The Plastic-Failure of Frames
Ddring Earthquakes
by
G. W. Housner*

Introduction. - When a ductile frame structure is subjected to
sufficiently strong ground motion, its oscillations will produce strains
that exceed the elastic limmit, The plastic straining will absorb some of
the energy of vibration, and this may be sufficient to permit the structure
to survive. If, however, the oscillations of the structure are very strong
there may result a plastic collapse. The usual procedures of earthquake-
resistant design are based on the supposition that very strong ground
motion may cause overstressing but that the energy absorption capacity
is sufficiently great to control the vibrations without being in danger of
collapse, Our knowledge of the oscillatory motion and collapse of elasto-
plastic structures during earthquake-type excitations is meaaerl: 3 and
there is need for much additional study of this problem,

In this paper there will be considered a plastic analysis of collapse
that takes into account the absorption of energy by the formation of yield
hinges. This throws some light on the broad features of the problem, and
indicates those areas where additional information is particularly needed.

. . 4 . . .
As proposed in an earlier paper , it will be assumed that the vibra-
tional energy to be safely contained by one component of motion of the
structure is
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where W is the total weight of the structure and S, is the average velocity
spectrum value corresponding to one horizontal component of ground
motion4, 5,

A Mass Supported by a Single Column. - Consideration will first be given
to a cantilever column that suppoxts z weight W as shown in Fig.l. During
strong ground shaking this system may fail in one of several ways. One
possibility is that the vibrations will cause approximately equal plastic
straining in alternate directions and that this will continue until the material
breaks because of a fatigue failure. Another possibility is that all of the
plastic straining will take place in one direction until the column collapses
- laterally because of excessive plastic drift. These two possibilities are
extreme cases, and the probability of their occurrence is extremely small.
The most probable failure is collapse due to plastic drift with a greater or
lesser amount of energy having been absorbed in plastic straining in the
opposite direction. In this case, collapse occurs when some fraction of
the total energy pE is just equal to the energy-required to produce collapse
by plastic drift in one direction. In what follows, the factor p will be
taken equal to unity as a matter of convenience, it being understood
that a reduced value of S, actually corresponds to failure, and that the
safety factor must take th15 into account (see, for example, Eq. {42} }.
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With sufficient overstress a yield hinge will be formed at the base
of the column. It will be assumed that so far as plastic deformations
are concerned the material is perfectly plastic and the yield moment has
a constant value M,. The value of M_ depends upon the yield stress,
0'}, of the column, the size and shape of the column, and the magnitude
of the axial load W. The interaction relationship between M _ and W is
easy to compute and it is approximately described by the folfowing
eguation®:

P
"—'P;T ) MY ez e elZ§

{for P>0.05 P,)

MO = af{l -

where P is the axial load, P,, is equal to the yield stress, 0 _, times the
area of the column, and M, is the yield moment for P = 0, The coefficient
a has the value 1.2 for bending about the strong axis of a steel H-section
and has the value 1.7 for bending about the weak axis.

The energy absorbed by the yield hinge is M § and this must be
egual to pE plus the work done by W which is equal to Wh{l - cos §)
=Wh 1/2 $2 , so that th'e condition for stability may be written:

pomt

W o2, 1 z _
2 sv+7Wh¢ = M0¢ e ea(3)

and the required value of Mo that the column must provide is:

S 2
1w v
Mo = 5 E_(T + ghg))
Equation {3) is illustrated in Fig. 2 where it is seen that the smallest

value of My for which the equation is satisfied is when the curves are
tangent at point P,

K

The minimum value of M_ is given by that § for which 8Mo/ o =0,
which is .

B = o
c 4rg}T

and, therefore, the smallest Mo is

My =5, o
0o v g

The value of #¢ is the limiting vaiue beyond which the column will collapse
under the weight W. The above value of Mg is the least value that wiil
keep the column from collapsing. The corresponding base shear is

vV = y. W N )
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and the seismic coefficient is
S

v
- gh
It is informative to put Eq. (4) into a form in which it can be

compared directly with the usual procedures of earthquake-resistant
design, Substituting Eq. (2} into Eq. (4) gives:

i s
M = < 92 Y w e D)
e 2P

where Ge = O;-W/A

¢ =

veea{(6)

A = area of column.

Defining a section modulus by Z = My/ 0y and substituting in
Eq. {7) there results:
g - v W

ahg 0:

.e.(8)

In this equation Z is the section modulus for which the maximum statically
computed stress is equal to the yield stress; that is, for which

W Mr

= tZz=Y%
where M = cWh. Eéuation (8) may be written:
Wh
Z = ¢ — «vee(9

Therefore the equivalent elastic-limit seismic coefficient is

c = S5 ....(10)

P
a‘y hg
For strong ground motion such as the El Centro 1940 earthquake, a
structure with small damping and with a period of vibration greater than
about 0.4 seconds, a representativé spectrum value might be S_ = 2.5 ft/sec,

A one-story structure would have approximately Yhg = 20 ft/ s€c. The
equivalent static coefficient then would have the value

S U1 BN
P (1.2)(20) 10

[

As was stated above, it is extremely unlikely that all of the energy
will go into producing uni-directional plastic drift and that only some
fraction pE should be used. In this case, the value of the seismic
coefficient is
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5
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= - ceaa{11
CP a/fhg =P tu

It would seem conservative to take p = 1/2, that is, to assume that
three gquarters of the energy is absorbed in plastic drift in one direction
and one quarter is absorbed in the other direction. In this case

c_ = 0.07
P

This would indicate that designing for 7% of gravity with yield point
stresses would give a factor of safety against collapse of one.

The foregoing computations were made for bending about the strong
axis of the column {(a = 1.2). For bending about the weak axis {(a = 1.7)
there is obtained 1.7
CP = 0.07 —l_.—f =0.10

It is thus seen that from the equivalent elastic limit design view-
point the seismic coefficient depends upon the shape of the column or, in
other words, it depends upon the ability of the column to absorb energy
with a yield hinge.

It should also be noted that for the system under consideration the
same amount of vibrational energy is associated with each component of
motion and therefore the mass M has a total vibrational energy 2 pE and
this fact might have an influence on the proper value of p to be used.

Factor of Safety. There are a number of different ways of defining the
factor of safety for this problem. The most obvious way is to write
Eq. (3) ir the form

1w 2 1 2
n( —2' —é—sv + —2' Whﬁ )‘- M0¢ ...-.(33.)
This leads to 2 minimum Mo of
' S
M = Z_Ywn .e..(4a)

° ,Vgh

where n is the factor of safety.

Another point of view is that in the case of an earthquake the un-

certainty lies in the term pE and that the safety factor should be on that
term:

(n ?Sv%% Whg?) = M_§ ee..(3D)

This leads to a minimum Mo of
S
M= L2 Y wy e .. (4b)
gh '
A third possibility is to put the safety factor on Sv:

1

—g—(nsv)“r 7 Whe?) =M 9 eeee(30)

(3
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This gives the same result as did Eq. (3a), that is

n Sv
M = Wh e eea{4c)

[e] /2/5

This method of defining the safety factor is used in the following portions
of the paper since it has an easily understood meaning in terms of the
spectrum, Sv’

Elastic Design. - If the design is to be such that the structure remains
elastic, instead of Eq. (3) the energy balance requires

1 W o1 M%
22 5% "7 | weee12)
and
A 1/2
_ [ 3EIW"
(),

and in place of Eq. (8) there is obtained

2n Wh Wh
Z = (_Tg— neSv) o_e_ —Ce -OT(; ..-.(13)

where T is the natural period of vibration of the structure. Instead of
Eq. {7) the following equation gives the coefficient for elastic design:

_ 27
Ce = -T—g—ne Sv .--o(14)
where o, is the factor of safety against yield point stress. It is seen that
the peridd of vibration enters differently in Eq. (12) than it does in Eq.(7),

remembering that S, is a function of the period. The condition under which
Ce = ¢p is when the plastic safety factor is:

_ 2w h
np - ne"T' aE ....(15)

From Eq. (15) it is seen that structures designed to remain elastic on the
basis of Eq. (12) will have quite different factors of safety against collapse
depending upon the values of T. The implication of Eq. (15) is that the
design computations should be made twice, once for a ¢, that will insure
elastic stresses for ground motion of a specified intensity, and a second
time for a c_ that gives the required factor of safety against collapse for
stronger gr&md motion.

A Mass Supported on a Two-Column , Frame. -~ If the weights W; and W; are
supported by a two-column frame as shown in Fig. 3, a plastic collapse will
require the formation of four plastic hinges, one at each end of each column.
An analysis similar to that made for the single-column case gives

o

h v
+ M, = a2 —E-(W1+Wz)....(16)

M g
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The corresponding shear force is

nS
vV o= b

W eeo.{17)
219gh

The static seismic coefficient ¢ for which the columns will just reach yield
moments Mg} and Mg, with a factor of safety n against collapse is

n S
v

eee.(18)
27gh

It is seen that when the columns can develop yield hinges at both ends the
same factor of safety against collapse is given for a value of c that is only
one-half as large as for a cantilever column.

A Mass Supported on Four Columns. - Consider a four-column frame, as
shown in Fig. 4, where each column carries one-quarter of the weight and
can develop yield hinges at each end. For lateral collapse
1 W g2,1 2y =
n{ z -E—Sv + 3 Whe )~8Mo¢ veee{l9)
and from this the minimum required value of yield moment for this type of
collapse is found to be

nsS
- v h w
M, = —r 3 - ....{20)

There is another mode of collapse, however, which requires a larger Mo'
If collapse occurs by twisting about one column as shown in Fig. 4b,
the condition to be satisfied is

W.h.2
n{ %’—svu ;—1-2-1—-)= ,ZZ M$. ....(21)

Note that with this type of collapse the vibrational energies of both hori-
zontal components of motion are involved so that the total vibrational
energy to be absorbed is 2 pE. The angles associated with the columns are

9, = 2o
9, = ﬁ%e
p; = %3
p, = o

These give for the required yield moment

- n h W
M = 1.7(-2-5v ‘VE —;—-) .ee.(22)

This is 1.7 times as large as required for lateral collapse and even if
only pE is to be absorbed in collapse, M, is still 1.2 times as large as
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required for lateral collapse. It can therefore be expected that collapses
of such frameworks will almost certainly involve twisting*.

Multi-Story Buildings. ~ The collapse of multi-story buildings will also
almost certainly involve twisting; however, for convenience, the following
analysis will treat lateral collapse and the resulting yield moment will be
somewhat smaller than would be obtained for a twisting collapse. It is
assumed that the building is uniform with equal story heights h, and with
each floor (and roof) of equal weight. Kach column receives a weight w
from each floor (and roof] so that for an N-story building the column
carries a total weight Nw. Each column is assumed to form two yield
hinges in each story.

Suppose the collapse occurs in the kth story from the top, and that
the toial vibrational energy is absorbed in this story, The energy balance
for one column is then

1 -IY—W—(n SV)z + % k wh? = 2M0¢ vess {(23)

2 g

From this the required Mo is found to be

M = %/1/@'\[% nS_(kw) eev. (24)

The eguivalent static lateral shear in the story is thus

= ns_ 4l E (k) cee. (25)

1/_k_ gh

v =

The equivalent static seismic coefficient for the kth story from the top is

N
C, = (Vx - Yx-1 )nsv1/_§h- eee. (26)

Equations (25) and (26} give shear and seismic coefficient distribution
similar to the old Uniform Building Code formula**which in the notation
of this paper is

0.6

V = m (kW) csee (27)

and this gives
- k . k-1 2
Ce * {775~ E¥3.3)0:8 veee (28)

*
The plastic collapse of x-braced elevated water tanks can also be analyzed
in the same way with the same conclusions. These have been observed to
collapse with twisting motion during earthquakes,

*k . 0.6 .
This specified that the seismic shear was given by ( "NTT'F) times the

weight above with N being the numb er of stories above the story under
consideration,
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It is seen that Eq. (25} gives a base shear

nS
vV = v W sace (29)

b 'y‘g-i

Another possibility is to assume that the total vibrational energy
iz absorbed equally by all floors. In this case Eq. (23) takes the form

1 w 2 4 1 2y =
n(-z-g—s_v_ +-Z kWh¢ ) -—2M°¢ PP (30)
From this there is obtained.:
M =1 14k nS_ (kw) ceee (31)
° 2 4k
and the story shear is
1 nSV
= — — (kw) eeee (32)

and the corresponding seismic coefficient is
Ck = ("k - I’k—l )

For this case the base shear is

nS
— e {(33)

e

V, 5 e e W cee. (34)

Since, for a uniform shear building, the period of vibration, T, is pro-
portional to the number of stories N, the formula for the base shear may
be written (setting T = 0.IN):

~nsvm 35
Vb'/‘/‘g'iﬁw vees (35)

This may be compared with the newly proposed California code which
takes Vi, to vary as 1/AJT.

A third possibility, that is most attractive,is to assume that the total
energy is absorbed approximately according to the sizes of the columns.
In this case, if it is assumed that the size of.the columns varies linearly
from the top story down, the energy balance for the kth story may be
written:

n(-ZLlﬁ' X5z 3 kwho?) =2 M9 ee. (36)
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From this there is obtained:

M, = _-l-l\r E nS_(kw) eeen (37)
v - L 2% (kw) cee. (38)
i~ =
1. B
o =';,7“;‘\1: = veee (39)

Equation (39) gives a constant seismic coefficient for each floor. If the
period is again set equal to 0.1N, the equation for the base shear may be
written

v 101 vee. (40)

gh YT
To obtain an idea of numerical values, Eq. (40) takes the following form
for Sy = 2.5 ft/sec, Jgh = 20 ft/sec:

Vb=

vb=n(&_¥i) W cee. (41)

p

The only indeterminate quantity in Eq. (41) is the factor n. The
correct value of n must reflect the following considerations:

a) n must contain a proper factor of safety against collapse,
perhaps 2 or 3.

'b) It must reflect the fact that collapse would actually involve
twisting and hence a factor of perhaps 1.7 should be introduced.

c) It must reflect the fact that the energy will not be uniformly
absorbed by all of the stories and this might introduce a factor of 2 or so.

d) The spectrum value Sy = 2.5 corresponds to the El1 Centro, 1940
ground motion with very low damping. As will be discussed later, a
structure may have appreciable damping and hence S5,, <2.5 would be ap-
propriate and n should reflect this, :

e) Egquation (41) is based on the supposition that the absorption of
energy occurs with plastic drift always in the same direction. Actually
the plastic drift takes place in both directions with a cancelling effect, and
the net drift in one direction may be very much smaller. It is conceivable
that the net drift might correspond to only 1/10 of the energy. It appears
that the determination of this quantity is the key to the problem.

f) Equation (41) does not allow for the fact that some of the vibra-
tional energy would be left in the structure at the time of collapse (the
yield-point strain energy), and for long-period structures this might be
significant,
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Plastic Drift, - The exact determination of plastic drift of realistic
structures is a difficult problem. A crude approximation is given by the
following reasoning. Suppose E is the energy to be absorbed plastically,
and t is the duration of the ground motion up to the time of collapse, and
T is the period of vibration of the structure. There will thus be approx-
imately t/T times when the structure has excursions in one direction,
and t/T times when the excursions are in the other direction. The situa-
tion might then be idealized as a random walk problem in which the length
of a step is E + 2t/ T and the number of steps is 2t/T. On the average
the net amount of energy absorbed into the resultant plastic drift is then

E 2t E
E (=2 wmmlffom =2 e YT aee. (42
pd T Az T | 2

2t/T

If this is incorporated in Eq. (41} there is obtained

Vy = n( .04 )y ceee (43)
12t

This corresponds to a constant seismic coefficient. To obtain an idea
of magnitudes, let a factor of 1.7 be taken for twisting collapse, and 3
for non-uniform absorption among the stories., Include 3/4 to allow for
normal damping, and take the duration of ground motion to be 30 sec.
Equation (43) then has the form

v, = n' i”..?.fl’.f?_/_‘i.). 0.04 W = n' (0.02) W cees (44)
yéo

This would indicate that a design which would reach yield moments M,

at all columns for a 2%g design would have a safety factor of one agamst
collapse. It is, of course, not very precise in view of all the assump-
tions involved.

Multi-story Elastic Design. - It is clear from the foregoing that the
design of a structure should satisfy two different criteria. First, it
should be designed so that no damage will be incurred when it ig sub-
jected to moderate ground motion of relatively high probability of
occurrence. This would require an appropriate "elastic design."
Second, the structure should not collapse if it is subjected to less
probable but very strong ground motion. This requtres a design based
on a plastic analysis, and the general requirements will be differentin
this case from what they would be for the ''elastic design.!" The final
design should, of course, satisfy both sets of conditions.

When making an "elastic design'' there is some question as to
how.much damping to assign to the structure. A welded, unclad, steel
frame would have very low damping if all the stresses were within the
elastic limit. In an actual bmldmg, the design will not be such that all
columnns in a story reach the elastic limit at the same time. The diagram
of shear force vs, relative story displacement will then have rounded
. knees as shown in Fig. 5. Fully plastic action will therefore not be
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reached until the displacement reaches the point P, The area (OP 8o)
represents energy that must be absorbed before plastic drift sets in,
and hence twice the energy (0P §, o) must be included in the equivalent
viscous ddmping used in the ”ela.stlc design.'" Hence, by definition,
any structure that does not develop fully plastic action under the design
conditions is said to have an elastic design. The equivalent viscous
damping may be quite large, depending upon the design of the structure,

There would be a very real advantage in making the design such
that the equivalent viscous damping is large. For example, if, after
making a regular elastic design (taking into account relative rigidities,
etc.), several columns were arbitrarily increased in stiffness so that
they would exceed the yield point while the other of the columns remained
elastic, the equivalent viscous damping would be much increased. It
follows that in the case of very strong ground motion the energy that
must be absorbed in fully plastic action is then much decreased. In
such a design, certain of the columns are forced to be the damping
mechanism for otherwise elastic vibrations. The base shear coefficient
for elastic des1gn varies approximately as S;/T. For structures with
darnplng Sy is given approximately by

s = 9l
M C,+T

and hence the base shear coefficient varies as

. .
Cz+ T

Conclusions. - The analysis of this paper examines the broad features
of the problem of plastic collapse and hence does not arrive at very
reliable values of design coefficients. The following broad conclusions
can be drawn, however:

1) The phenomenology of plastic collapse is as follows: A certain
amount of plastic straining occurs before fully plastic action is established,
and the energy dissipated by this is logically lumped into the equivalent
viscous damping of the structural oscillations; after fully plastic action
has developed, plastic drift sets in and this will tend to progress further
in one direction until collapse occurs.

2) The axial load carried by a column is a very significant factor
in the ability of the column to absorb vibrational energy without col-
lapsing. '

3) The equivalent static seismic coefficients for plastic design
(factor of safety against collapse) are quite different from those proper
to elastic design (factor of safety against yield-point stress). The old
lo%g method of design is a reasonable approach for plastic design, but
it is not known what factor of safety against collapse the 10%g design
would give.
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4) Plastic collapse is almost certain to involve a twisting motion
of the structure.

5) For plastic design of multi-story structures, it appears that
the base shear coefficient has 2 different variation with period than

for elastic design.

6) It is advantageous to design the structure so that the force-
displacement diagram for relative motion between floors has a well -
rounded knee so that the development of fully plastic action is delayed
for as long a time as possible.
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Nomenclature
A = cross-sectional area of column
a = effectivengss factor |
Ce = seismic coefficient, elastic
cp =  seismic coefficient, plastic
h = story height
k = number of floors from the top
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Mo = yield moment for axially loaded column
My = vield moment for zero axial load
N = number of stories in structure

n = factor of safety

SV = velocity spectrum value

T =  natural period of vibration

w o= weight of structure

w o= column load per floor

) = angle of rotation of column

g-y = yvield point stress

0, = 0;_— W/A
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