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INTRODUCTION

This paper concerns primarily with the earthquake responses of
a long span suspension bridge. Problems on aerodynamic stability
of suspension bridges have been investigated by many specialists
during the past few decades, but there are few investigations and
technical papers on earthquake responses of suspension bridges.
In this paper, a method of analysing the earthguake responses of
a2 long span suspension bridge is presented, and the fundamental
dynamic characteristics of the suspension bridge to earthguske are
investigated.

Because of the complexity of the structure, it is seldom possible
to obtain an exact solution of the probleg. In this investigation,
the suspension bridge will be simplified into a physically analogous
system to which the theory of finite degrees of freedom systiem can
be applied. The earthquake motions being also quite complicated are
assumed to be of simple shapes. Oxnly the effects of ground motions
acting in the direction of the bridge axis will be treated in this
paper. In the analysis of earthquake responses of the suspension
bridge, the effects of the stiffness and masses of the towers are
of significant importance, and both effects are taken into account
in the analysis.

Numerical calculation will be done on the AKASHT Strait Bridge
which is now being planned by Kobe City Authority.

METHOD OF ANALYSIS

In this chapter, a method of analysis of a suspension bridge
subjected to earthquakes is presented using a simplified analogous
system.

Physical System Considered

The system considered is as shown in Fig.l. Stiffening frames
of the suspension bridge consist of rigid bars connected with elastic
hinges. Elastic constants of the hinges are so selected that the ana-
logy of bending characteristics to 'the original stiffening frame is
satisfied. Dead weight of the stiffening frames, floor systems, and
cables are assumed to be concentrated at the hinged points considered.
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Bach hinged point has a freedom of motion to the vertical direction
specified by a deflection Yy .

Towers of the bridge are also replaced by the same physically
analogous system. Only the horizontal motion is assumed to be
allowable %to the points in the tower. Axial forces and horizontal.

forces acting to the top of the towers are taken intc consideration.

Ordinary assumptions in the analysis of suspension bridges, such
as suspenders being inextensible, are assumed in this analysis. Vibra-
tion damping of the structure is omitted in the analysis.

Using such sinplified system, theory of systems having finite
degrees of freedom can be applied to the problem.(” When the suspension
bridge is devided into fairly large number of segments, a good ap-
proximation is obiained. Only high speed computers can execute nu-
merical calculations for the analysis of such systen.

Differential Equation of Motion of & Point in Stiffening Frame

A point considered here, ig the_elustic hinged point of the
system specified above and the dead load is assumed go be concentrated

in this point. In Fig.2, the three aijoining points in the stiffening
frame are shown, and the equilibrium of the point r will be discussed
here. Solid lines on Fig.2 show the condition of static equilibrium
due to dead load. As the siiffening frames of suspension bridges
carry no dead weight, the following static equilibrium is derived
regarding the point r.

o W OO............... 1)
tan Ly sy~ e c(rﬁfﬂ:“gf,_ (

where

jw= horizontal component of the cable %tension due to dead load
Wy = dead load concentrated at the point r.
Using cable sags of three pcinta, Eq. (1) is

Fre—2 5t Fena - - Wr
a Haor

Two kinds of internal reactions take place with the displacement
of the point. One is due to bending moment of stiffening frame, and
the other is due to increment of the cable tension.

s e 0 e eseseesRnsIsRESSS (2)

Reaction due to the bending moments of stiffening frame is

== ‘ PR R R I RN R N
Q\'B~E:(Mr—z‘“2Mr'* Myt ) (3)
where
Myr = bending moment at the point r in the stiffening frame
2= reaction due to bending moment of the stiffening frame.
Homent M,is assumed to be expressed by the defiections of three adjoin-
ing points in the stiffening frame as,

M, = (‘%)(Hm‘z Y+Y4...) NN )
where

B,= elastic constant,selected to satisfy the physical
condrtions. .
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With the increment in cable stress due to vibration, horizontal
component of cable stress increases frmnk&rto}ﬂ;h. Reaction due to
cable tension MHuith is,

Rer*h__: (Ho+h) (fanoly e ~n odr ) cerens (5)
in which

_hh“ (5%*'%?)"({;1+fjh4)

'T—I .
®® 038068 r0 0 (6)

‘b,_n clf por = (§Y+ ha BY-‘H) (fr“‘ Y Y)

Substituting Eq. (6) into EBq. (5), and using the relation of Eg. (2),
the reaction due to increment of cable tension is

Rh= _b_(jc o5 j(m),fﬂ_nﬂw(HH 2Yys Y b oooe (D)

Total reaction at the point r due to the defizcticns of the
stiffening frame is, therefore,

R,= R2+Rb
=-—'—(My-r2Mr+ Myst) # L (Fr-m 2T+ Fea ) T
¥ a. (HH-?TJV’ ‘jrﬂ)

Ko external forces being applied to the point r, the equation of
motion of the point is given as

E 9,=R, ORI ¢-))

Ceble Equatlon

The increment of cable temsion, h, in Eq. (8) is the funciion of
deflections of the stiffening frame and it can be obtained from
so-called cable equation.

P Assuming that the cable element r, ™1, moves to the position
r’ r+17 , as shown in Pig. 3, due to the increment of the cabdble -
tension, the following relation is given neglecting small quant1t1es
of higher orders.

( u-Y-N r) COSOZV

where
*yp,= the increment of cable stress of the cable element r, T+l
l—'r%u’ length of the cable element r, +1
E. = Young's modulus of the material of the cable
A = oross section area of the cable
Wy = horizontal component of the displacement of the point r
= vertical component of the displacement of the point r
The horizontal component of the elongation of the cable element r, r+l

is
AUy po = WUy~ Uy

= ey Ly
EEélkloﬂ;ir:q, (EjFu fjr) 1§:ncir3aq

Substituting the relations

“(YprY) sinat 8, = trralea o (10)

Y4 Ee Ac

eeeee (11)
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Total elongation of the cable is

U= Z AU
n @ 0 o
"B A (Z a0 2 I Cancliy, ~tardln )
Using Eq. {2), Bg. {13) will be
.'=."—b~—- ~-Wy # L0 000008 sPss0 0 Pes e
Ec Ac L= szﬂr e

78
LE= Z CosadY?Y-h

Eq. {(14) must be sstisfied in each span of the suspension bridge,
and the different values of h are given in different spans.

eea(13)

where

treeeescereccenanaesss (15)

Egquation of Motion of Tewers

Towers of the suspension bridge are also devided into small seg-
ments which consist of rigid bars and elastic hinges. Fig. 4 shows
the tower subjected to ground motions at the base and the horizontal
and vertical forces at the top.

The same method of derivation of equation of motion as before is
employed, and defining
P = axial force due to dead load acting at the tower
= increment of the axial force due to inertia force
Al = horizontal force acting at the top of the tower during
vibration, due tc the difference of cable temsion
Wy = dead weight of the tower concentrated at the point r,
the eguations of moticn of inmer point of the tower are obtained as

E.- -—._-L— {

5 by [ (M"‘-.ZM'*MV‘*\)““’:L;('DW“ PY (Yy- 2Y 1+ Y )...(16)
At the top of the tower the following equation is to be applied as
horizontal force Ajyis scting there.

%vﬂ‘an?“;‘;(Mn—n)*%(%*-w(-'jhﬂj,,_,) +Ah. seeseee (17)

Linearization of the Theory

The equation of motion derived are originally depending upon the
deflection theory of suspension bridges and have non-linear character-
istics., When the increment of the cable tension and of the axial force
due to the inertia force are small colmpared to those due to dead load,
the terms Hyth, andRytP , in Egs. (9) and (16) are assumed to be Haf,
and ’R,., and the quantities having non-linear propertiea are ignored.
Equations obtained correspons %o so-called linearized deflection
theory of suspension bridge &)

System of the Fundamental Eguation of Motion
Using the linearized theory, a system of fundamental differential
equations of motion of the following form can be derived.

866



Barthquake Responses of a Long Span Suspension Bridge

CA7 (U,)+[8] (4,) + (R®)=0 tevrrneenanes (18)

In Bg. (18)[ 1, () show a square symmetric and a vector matrix
respectively , and
Yy = displacement of a point in the stiffening frame or the
tower
F%Gﬁ: external force due to ground motion. W
Matrix [A] is a diagonal matrix with the diagonal elementaqr=:§I
Matrix [b] is stiffness matrix. Vector matrix of external fources
TR(t)is the function of the ground motion Z, Zgr Z.» and Zg.
A = displacement of the left’'side anchorage
Zp = displacement of the right side anchorage
Zg= displacement of the left side tower base
:ch displacement of the right side tower base

The problem expressed by Bq. (18) is physically the vibration
problem with multi-degrees of freedom and can be effectively solved
by modal analysis of vibration if the natural frequencies and uodes
of vibration are obtained.

Natural Prequencies and Modes of the System
Frequency equation of the system is

ILB]1-ATAl |=0 terenrerenveennnaenees (19)

where 2

A =W= characteristic values

W = circular frequencies of the system
The characteristic roots and vectors of this determinantal equation
represent the natural frequencies and modes of the system.

Matrices [A] and [B] in Eqs. (18) and (19) can be obtained if the
simplification of the suspension bridge and the structural constants
concerned are given.

As the first approximation, the system shown in Fié. 5 is adopted.
Dimensions and dead loads of the system are gelected refering to the
values of the AKASHI Straits Bridge and are(®)

QA =L./8 = 1300/8 = 162.5 m
b =bv/4 = 200 /4 = 50.0m

Hae= 19560 ton

Wy= 1625 ton ( r =1, 2, 3, 8 9, 10, 11, 12, 13, 14, 19, 20, 21)
Wa=Wie = 340 ton, W =W = 1165 ton

We="Wis = 1.778_ton, Weq = Wis= 2521 ton

By= 6.462x 10%.m (r = 1, 2, 3, 19, 20, 21)
Bs= B = 46.158x108%.m, B = Byg= 107.52x 10 t.n
B, Bg = 216.05x10°t.m,  Bg= B = 391.3x10%%.m

The stiffening frames are considered %o have uniform cross section for
each span, and towers values to have varying cross sections. Numbers of
the points are given in Fig. 5.

B,= 5.169x 105¢.n ér =8, 9, 10, 11, 12, 13, 14)
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Using these, square matrices [A]and [B}with 21X 21 elements
are obtained. Tables of these matrices are omitted here as they
take much space.

Because the system of Fig. 5 is symmetric with respect to thg
center of the systen, the natural modes of vibration are either sym-
metric or asymmetric, and it becomes convenient to evaluate the natural
frequencies and modes in two separate groups.

Values of A.and characteristic vectors for the symmetric and
asymmetric modes are given in Tables 1 and 2. Configurations 91‘ the
modes are shown in Figs. 6 and 7. They were obtained on the high speed
digital computer.

Por the sake of convenience of the later analysis, the natural
modes of the system, shown in Tables 1 and 2, are normalized so as
to satisf,:é‘ the condition

’ M (i) 2:—"—' "TEETEEEEEESERY R E R R R NN 2 RN (20)

(1i=1, 2y «ovey 11 for symmetric modes)
(i=1, 2, cvoe, 10 for asymmetric modes)

EARTHQUAKE RESPONSES

Application of Modal Analysis

Natural frequencies and modes of the system obtained in the pre-
ceding gsection will be utilized in the following a.na.lysis“.“

The displacement Hrof the system can be expressed as follows
enploying the normal modes obtained and new time functions

ot trer T
¢ 3r=nqn Yrm + % ﬁz) R Rl r(") reerees (21)

( r=1, 2, 5, saey n )

where ¢ :
\(y( = amplitude of ith mode free vibration

Substituting Eq. (21) into BEq. (18), one obtains, after some calcu-
lation -

31*7‘:9%1"‘ ;n,-Yf‘.nR.(t)=o ceresesaeancass (22)
(2=1,2,3 ..., n)

providing all the modea of vibrations are normalized.

y ?

Each equation of the system of differential equations (22) has
single dependent variable and can be solved by ordinary method.
If all J; are obtained for the specific external foxce (), the
displacenent can be obtained from Eq. (21).

Assumption of Ground Motion

Because of the great complexity of the earthquake motion, an
exact solution of the earthquake responses of the suspension bridge
is seldom possible, and only an approximate solution of the suspension
bridge to some idealized ground motions are possible. In this paper,
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the ground motion is, as the first stage, assumed to be a displace-
nent with a simple hamonic shupe given as

Z= A (1—cos2Et) (ostsT)

, =0 (<t )

and shown in Fig. 8. Responses to other kinds of distrubances can
be obtained by this analysis, and it will be done in future work.
In Numerical analysis of this paper, the amplitude is assumed
a8 A= 1m, then the maximum displacement of the ground motion is
2m, Because of the linearity of the system considered, responses
to any amplitude can be obitained by linear reduction.

eees (23)

Responses to the Ground Motion

In the design purpose, responses of the bending moments in
the system are much more significant than those of the displace~
ment. The responses of the bending moments on the following sections
will be duscussed in this paper: (1) the tower base, (2) the center
of the tower, and (3) the center of the center span stiffening
frame.

The ground motion of Eq. (23) can be applied to any points
connecting the structure to the ground, those are left and right
side cable anchorages and two tower bases, and each ground motion
has a individual effect on the structure. Because the structure
has long span lengths, any phase differences between each dis-
turbence is possible. The responses in this chapter are obtained
by adding the effect of each disturbance graphically so as to
meke the resultant bending moment maximum.

Fig. 9 (a) and {(b) show the time-bending moment curves to
the point of the center of the tower due to the disturbances with
different durations of ground motioms. T = 0.125, 0,25, 0.375, (Pig.9
(a)), 0,50, 0.75, 1.00, 1.50 (Fig. 9 (b)) in sec, Fig.10 showa the
time-bending moment curves for the center of the center span due to
the same disturbances. In Fig. 10, are given fairly different
response characteristics from Fig. 9, and the maximum moment is
much less than that of the tower.

Fig. 11 shows the spectra for the maximum bending moment at the
center of the tower resulting from the disturbance of eq.(23). Fig.
12 shows the spectra for the maximum bending moment at the tower
base, and Fig. 13 shows the spectra at the center of the center
span stiffening frame, The spectra of Figs. 11 and 12 have their
maximum values at about the value of T= 0.25 sec. and Fig. 13, at
about ‘r‘- 4 sec.

Patterns of the relations of the amplitudes and periods of earth-
quakes have to be determined in order to get clear understanding on
response spectra. If the amplitude and period in Eq. (23) are given,
the response to the given external disturbance can be obtained con-
sidering the linearity of the system.
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CONCLUSICN

The responses of the suspension bridge due to ground dis-
turbances are analysed by adopiing the simplified structural syster?
with finite degrees of freedom, and some response specira are obtained.

The main conclusions are:
(1) Vibration modes of the system, Figs. 6 and 7, can be separated
into two groups with different characteristics. In one group, the
dispiacement of the stiffening frames are predominent, such as the
18t through the Tih symmetric and the 1st through the 6th asymmetric
modes, and in the other group, displacements of the towers are
predominent, as the 8th through the 11th symmetric and the Tth
through tie 10th asymmetric modes.
(2) As it is clear from the response specira, motions of the towers
subjected to an earthquake are more significant than those of the
stiffening frames, and the stiffness and masses of the towers must
be taken into account in the analysis of earthquake responses of
suspension bridges.
(3) Two vibration modes of the tower, such as the 8th symmetric and
the 7th asymmetric modes, are almost the same as shown in Figs. 6 and
7 excepting that they are symmetric and asymmetric. This means that
in experimental and theoretical investigations of earthquake respon-
ses, a partial model where only the tower and physically equivalent
effects of cables and stiffening frames are considered is approximately
applicable.

Only the fundamental characteristicswere obtained, in this
analysis, then the following experimental and theoretical invest-
igations are necessary %o obtain clear uncerstanding on the problem
and material on practical design.

(1) The same numerical analysis for the simplified system with better
approximation than the system of Fig. 5 must be done to obtain design
data for the suspension bridge. KNatural modes and frequencies for
the system having eight segments in the tower and the same number of
segments as in Fig. 5 in the stiffening frames were obtained, and

the dynamic responses are now being calculated.

(2) The effects of the higher mode vibration to the bending moment
of the tower were significant according to the numerical calculation
done. Pamping of the higher mode vibrations have to be clarified

to obtain better information on higher mode responses because the
damping effect is considered to be more effective to the higher mode
vibrations than to the lower modes.

(3) Model tests on the tower has to be done to obtain the experi-
mental resulis on earthquake responses and damping characteristics.
(4) Analysis upon the deflection theory and the earthquake responses
with plastic deformations of the structure must be done, and the
allowable plastic deformations of the suspension bridge must be

made clear,

{(5) HResponses due to earthquake with any directions of motion must
be investigated.
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NOMENCLATURE
[A] = a diagonal matrix with elementa,,:W'/j
A ¢ = cross section area of a cable n?
(. = length of one devided segment of stiffening frames =
D(r,?q.‘ declination of cable element r, r+1 in static eguilibrium
O(Y.Hl- declination of cable element r, r+1 during the motion
[B] = gtiffness matrix, square and symmetric

Br = elastic constant, selected to satisfy the

physical conditions t.m
o = length of one devided segment of the tower n
Ec = Young's Modulus of cable material 1;/zn2
:F' = cable sag at the center of the bridge -4
;f-r = cable sag at the point r n

. 2
3 = acceleration of gravity, 9.8 m/sec

Hw" horizontal component of the cable tension due to

dead load ton
i i ble
h = horizontal component of increment of. ce
tension due to vibration, different in each span ton
Ah = ho;izontal force acting to the top of the tower ton

L. = length of the center apan, 1300m in the Akashi Strait Br.

1 B
ths length of cable element T, T+
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height of the tower, 200m in the Akashi Straits Br.

characteristic values

bending moment at the point »

t.m

vector matrix of external forces due to ground motion

= axial force due to dead load, acting at the

top of the tower
increment of axial force due to vibration
time function forxr the ith mode vidbration

total reaction at the point r due to deflection
of the stiffening frame

reaction due to bending moment of the stiffening
frame

reaction due to increment of cable tension

duration of ground motion

= incfement of cadle tension of the element r, T+1

total elongation of cable in horizontal direction

horizontal component of displacement at the
point r in cables

horizontal component of elongation of the cable
elegment r, ret

dead load of tower or stiffening frames,
concentrated to the point r

maximum displacement of the point r
amplitude of ith mode free vibration, normalized
displacement cof the point r

horizontal displacements of the left and right
side anchorage, respectively

horizontal displacements of the tower base 8 and
C respectively
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