Aseismwicity of Suspension Bridges Porced to Vibrate
Londitudinally.

*
by K.Eubo

. 1 Introduction

It is the usual aseismic design method of a bridge, to apply
the statical. load horizontally, the amount of which is equal to the
weight of the bridge multiplied by the seismic. coefficient.

It is very difficult and troublesome to design earthquake-proof
bridges from the view point of dynamics, because in Japan there is no
record of & strong motlon earthquake, and the geological conditions
are very complicated and the foundations are made of varicus kind of
soils, and therefore a record of a strong motion earthquake at a certain
place does not represent the characteristics of a atrong earthquake
at the another place. By reason of the fact stated above, in the
dynamical enalysis, the ground motion during an earthquake must be
agsumed to be given as a sinusoidal wave,

However, the damping corstant of the suspension bridge is far
gmaller than the one of the other type of bridges, and the amplitude
of forced oscillation of the vibrating body with a small damping
constant becomes extremely large, when the period of the extermal
force is the one of the vibrating body. In case of the suspension
bridge, its vibrational amplitude during an earthquake might become
much larger than estimated under the assumption that the seismic load
is statically applied to the suspension bridge and it must be needed
to perform dynamical calculation for design of a suspension bridge, or
at leest to check the seismic response of the suspension bridge degigned
statically, in both of which the suspension bridge is treated no more
statically but dynamiocally. '

In this paper, characteristics of forced vibration of the suspen=
sion bridges are described. In this case, the movement of the foun-
dation is assumed to be represented by a sinusoidal wave. The
investigation was done theoretically as well as experimentally.

In the experimental analysis, vibration tests were carried out using
the model which is 1/100 of the prototype in scale and the shaking
tables, and checked the validity of the theory, which is given by the
writer.

The damping coefficients of the actual suspension dridges whose
span is more than 100 meters were meagured and it is analyzed that
the damping constants of the suspengion bridges exist betweemn 0.004
and 000060 i : ‘

¥ Assistant Professor, Institute of Industrial Sclence, University
of Tokyo.
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Chap, 2 ¥odel Test

To obtain the general characteristics of the vibrating sugpension
bridge, the model test was performed , in the first place. In the
model test the similarity between the model and the actual suspension
bridge is the most important, and when the prototype is induced into
the forced vibration by an earthquake, the vibrational amplitude, for
ingtance, the deflection of the span center, can be determined by the
elagtic properties and the damping coefficient of the suspension bridge,
and period and amplitude of the external force. It is very d4iffi-
cult for us to make the model, tkhe similarity of which is sufficiently
satisfied about elastic responce, stresses, damping, and the vibrational
mode. And therefore in this research, only similarity of the vie
brational mode of the suspension bridge is considered. The d4di-
mengions of the model and the method, by which the size and the weight
of the model are decided, will be stated later.

The vibrations of the suspension bridge caused by an earthquake
ars classifisd into the following four types.

1) The vertical vibration due to a horizontal ground motion which
moves parellel to the axis of the bridge.

2) The horizontal vibration, which is parallel to the axis of the sus-
pengion bridge, due to such a ground motion as stated in 1).

3) The vertical vibration due to a vertical movement of the ground.

4) The horizontal vibration perpendicular to the axls of the bridge

dne to a ground motion which moves perpemdicular to the axis of the
bridge.

In the above four types of vibrations, the second one is con-
sldered not to pley an important part, and stress and deformation
caused by the forth type of vibration may be no more than stress and
deformation caused by typhoon. The stresses and deformations which
are given rise to by typhoon, are slready investigated and we can de=-
sign a guspension bdridge for typhoon. The third type of vidbration
as well as the first one must be studied in order to analyze the
ameismisity of the suspension bridges.

4ds the analysis on the verticdl vidbration due to a vertical ground
motica has not yet finished, the investigation on the third type of
vibration will be explained in the followings.

The kinetic equation for the vertical movement of the suspension
bridge is described as follows by Dr. F. Hleich,

m, 7+l M Z-1, ,¥V w3 HELZm2 4y .
B2 Bl -ty - Tote el 1) <0 @

{for symmetric vibration)
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FVZ-1 = 2nx @

( for unsymmetric vibration)
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Ag it is impossible to make the model so that the period of the
model may be the one of the prototype, the ratio of the frequency of
the prototype to the one of the model can not be equal te unit dut
equal to § , the value of which is smaller than unit. In this
paper, we attach the suffix, p, to the prototype, and the suffix,m,
to the model, respectively.

Let % /y, be € , then fr/.;m must be (1/5)2, in order to make
the value of Y2 invariable, And we can make the value of m?2
invariable, by making “’7’5;?/3}’5',1 to be equal to ur"‘l"t/Sme' in
which wy, and [, @&are undecicfed parameters and the geomeitriecal
dimensions of the model are F times of that of the prototype.
At last, 2il terms in Eq. (1) “will be able to be meintained invariably,

by making lPLfyfi, ECF Acp to be equal to Embn%c"&m/‘c»t

If the values, Wy, I, s and A., of the suspension bdridge
are properly chosen, the circular frequency of the first mode of vi-
bration of the model is given as § times of the one of the proto-
type, and the circular frequencies of the higher modes are decided
by the same principle, too.  Actually, one of the three values, Wy
Im 2and Acpm » can be peefectly arbitrarily determined when the
gsimilarity between the model and the prototype is confined within the
frequency of the suspension bridge, and then in this research, the
sectional area of the main cable, A_,was decided in the first place,
and in this case it is taken into account that the dimensions of the
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model do not become s¢ large and the experimental work are easily done.
The diameter of the main cable, which was piano wire was 1 om.

And actuslly the value of E is one tenth. The dimensions of
the model of the suspension bridge are shown in the followings.
Ay, = 0.0079 cm? W = 82,79 ¥en
1,, =364 com hyp = 89.8 cm
I,, =0.083 cm? I,4= 0.083 m?
fm = 3604 cm

The area of the wibrating table on which a tower and an anchorage
of the model were set, is 1m x 1.5m , and the table was shaked hori-
zontally by the motor of 5 HP , the rotation speed of which was
changeable, The other tower and the other anchorage of the model
wore pet on the another table which can be moved with the various and
different phase from the former table, and was shaked by the same motor
of the former table. (see Photo. 1)

The deflections of the stiffening girder were measured at the
points of 1/6, 1/3, 1/2, 2/3, and 5/6 of the span by the change
of the electric resistance of the slide rheostat and the stresses of

the main cable and the towers were measured by electric wire strain
geuges.

The results obtained are shown in Pig. 1. ‘Conclusions of
the experiment are; 1) the vibration period of the tower is far small-
er than the one of the super-structure of the byridge, 2) the funda-
mental equation on the vertical vibration of the suspension bridge
is fairly good, 3) the vibration of the first gymmetrical mode causes
the most dangerous stresses of the main cable, 4) the period of the
vibration of the first symmetrical mode ig 0.310 sec. by the model
experiment and as § is one tenth, the period of this mode of the
prototype bridge is 3.10 sec., and 5) maximum deflection or maximum

stress is given when the phase difference of the two shaking tables
is equal to 180 degrees.

Chap, 3 Theoretical Analysis on Forced Vibration

The model test shows that the amplitude of the forced vibration

of the suspension bridge, whose dsmping constant is very small, is not
80 severe except the case of resonance.

At first, it is asgsumed that a perdodlc ground moition is repre-
sented by @ dinpl , in which P is one of the ecirculer frequencies
of the suspension bridge, and each tower of the suspension bridge moves
with a phase~lag of 180 degrees.

The fundameuntal equation which obtains the relation between the
maximum deflection of the stiffening zirder and the amplitude of the
periodic ground motion, will be got in such a step as shown in the
followings;

1) To get the additional horizontal reaction {,4 of the cable of
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the side span due to the deflection of the top of the tower, ithe de-
flection of which is represented by &

2) To easlculate the additional horizonigl reaction of the cable of
the main span, which is increased to Hw.+£3 by the deflection of the
tower A

3) Yo obtaln the relation between the amplitude of the stiffening
girder at its center, and the deflection of the tower A .

4) To represent the deflection of the tower /A as the function
of the amplitude, a , of the periodic ground motion.

The theoretical analysis will be stated according to the above
procedure. The additional horizontal cable tension ﬁ,q, will
be given as

e =YK (3)

where

L 1
H=ga- SL{L0-2tak D) -2}

Considering the fact that the frequency of the tower is much
larger than the fundamental frequency of the verticel vidration of
the suspension bridge, the deflection of the tower at its top is
given by statical calculation. As A = X/tﬁza/ EI, and the addition-
al horizontal cable tension &3 of the main span is obtained by
the equilibrium at the top of the tower, we get

—ﬂ,s= Kdt+'£/4 = 3EI‘A/‘K? + A/K (4)

The deflection curve !  of the stiffening girder is assumed
to be represented by

7= bdin nécx (5)

in which b is determined by the next equation

Lefs
ECAC + f?dl: -2A (6)

And then
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We obtain the relation between @ and b , using the condition
that the energy which is lost by damping is equal to the energy which
is supplied through the foundation of the suspension bridge.

Then the energy loss which is consumed by damping during one
cycle will be

= f Fady [ dx ‘PbC ain"E 7 CO,APt pun E coAPtdt

= Tbpce ‘
2 (8)

where FaL means damping force, that is | C At’ and C 1is a
damping coefficient.

On the contrary, the energy { V) which is supplied through the
foundation is

V=2 j ,({,3co,apt 4z=2f apcoapt Aucompt dt
= ZaK{BEI%,, 1/K } (9)

since the vibration of the ground is represented by
Then we get Eq. (lp), froz the condition W = V,.

El,
A= 16aw£ EZ? -+ %’ (10)
)’LW“ PCK L 2
(2+2, fBEIH——Z-f]
EATTK
Substituting A\ into Eq. (4), we have
£ _1ow¥a (3EI 1/1.() (11)

mJ[sz}r [2+ L {BEI, 1 }]

(12)

b = YbJ[HwA[Z {351, 1) EI: ]
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Eq. (11) and Eq. (12) are derived under the assumption that the
forced vibration of the suspension bridge is stationary. However,
the periodic ground motion does not continue for ever, but the main
and strong ground motion during an earthquake will be over, after
it continues for several cycles. Therefore it is reasonable to
golve the problem of earthquake motion as the one of a traensient phe-
nomenon. In the first place, we estimate the vibratiomal amplitude,

t=ts? which grows during the time from £ =0 to $=%,, and the
amplitude excited by externmal force wheih vibrates eternally, that is,

g’t—no ¢

For the sake of simplicity, we substitute the vibration of a
atructure by the vibration of an one mass system. Then the equation
of motion is given by the next equation.

i r2pag e P =

And the solution will be easily found.

Y 2132{./'1%%2 e‘PﬁéoA( 2,%17’_ £ )-COAZ)UI:} (14)

where

P = P

g= ’tar.f'( g/\/;:—gz) '
Y, = statical deflection

” Let .ﬂr, be the growth coefficient whcih is defined by the ratio,
t=to /14s ,in which =t means the amplitude of the mass
which {;%ﬁ:i'ged_by the forced oscillation from t =0 tot = te o

Then we mmst multiply the values of A and b  obtained in the
above by a growth coefficient , 4, in order to get a reasonable re~
sponse of a structure to an earthqualke.

~ In the followings, the results of the numerical calculation of
the Wakato Bridge are shown. The Wakato Bridge is the largest sus-
pension dridge in Japan, and now under construction. Its main span
is 364 m 1in length and the each span of the two side span is 90 m
in lengtk.

2,22 x 10 ton

B -

gﬁr‘”’ = 1.05 x 10 ton-w?
w = 1.8 ton-m™'

h = 82,3 m

Io = 1016 m4
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Table 1 shows the results obtained by the numerical calcula~-
tion about the prototyps, namely, the Wakato Bridge, under the as-
sumption that the seismic wave is sinusoidal and continues for some
time, for example, 30 seconds.

Chap. 4 Damping Coefficient of Suspension Bridge

As stated in the abdbove, damping coefficient is very important
for the dynamical anclysis of suspension bridges, and there are some
researches performed theoretically as well as expérimentally. But
Judging from the results obtained by many researchers, the walues of

the damping coeficients of suspension bridges are distridbuted over
a considerably wide range.

In this paper, the field survey of the vibration of the suspen-
sion bridges whose span length is more than 100 m and the model sus=-

pension bridge, which is built in the ground of our institute, will
be described.

Demping ratlios and damping constants, which are defined by the
percentage of the critical damping, are obitained from the records of
free damped oscillation written by seismograph.

In order to get the Initial deflection of a suspension bridge,
rortable oscillation generator was used, whose centrifugal force was
not so large that the generator could be stopped easily, after some
amplitude had been ohtained on account of the resonance phenomenon.

The poritable oscillation generator is about 70 kg in weight,
sccentric mass is 25,3 kg in weight, and the dlameter of the wheels
is 58.8 cm ,and each wheel runs in the inversge direction respective-
ly, and the force applied on a suspension bridge by this generator
is upward and downward and periodic, and its centrifugal force is
equal to mrw2

The main purpose of this measuremsnt consists in surveying the
damping coefficient of the actual suspension bridges, whose main span
is more than 100 m in length and the next 7 bridges are selected.
the dimensions of which are shown in Table 2.

Thess suspension bridges have special characteristics in con-
struction , namely;

1) Stiffening girder (Yagumo Bridge) and stiffening truss ( the other
bridges) ‘

2) Nain cable is used as the upper chord of the stiffening truss of
the Tabisoko Bridge, instead of steel or wooden members.

3) Only the Eiyoshi Bridge has its side spans.

4) The bridge has the different flexural rigidity of the stiffening
truss, or girder, each other.

5) Some have the storm cable and the other none.

The relation between dagpping constant and the above character-
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isties in construction, span length and the vibration amplitude are
the principal problems of this investigation.

Before the damping constant is described, the writer states brief-
ly the period of vibration obtained by use of three methods, 1.e. e-
lastic theory, approximate calculation, and experiment.(gece Table 3 )
In the approximate celculation, the effective mass of the sus~
pension bridge is given under the assumption that the deflection
curve is represented by the curve of A,oun’c}fe , where A 1is the maxi-
mm amplitude, and 1, span length.

There is some difference between the experimental period end the
approximate one of the Yagumo Bridge, and the difference can be ex-
plained by the fact that the Yagumo Bridge of stiffening girder has
smaller stiffness than the other bridges of stiffening truss.

-From the results obtsined, it is concluded that the damping
constants of suspension bridges may be distributed between 0.004 and
0.006 us for the first symmetrical mode, and there may not exist
exactly clear relation between the damping constants and the amplitude
of the vibration. Generally speaking, the damping constant of the
suspension dbridge is much smaller than the one of the ordinary bridges,
whose damping congtants are distributed between 0,1 and 0.05.

In order to know more exactly the damping characteristics of the
suspension bridge, the small suspension bridge was made in the ground
of our institute.( see Fig. 3 ) The main purpose of the test
is to make study on the relation between damping constants and such
factors as;

1) the vibratiomal amplitude

2) the dead load

3) the bearing friction at the supports

4) the flexural rigidity of the stiffening girder
5) unegual cable tension of the hangers

As the dead load, sand bags were used, snd tests were pursued,
when the stiffening gzirders had such flexural rigidities as 188.7 on
and 2(7% cm? ,respectively. In order to investigsate the vibra-
tional characteristics of the suspension bridge with unequal hanger
tension, the hanger at the point of 1/4 of the span was shortened
succegsively by 1 ocm, 2 cm, and 3 cm, and the other hangers were
remained unchanged.

The results obtained by the test are explained briefly in the
followings. The damping constants are given as a linear function
of the amplitude, and become larger and larger as the amplitude, in
80 far as the test was pursued. It seems that the dead load as
well as the lack of uniformity in hanger tension, has few influnence
upon the damping constant of suspension bridges.

When the flexursl rigidities of both the girder bridge and the
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stiffening girders are exactly slike, the ratio of the damping constant
of the suspension bridge to the one of the girder bridge is approxi-
mately unit in case of [ -100x50x5 , but one half, in case of I-
200x3100x7 . Bearing friction which is increased by enlarging the
reaction force, has few effect upon the damping of the suspension
bridge, since the support is roller bearirg and the energy lost at

the support may be negligible.

At the end,the writer shows the resulis which was obtained at
the Harada Bridge. Fron the record of the damped free vibration,
which wag taken by the seismograph,( magnification factor = 5, and
vibrational period = 1.5 sec. ) we can obiain the damping constant
at a certein amplitude, and Fig. 4 shows that the damping constant
is not independent on the amplitude, but is given by & linear function
of amplitude. The maximum amplitude of the damped free ogcillation
is 10 mm . Due to the errors in reading of the amplitude, the

damping constants at & small amplitude are not accurate, and therefore
not plotted.

Ghasp. 5 Conclusions

The suspension bridge whose damping constant is much smaller than
the bridges of the other type, must be designed by the theory of dynamics
if it is necessary to check its agelsmicity, because there is a fear
that the vibrational amplitude becomeg larger due to resonance.

In case of dynamic snalysis, the ground motion during an earth-
quake must be needed, but in Japan there is no record of a violent
earthquake, and therefore it must be considered as an inevitable conse-
quence of the circumstances to assume the earthquake motion as & peri-~
odic ground motion, although the above assumption is questionable.

By proper estimation of the duration of the mein part of an earth-
quake, the theory stated by the writer will be considered to investi~-

gate the response of a suspension bridge to a strong sesarthquake well
enough.

Finally, the followings will be concluded;
1)} The vibration period of the suspension bridge is correctly calcu-~
lated by, the theory which was given by F, Eleich,
2) The vibration of the suspenszion bridge caused by the horizontal
ground motion which moves parallel to the bridge axis, is solved by
the theory stated in this paper and the velidity of the theory is
investigated by the model test.
3) Owing to rescnance, the suspension bridge is suffered most geri-
ously by the earthquake whose period is equal to the period of the
fundanental symmetric vibration of the suspension bridge, even if
the acceleration of the earthquake is not so large.
4) The damping constants of the suspension bridge are distributed
between 0.004 and 0,006 , according to the results of field ex-~
periments by the writer. And it is given as a linear function of
“amplitude, as long as the amplitude iz not so large.
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5) The aseismicity of the Wakato Bridge is checked, where the maxi=-
mun acceleration of the horizontal periodic ground motion is assumed
to be 30 gal, and the duration of the ground motion is 30 sec,
which is the loangest duration of the main part of the earthquske
recorded in the past.

The results of checking is shown in Table ]
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Photo 2a Sakae Bridge

table and

Shaking
the model

Photo 1

Photo 2¢ Yagumo Bridge

Photo 2b Miyoshi Bridge
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Photo 2f Harada Bridge Photo 2g Takanosu Bridge
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Table 4
Name of Bridge Damping Constant Max. Amplitude
Sakae 0.0037 1,49 mm
¥iyoshi 0.0063 2.09
Yagumo 0.0048 6.21
Tabisoko 0.0059 3.48
Seto * 0-0036 1-56
Harada 00,0073 0.98
Harada 000037 5402
Takanosu * 0.0122 C.58

* vyibration of second mode

Table 2.
Rame of Bridge Span Length(in m) Sag(in m) W(in kg/m) I(in e?)
Sakae 37.2498.2498.2437.2 11.0 1744 3.01x10%
Miyoshi 31.5+139.9+31.5 16.8 2930 5.75x106
Yagumo ‘ 114.0 12.0 2718 3.78x105
Tabisoko 114.0 11.2 1300 4.39x106
Seto 125.0 10.4 958 2.19x106
Harada 137.6 15.0 2250 7.04x106
Takanosu _ 163.0 18.0 1777 5.49x106
Table 3
Name of Bridge Experimental Theoretical Approximate
Miyo’hi 1.20 1024 1029
Yagumo 1.51 1.44 1.93
Tabisoko 0 -93 0 097 (¢] '94
Seto : 0053 * 0.50 l 1'86
Harada 1.25 1.43 1.36
Takanosu 0.63 * Q.71 1.58

* gecond mode of symmefrical vibration
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