 1 Equiv. mass 0.708 00708 0.7% 0.708 0-708 0.708
LE N 0,708 | 0.354 | 0.177 | 0.113 | 0.060 | C.0403
T, | 0.160 7 0.040 | 0.080 | 0.160 | 0,250 | 0.480 | 0.703
S, Responsée 0.42 0.523 0.746 1.000 0.52 0.355
W5 | Bquiv. mass 0.217 | 0.217 | 0.217 | 0.217 | 0.217 | 0.217
V0 S, ¥, 0.091 | 0.114 | 0.162 | 0.217 | 0.114 | 0.0771
Ty .057 T 0.014 | 0.0285 | 0.057 | 0.089 | 0.171 | 0.250
8 pons® 0.55 | 0.38 | 0.46 | 0.55 | 0.78 |1.00
V3 Equiv. mass 0.075 | 0,075 | 0.075 | 0.075 | 0.075 | 0.0T5
V.; 85 Wz 0.025 | 0.0285 | 0.0345 | 0.0412 | 0.0586 | 0.075
v Vo Uyt Vg | 0.824 | 0.4965 | 0.3735 | 03712 0.2326 | 0.1924
v, l,/ 0.824 . 0.860 | 0.430 | 0.215 | 0.1375 | 0.0T31 | 0.04S0
v, ./ 0.824 ' 0.111 | 0.138 | 0.196 | 0.263 | 0.139 | 0.0932
Vs v2 0.824 0.029 | 0.0%43 | 0.042 | 0.050 | 0.0715 | 0.0910
v VAT, 4+, 1.000 | 0.602% | 0.453 | 0.450 | 0.2386 { 0.2332
W |0.7297 0.6270 | 0.3140 | 0.1570 | 0.1010 | 0.0533 | 0.0358
1, 0.209 v 0.0232 | 0.0289 | 0.0410 | 0.0550 | 0.0291 | 0.0195
Hy v§ 0.00%8 | 0.0043 | 0.0053 | 0.0063 | 0.0091 | 0.0115
H Mo+ M, 4N 0.6540 | 0.3472 | 0.2033 | 0.1623 | 0.0915 | 0.0668
V,* | Design shear 1.000 | 0.794 | 0.628 | 0,541 | 0.436 | 0.386
M, | 0.667 7, 0.667 | 0.530 | 0.420 | 0.361 | 0.291 | 0.258
T | wn T0.980 | 0.655 | 0.484 | 0.449 | 0.31& | 0.259
0 628
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438V
KGINT R3ISPOESE FOR SHEAR DTWISCUTUL  STU0TURSS
Iten Descrintion Fundanmental rericd, ‘1‘1
0.25 0.75 1.00 1.25 2.00 3.00
S, | Response 1.00 0.33 0.25 0.20 9.125 | 0,053
¥ 1| Eauiv. mass 0.860 | 0.862 | 0.86¢ | 0.960 | 0.76¢ | 0.%6S
Vo] Sy Wy 0,869 | 0.280 | 0.217 | C.174 | £.1925 | 0.072
T,| 0.333 T 0.083 | 0,250 | 0.333 | 0.417 567 | 1.00
5,7 | Response 0.532 | 1.00 | 0,757 | 0.60C | 0.375 | 0.250
V> | Baquiv. mass 0.096 | 0,096 | 0,09 | 0.09% | 0,0%6 | 0.0%6
Vo S, ¥, 0.0510 | 0,096 | 0.0728 | 0.0576 | 0.0360 | 0.0240
T5| 0,200 T 0.050 | 0.150 | 0.200 | 0.250 | 0.400 | 0.600
S, | Responss 0.44 0.72 | 0.86 1.00 0.625 | 0.416
W | Equiv. mass 0.035 { 0.035 | 0.035 | 0.035 | 0.035 | 0.035
L S5 Vs 0.0154 | 0.0253 | 0.0301 | 0.0350 | 0.0219 | ©.0146
A4 Tyt Uyt Vg | 0.9354 | 0.4112 | 03199 0.2666 | 0.1664 | 0.1107
V.| ¥,./0.9354 0.523 | 0.310 | 0.232 | 0.186 | 0.116 | 0.077
vt | v3./0.955 0.055 | 0.102 | 0.0775 | 0.062 | 0.0386 | 0.0256
v, v§,/o.9'554 0.016 | 0.,0268 | 0.0%321 | 0.0374 | 0.0232 | 0.0155
v V4V, 4V 1,000 | 0,4388 | 0.3416 | 0.2854 | 0.1778 | 0.1181
H, | 0.636 V. 0.5910 | 0.197 | 0.148 | 0.118 | 0.074 | 0,042
M, | 0.212 v 0.0117 | 0.0216 | 0.0164 | 0.0131 | 0.0082 | 0.0054
L? | o127 v§ 0.0020 | 0.0034 | 0.0041 | 0.0027 | 0.0029 | 0.0020
M M+ o+ N 0.6047 | 0.2220 | 0.1685 | 0.1358 | 0.0851 | 0.0564
V; * | Design shear 1.000 | 0.692 | 0.628 | 0.584 | 0.498 | 0.436
¥, 0.667 V4 0.667 | 0.462 | 0.420 | 0.3%0 | 0.333 | 0.201
J n/ﬁ(1 0.607 | C.480 | 0.401 | 0.348 | 0.255 | 0.154
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Development of Equivalent Spring-izss Systenms
for Uniform Cantilever Beams of the Moment Deflection Type

(Prom notes prepared by IMr. Kilton Iudwig, Engineering Department,
Standard 0il Company of California, San Francisco, California)

The modal periods of vibration of a uniform cantilever beam deflecting
due to bending moment is well documented as:

T = 2% [y reneeeaa(1)
2 Elg
gn

where Gn is defined by:
cos °n COSh On + 1 = 0 coct.oo.(z)

The spring constant and mass for the equivalent spring-mass systems
may be evaluated in several ways. One method is to determine the effect
on frequency for a slight lateral flexibility at the base. An easier and
more accurate method is to work from the known response to a sudden change
of. lateral welocity st the base. The solution to this problem has been
given®* and with some changes im notation, the equation for the modal shear
is: .

' EIW .
Vn = Bn v 3 amu)n t consseeel3)
b ol 4
where Vn = base shear in the nth mode

Bn = mmerical constant for the nth mode

v = base velocity

¥ = total mass of the beam
w, = frequency of nth mode, radians per sec.
t = time, sec.

H = %total height of cantilever

BEI = Young's modulus x moment of inertia

From equation (1) for small values of t:

Sinwnt = wnt = 0121 E Ig t .‘CQ.O.‘(4)
(v

which substituted into equation (3) yields:

BEI
vn = anoi —— £ .......-(5)
33

*
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The spring constant is defined as the force-deflection ratio, so:

v 2 BEI
kn = __._n_ = Bn On ——-3— 0...00'.(6)
vt B

The basic.equation for the resonant frequency of a Spring-mass system
may be used to give the equivalent mass for each mode, as follows:

w - kng = W Bn o;..o-o.(’?)
en 5 2
W= e
n n

in which Wen = mass associated with the nth mode

*® R

The revort that provides the solution for V. (Equation 3) also gives the
equation for the moment developed at the base of the cantilever for a
sudden change of velocity:

5 I W
B o= a vEJZLY UPURN ()
n n 7z

H"g

Then the ratio of the moment arm to the total height of the beam is:

I‘n = An ........(9)
HV B
n n

Values of and B end calculated eguivelent masses and moment factors
are as follows:

W B K A
Mode, n =) B _en=_1 oL ="n
n n n

1 1.875 | 1.566 | 2.146 0.610 0.729

2 4.694 | 0.868 | 4.149 0.188 0.209

3 7.855 | 0.509 | 3.9%4 0.065 0.127

4 10.6%6 | 0.364 | 4.000 0,033 0.001

5 14.137 | 0,283 | 4.000 0.020 0.071

6 17.279 | 0.2%1 | 4.000 0,013 0.058

These calculated values are perfectly general end are not linited to the
case for a sudden change of velocity. The values of /HV_ can be cal-
culated fron the moment and shear equations for harmonic vibration of 2
cantilever beaw, erd equivalent masses can be checked by other methods.
It was merely convenient to use the constants fron the NAGA report which

seem to have been worked out carefully enc accurately,

*Report Ko. 828 National Advisory Committee for Aeronautics (IACA)
"Bending and Shear Stresses Developed t¥ the Instantanecus Arrest of the
Root of a Loving Cantilever Beem." bY Zlbridee Z. Stowell, Bdwerd 3.
Sehwertz, and John C. Houbolt. 1045, owgerintendent .of Dociments,

T. S. Governrient Printing Cifice, yschinrton 25, Do C. Frice 15 cents.
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APPRIDIX 2

Development of Bquivalent Spring-Mass Systems for
Uniform Cantilever Beams of the Shear Deflection Type

(From notes prepared by Mr. Milton Iudwig, Engineering Denartment,
Standsrd 0il Company of California, San Francisco, Celifornia)

In this developrment:
M = total mass of the shear deflection type structure

!-11, MZ’ etc, = masses of the equivalent s»ring-mass systems,
corresponding to the fundemental, second, mode etc.

_ _force at top
~ deflection at top

X = total spring constant for the structure

kl’ kz, etc.,' = spring constants for the equivalent spring-mess
systems

W = angular velocity of an applied simple harmonic base motion

wy, w,, etc., = angular velocity corresponding to the fundamental,
second mode, etc.

v=1v sinwt
= “max

applied lateral velocity at the base
V = periodic base shear resulting from the applied velocity
Z= V/v = input impedance of the system

= \/:i , which nierely indicates the phase relationship between
the base shear V and the velocity v.

L

inductance of an equivalent electrical system or analog.
c

capacitance of the electrical analog.

It can be demonstrated that the structure involved here is equivalent to
8 long short-circuited transmission line with no resistance.

= L = equivalent total inductance of the structure
= C = equivalent total capacitance of the structure

. L
for which 2 = j\/; banwﬁc_ = 3 1/,3-51‘— mw%

For the equivalent spring-mass systems:
z2-swh/e. L swh, Foetennennes
1-w? ﬁ 1-w? f& )
ol o

K o =



Design Criteria for Shear and-Overturning Moment

The impedance Z is infinite when -!— =W, 3Y2, s5Y/2, ete.

Ormw“ ""l’ w” , etc‘

from which, Ml H_, uz_(__z_z_g_, etc.
T =

K —r
k)

Now, the respanse at a frequency very close to a resonmant frequency is very
high so that the response of the other masses of the equivalent system can
. be neglected. So to determine Hl

ta.nwKHg = i“‘ . = ']'"
L __2.le W, _=w
ten 51 - Y% g) tan (1 - w, )
in which W, = —T—'é- \/-K—Hﬂ- = first resonant frequency

w w M
As @, approaches 1, tan \]KCg approaches

K
For the shear deflection structure: 2 = 3 4
' T (1-%
2 Wy
For the first mass of the equivalent spring-mass system:
| ' v k&
z - il =jwﬁ- i 'ig'z- K
1-25 1. “*w’ (-3
ke '

Then equating values of Z:

(78]
A 1oy = 2 X _oenn
Hl '\K-Z ™ n2 ° ‘
2 o as W _ approaches 1
kl = 14‘_:“ h K = 2K g}
M

By an exactly analogous developments

x_zz—g":}%lﬁ = 0,090 ¥

|

B o-F gz -0.0N

lm

¥ =% 2
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