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ABSTRACT

The seismic coefficient method which has been used for design of
structures in Japan is inadequate 10 very slender structures like a
suspengion bridge. A fundemental idea of anglyzing the lateral sta-
bility of suspension bridge structures is presented here which may
serve to make their aseismic design criterion.

The paper deals with the lateral vibration of a suspension
bridge and its elastic stability under lateral forces, both theo~
retically and experimentally. In consequence, it is suggested that
the aseismic design of a suspension bridge superstructure having a
long span should be made under the condition of a given lateral dis-
placement and the lateral buckling bebavior of stiffening frame is
to be checked.

INTRODUCTION AND GENERAL DESCRIPTION

Recently long-span suspension bridges tend to be proposed in
Japan since across-the-strait bridges are progressively gaining their
necessity. The plan makes it reqpisite to have resistance to strong
earthquakes and storms. Especially, careful study should be made
with regard to the lateral stability of such a long-span suspension
bridge, because its rigidity in lateral direction is determined ex-
clusively on the basis of these factors.

Someone says that the lateral rigidity of the stiffening frame
of a suspension bridge will be governed not by the resistance +to
earthquakes but by that to wind forces. However, the numerical cal-
culations for suspension bridges with a very long span over 800m show
that it is not true, so far as the conventional seismic coefficient
method is employed according to the Japanese bridge-design specifi-
cation codes. Now an attention must be paid on the facts that a
long—-span suspension bridge is a very flexible structure and its
fundamental natural period of lateral vibration will be much longer
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than the ~eriods of earthquake motion. Therefore, it is doubtful
whether the current seismic coefiicients is usable or not.

in instructive information comcerning the aseismic design cri-
terion of a suspension bridge is found in the report of f,he ('}olden
Gate Bridge 1}, But the greatest acceleration assumed in this case
was very small, especially for cables and suspended spans under )
earthquake waves acting transversely to the bridge, in contrast with
the circumstances in Japan.

The authors and their research group have devoted themselves to
the study of aerodynemic stability of suspension bridges over the past
vears aud found that the lateral buckling behavior of stiffeping
frame might be a fatal condition of a suspension bridge subjected to
lateral forces. Lster ip this paper, discussions will be made at
this point in relation to the lateral stability of the bridge under
seismic action.

It is believed that the aseismic analysis of such a flexible
structure as suspension bridge should be carried out teking into con—
sideration of its dynamic characteristics. Accordingly, the small
lateral vibration of a suspension bridge will be discussed at first
in this paper, followed by the stability problem and the results of
the model experiments concerned. Since the present research aims at
only obtaining some basic conceptions with regard to the lateral sta—
bility of & suspension bridge, the conclusive design criteria against
earthquake waves are not related here.

LATERAL VIBRATION OF A SUSPENSION BRIDGE

In reality, the coupling between lateral, torsional and vertical
motions should be taken into consideration when a suspension bridge
is acted by wind forces or earthquakes transversely. However, as it
leads to very intricate calculations, énly the small lateral displace-
ment is assumed here in order to obtain the basic characteristics of
lateral vibrations of a suspension bridge structure.

Neglecting the ad itional cable tension caused by the displace-
ment of bridge and considered very small in this case, the fundamental
differential equations of vibratory lateral motiom (see Fig. 1) of a
suspension bridge are represented by

W, Xad

f—fﬁ +EL u‘i + ,::;)(V*n)==ﬁ(x,t) ----- (1 a)
We 2u fan’ .

T ot Hegm — :g)w““)'&“ﬁmt) ————— (1 b)

vhere the last term of the left side of the equations

_ -
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shows the restoring force caused by the inclination of hangers the
length of which R¢(x) becomes for parsbolic cables
4F
ﬁ(z)s ﬁT—FZ(ﬂ"‘x) _______ (2)

The above equations (1 a) and (1 b) express the coupled oscillations
of main cables and suspended frame.

Natural Freguencies: Futting R t)=P&t)=0 and

V= 7o &' u=aw- Mt~ -~ - (3)

in Eqs.(1 a,b) and considering the boundary conditions as trans—
versely simply supported, the lateral vibratiom modes can be assumed

'1}'tx)=a..ﬁ~3;—z, Tar=hsin P - - - - __ (4)

Then the following frequency equation is obtained according to the
virtual work principle ‘

ARG W 2 Wi w;
EL(+ J2 -l -2

w |=0----- ‘(,5")

_%’.ﬁ H‘("-lLE)z‘!' % - W: 3,

n
where A, = Ry — 2f ('i';“"' 'ia"ir) (see Fig. 1).

1f ReX) of Eq.(2) is assumed to be constant, R, the natural
frequency corresponding to the vibrational mode of Eq.(4) becomes

w::: d:t.vza—‘fﬂ _____ (6)

where o = (:23;{511* (_%)z&(%)} *%(l*%)
B = {2 R R ) - %

Equating the results of Eq.(5) and Eq.(8) the reduced or mean value
of hanger length, R , is obtained, and making use of this constant
value of f the forced lateral vibrations of a suspension bridge will
be treated more easily, though the process is an approximate one.

Incidentally, Mr. Silverman 2)proposed the formula to calculate
the natural frequencies just related, hut the fundamental equation of
vibratory motion he derived has some doubts about the coupling motion
of cablea and suspended structure. The results obtained from his
formule did not agree with the test results as shown later.

If the following expression is used as an approximate deflection
form instead of Eq.(4), the accuracy of the solution will be improved
but the ¢alculation becomes. very complicated.
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Ux) = Zbgs.‘-d%!z } (k=1,2,8, -=) -~ (1)

For example, the natural periods of lateral vibraticns in a ten-
tative design proposed for the George Washington Bridge were calculated
by Eq.(5) and the following results were obtained.

Period of Vibration (sec)

21.0 or 4.2
8.6 or 4.1
4.2 or 3.1

2.5 or 2.4

PN T ]

As understood from the above resultis, the natural period of lateral
vibration of a long-span suspension bridge is generally very long.
Two values of the natural period obtained for each value of n are
corresponding to the same phase and the opposite phase of the vibra—
tory motions of cables and stiffening frame, respectively.

Response to Forced Vibrations: If the movement of ground perpendicu-~
lar to bridge axis is expressed by a sinuous time function with +the
period ofﬂ%ﬂ , the differential equations of the forced lateral vib-
ration of a suspension bridge become

4
%‘f- -g—’—:-—z- -f-EIv-z—xz; + %(% (r—u )s?m smwt}_ -~ (8)
J%E‘:?; ftn ‘-'iﬁg;(vb11)-zggzu?ﬁnnat

vhere the conatants @ and J will be determined from the nature of
earthquake motion and the dynamic characteristics of towers and the
term of damping force is neglected.

Assuming that R¢x) is a constant and making use of the vibration
mode as in Eq.(4), the solutions for transient- and steady-state
oscillations are obtained. In this case, the dynamic magnifiers for
the latter become '

49' [%{ﬂf r %ﬂf -%“r.i] for frame
P [Eu(ﬂ)«r{f——ﬁ»][ﬂ-(,)f—-#]{{ff ’
is["’c{“"*‘EIv(Tf Tl Fu g
c [EIy(“ﬁl’ -waH.('[ff&"g }( 3 for cable

However, an actual seismic wmotion is different from the expression
in Eq. (8). In order to gain the real dynamic response in the system
the following procedures will have to be employed.

1) To obtain a better approximation, the duration of seismic motion,
namely the period and the number of earthquake waves, shonld be assum-
e, Then after applying some calculation process like Duhamel's
integral to Eq.(8), the dynamic response of the system can be gained.

-~ {(9)
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At that time, the method proposed by Professors S. Okamoto and K. Kubo
8)will be useful, and the energy spectra should be considered together
with damping effect.

2) Response spectra would be obtained in a satisfactory accuracy for
optional ground-motion if proper analog computer is available.

The evaluation of dampirg force plays an important role in aseis-
mic design of structures. But the reliamble data 6f damping factor
usable for the lateral vibration of a suspeasion bridge has not been
found yet. '

SUSPENSION BRIDGES SUBJECTED TO
STATICAL LATERAL FORCES

Solutions according to Seismic Coefficient Method: As mentioned pre~
viously, the conventional seismic coefficients specified in the codes
are not suitable for aseismic design of a suspension bridge having
long span. Furthermore, it is necessary to take into consideration
the fact that the rigidity of a structure governs its response to dy-
namic forces. Since the problem is in a category of dynamics, the
fundamental period of a structure largely determines the magnitude of
the induced seismic forces, and it is a reason why the natural period
of the lateral vibration of a suspension bridge has evaluated in the
previous section. Generally speaking, flexible structures having
longer natural periods respond less than rigid structures. It is
also believed that, if the distribution of seismic forces which will
vary to a great extent in a case of suspension bridge”structure is
knéwn, the seismic coefficient method may be usable in the present
problem.

Accordingly, the displacement of a suspension bridge subjected
to static forces proportional to the mass of structural elements will
be calculated here. In connection with Eqs.(1 a, b), the following
approximate relations to solve are obtained.

atv
i T ﬁa)

A
Hede — 205 —u) -k

EIV (‘U' u) = k f

- === (10)

Taking the displacements of stiffening frame and cable as

v g el

W = hasm BE 4 by ai X, | pi
haTE + b, 7 + by asn T
and making use of the variation method, the following equation (12)
on the next page to determine the unknown constants @; and by 1is
obtained.

Similar problem was discussed by Mr., L.S. Moisseiff 4) in con~
nection with the wind forces applied to a suspension bridge. His
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theory is known as the Uniform Distribution Method and the Elastic
distribution Method, which are based on the different point of view
from the authors' just mentioned but have applied to the aseismic
des}gn of suspension bridges so far.

Numerical calculations were made with the tentatively proposed
design for the George Washington Bridge, and the results obiained from
Eq-(12) and from the Moisseiff's Elastic Distribution Method were
compared as shown in Fig. 2. In consequence, the problem isg how to
estimate the seismic coefficients for a suspension bridge structure,
and its solution will be obtained from the standpoint of dynamics.

Lateral Elastic Stability of Suspension Bridges: It is fully con-
ceivable that the dynamic behavior of a suspension bridge under seis—
mic action is somehow connected with that under wind action. The
aerodynamic stability of suspension bridges has been investigated
over the past years by one of the authors, A. Hirai5), and his col-
leagues. They have pointed out several conditions for the aerody-
namic stability of suspension bridges, among which the stsbility
condition against the lateral buckling behavior of stiffening frame
is to be noted.

In reality, the coupling of vertical, torsional, and lateral
motion should be considered when a suspension bridge is subjected to
lateral forces. In this case, the lateral buckling - or "Kippung" -
of stiffening frame with one-noded asymmetric buckling mode might be
fatal, if the stiffening frame has small torsiomal rigidity and large
flectional rigidity in lateral direction. This phenomena were
observed experimentally 6) when the laterally distributed load was
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statically applied to suspension bridge models.

According to the theoretical anmalysis by A. Hirai and H. Chikuma,
the critical lateral load which is uniformly distributed along bridge
axis and causes the lateral buckling behavior is approximately given

by 6)

62.63VET-GK = _ _ __ __ (13)
23

2 20%
x
where, EJ = EI*:,.‘!E;H.,, QL(=&K+-E,£‘EJ
c? cosh &
B(eoshs-=1)
Consequently, it is necessary to increase dead load and torsional
rigidity of bridge in order to augment the value of Z;r « On the

other hand, another critical load (Bcr)y for bending moment in the
stiffening frame is considered to exist and the calculation brings

G e BB o

T K

EZy

Comparing Eq.(13) with Eq.(14), one can find that the rate of incre-
ase of 9. due to the increase in dead load is higher than that of
(3cr)m . Accordingly, if (3e)m< Bcrr the stiffeming frame will
collapse through simple bending due to lateral force before it
buckles. The condition for ¢§..),< Zenis

c> 2.2’_%.{- - - ===~ (15)

The installation of center diagonal stays which tie the cables to
the stiffening frame at the lowest point of the cable is desirable to
improve the stability of suspension bridges. In this case the lateral
buckling mode of the frame becomes symmetrical one with two nodes in
general, and the critical lateral load corresponding to Eq.(13) is

- 100.4 VET-GK_
Cer = K IS

‘g
where, EJ:EI-’-«-,—%;H”’ Q_’S:GK*% JElEJ‘

But it should be reminded that some margins or plays in stays decrease
the above critical load.

DYNAMIC RESYONSE OF TGWERS

As compared with the stiffness in the longitudinal direction, the
lateral stiffness of towers is assumed to be so high that the accele-
ration due to earthquake is extended over the full length of this
structure. The seismic coefficients specified in the current design
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codes will have to be applied to the design of towex"s. The horizon-
tal force acting on each tower due 1to the acceleration of suspended
spans and cables will be able 10 be estimated from the results pre~
viously investigated.

The natural frequency of towers in lateral direction is calcula-
ted as a rigid frame structure with two or three layers. ) The
reaction from cables and stiffening frame should be taken into con-
si1deratlon.

MODEL TESTS AND THEIR RESULTS

Test Equipmenis: The vibration~table (see Fig.3) used in the small-
scaled model tests has & very simple structure but is specially
designed for the lateral vibration tests of bridge models. The table
to place a model has the dimensions of 4.0m in length and 0.6m in
:idih, and is supported by eight plate-springs. Lateral vibration
of the table is given by the rotating unbalanced weights attached
directly to the table and driven by a motor. The weight of the
table is about 370kg and is much larger than that of bridge models in
the present experiments.

The amount of unbalance of the counter-weights can vary into 8
stages which were numbered from 0 to 7 (see Fig.4). The charac-
teristic diagram of this vibration-table is illustrated in Fig.4.
Vibration teats of bridge models making use of this table can be con-
ducted in the ranges of 0.3g - 1.2g in acceleration, 0.5 - 2.8mm in
amplitude of displacement, and 5 -~ 18cps in frequency.

Suspension Bridge Models: The suspension bridge models used in the

tests nad a single span, straight backstays, and the following dimen~
sions and details.

Span: [ = 300cm , Cable Sag: # = 30cm , Sag Ratio: 1/10
Height of Towers above Stiffening Frame: £, = 33cm,
Main Cables: g2mm stranded wires, Hangers: Jute thread.

Towers and stiffening frames were made of steel or brass and the
former was designed as a rigid frame.

) Eour types of stiffeping frame were used in tests and the dead
weight of cables and stiffening frame was variable. Consequently,

eight cases of modifications were tested as summarized in the tables
on the next page.

.Dymie stresses were measured by the use of electrical resistance
strain-gages awd recorded through electro-magnetic oscillograph. The
strain-gages were mounted on main parts of the bridge model, and the
stressea in stiffening frame, tower, and main cable were measured.

Free Lateral Oscillations: The nataral period i i
: H 8 of vibrat
damping factor were read fro . re. But in me

e m the recorded oscillopapers. But in most
cases it was almost impossible to get the reliable data of damping
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TYPE | 7 4 | 1-B |11-A| I11-B | 111-4 | ITI-B| Iv-4| IV-B
??9?97'1'999.'?’
. [ O A [}
SECTION ' S N S N T
é B | et | b | e | ) B
BI (x108

gr-cw®) | 1.75]| 1.75/0.17] 0,17 | 0.135 | 0.135| 0.57| 0.57
Al 8 -
BIv(x108 2y | 1.75| 1.75/25.8 | 25.8 |18.3 |18.3 | 36.2 | 88.7

wg (gr/em) | 7.85|16.25 6.7 13.6 | 15.14 | 15.14/14.86 | 14.86

we {gr/cm) 0.12| 0.12/0.24] 0.24 | 0.24| 38.17| 0.24| 0.24

Hy (kg) 2.99| 6.14/2.61| 5.19 | 5.77] 6.89| 5.66| 5.66

ger (gr/cm) | 318 | 325 {341 | 382 | 263 | 275 | 138 | 138

SUSPENSION BRIDGE MODELS USED

factor. In the model testus, the natural frequencies were obtained up
t0 the 3rd mode and it was proved that the thepretical values calcula-
ted from Eq.{5) were in good agreement with the test results. But in
order to get the better results as to the fundamental period of lateral
vibration, it will be necessary to take two terms in Eq.(7) instead of
the assumption of Eq.(4).

Logarithmic decrement obtained from tests was around 0.02 - ‘0. 05,
and the damping factdér in lateral vibrations was generally lower than
in vertical vibrations.

Forced Vibrations: Some examples of the dynamic responses obtained
from the model tests were displayed in Figs.5 - 8. Figs.5, 6, and 7
show the lateral bending moment induced in stiffening frame due to the
periodic foundation-motion, and the theoretical values according to
the seismic coefficient method were also shown by curves. Fig.8 is
for the towers in the same case.

The resonant frequency for the stiffening frame is not always
coincide with the natural frequency of suspended spans, if towers are
not 8o rigid in lateral direction.

Except for the regions in the neighborhood of resonant frequency,
the maximum bending moment is constant independently of the forced
acceleration and is rather proportional to the amplitude of foundation
motion. Moreover, in the above case the test results were much lower
than the values estimated under the assumption that the statical
inertia forces proportional to the given acceleration were applied to
structures. However, the transient motion should be experimentally
investigated too.
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Unless the vertical and/or torsional oscillations were induced,
the additional cable tension due to inertia forces was negligible as
compared with the cable tension due toc dead load. It must be noted
thet, if the mass of cables is large, the cables might oscillate
independently of stiffening frame. This phenomenon was observed in
the test with Model III-B.

\When the torsional rigidity of stiffening frame is large like
Models I~A, B, the motion is considered to be purely lateral vibra-
tion. On the other hand, in the case of the stiffening frame with
small torsional rigidity such as Models II or III, the coupling of
vertical and torsional motions with lateral motion was observed and
the catastrophic stage of bridge was undoubtedly caused by the
lateral buckling of stiffening frame.

Judging from the test results in Fig.8, the seismic coefficient
method may be applicable to towers. Furthermore, it should be
reminded that the dymamic characteristics of towers also affect the
dynamic response of suspended spans.

CONCLUSIVE REMARKS

The outline of the lateral vibration and the lateral stability
of suspension bridges was discussed, but the paper presents only the
basic ideas or suggestions for the above subjecis, and there remain
a lot of problems to investigated. Anyway, as far as the aseismic
design of a suspension bridge in its lateral direction is concerned,
the dynamic behavior of the structure must be taken into consider-
ation. Especially, it is necessary to know the energy spectra at
the time of earthquakes and the dynamic behavior of towers.
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NOMENCLATURE

Distance of main cables
Cable sag

Spau length

Distance along bridge axis

Lateral displacement of main cables

Lateral displacement of stiffening frame

Length of hangers

Height of towers above stiffening frame

Time

Horizontal seismic coefficient

Gravitaiionﬂl acceleration

Modulus of elasticity

Flectional rigidity of stiffening frame in vertical direction

Reduced flectional rigidity of a suspension bfidge in its
vertical direction

Torsional rigidity of stiffening frame

Reduced torsional rigidity of a suspension bridge
Flectional rigidity of stiffening frame in lateral direction
Horizontal component of cable tensién due to &ead load

Dead weight of stiffening frame per unit length of bridge
Dead weight of cables per unit length of bridge

Critical lateral buckling load per unit length of bridge

Critical lateral load against the bending of stiffening
frame per unit length of bridge
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Restoring force due to the inclination of hangers per unit
length of bridge

Dynamic magnifier
Circular frequency of periodi¢ foundation-motion

Natural circular frequency of a suspended span

: Allowable pvending stress intensity of the material consisting

stiffening frame

notationg are given where they appesar.

942



1ity of a Suspension Eridge

i
%

lateral Stab

adprag

uorsuadeng ® JO UOTIBIAQTA efprTag uworsuedsng © JoO
TRI940T 3Yy Jo 9835 [ApoN ¢ ‘314 quowadeydstg yessqeT YTVEWS T '3
@
()

A @Y
|J.~‘||

i |

1 s

" “

()

& T\ |

& L G0y
@AY
n
(¥)
90
HHIS
7
X
3n RS
%, oy

)
=

943



A, Birsi, T, Ckumura, M, Ito and N, Narita
Bending Momen’t
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Fig. 2 A Numerical Example of the Bending Moment induced in
Stiffening Frame of a Suspension Bridge subjected to
Lateral Statical Forces
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Fig. 4 The Characteristic-Diagram of the Vibration-Table
- used in Tests

Note: Number in circle indicates the degree of un-
balance of the counter-weights.
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Note: In Figs.5, 6, 7, the curves indicate the calculated
results under the assumption that the lateral forces
proportional to the given acceleration were applied to

the span.



