A STATISTICAL METHOD OF DETERMINING THE MAXIMUM RESPONSE
OF A BUILDING STRUCTURE DURING AN EARTHQUAKE

By Hiroshi Tajimi®

Introduction

In recent years there have been many studiss concerned with ob-
taining the response of buildings subjected to the ground motion of
an actual earthquake by .the use of digital or analog computers. It
is well known that these results have given us more accurate infor-
mation cocerning the dynamic behaviour of building structures during
an earthquake. Howevér; they seem still to be insufficient for ob-
taining a consistent knowledgg,of aseismic design because of the
following obstacles inevitably encountered in the course of these
studies: (1) the analysis methods are so complex and laborious that
they cannot rapidly predict the influence of different earthquake
motions as well as the different properties of vibration of a build-
ing, and (2) there is no reliable criterion of judgement, from which
we can derive & design formula rationally from many response resulta,
if they appear to be very random in character.

In order to overcome these difficulties, it is advisable to
introduce & method of statistical treatment into the formulation of
design criteria from detailed response results. It will be shown
that such treatment facilitates analysis and even establishes a
general theory of determination of earthquake load for design in an
approximate but acceptable form for practical purposeas. This paper
is an attempt in this direttion.

Previous approaches similar to the present analysis have been
developed by Goodman, Rosenblueth and Newmark (Ref., 1), and again
Rosenblueth (Ref. 2), making the substantial assumption that the pulse
duration of an earthquake motion is much shorter than the natural
period of the excited system, However, in Japan the wave duration is
comparable to or larger than the building pericvd, for there buildings
have usually a fundamental period of less than 0.8 sec. It follows
that we cannot ignore the '"dominant period of ground motion". Indeed,
Housner's velocity spectra (Ref. 3) also indicate a typical pattermn
characterized by an apparent transition from a linearly varying
response curve for shorter periods to a constant response curve for
longer periods. The period associated with the above transition will
be taken as a reference period of ground motion, called here the
"dominant period". For this reason, the dominant period of ground
motion is used as an important factor in this work, although this
period cannot always be associated with the locality.

Theory of transmission of random earthguake motions to a building

For aseismic design it is very important to determine how the
vibration of a building is magnified compared with a random earthquake
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motion. It iz easily recognized that such magnification is based
mainly upon the frequency characteristics of the earthquake motion.
A "power spectrum" serves well as a mathematical representation of
the frequency characteristics. In general, the ground motion f£(t)
is analyzed by the Fourier integral as

T tw
F(Lw)*—z’i-fqﬂt) et (1)

where (T, -T) is the duration of that part of the earthquake motion
which the accelerogram shows to have significant effects on the build-
ing. In the problem of random motion, we often take account of the
mean square value of f(t) defined by

2 | (T 42
-l it . (2)
£ ZTJ-T 1)

However, cannot be clearly defined for an earthquake motion, which
is essentially nonstationary, because 2 depends on the time range
(T, -T) impossible to be strictly determined, It is necessary, there-
fore, for the explicit definition of ¥? that the earthquake motion
should be so modified as to satisfy the condition of "stationary
random motion", without significant loss of accuracy in the analysis.
A rough modification will be made by means of adding a simulated
series of motion continuously repeated to the principal motion before
and after, having equal intensity and randompness to the principal
motion at all points. This modification may be justified by the fact
that in many cases undesirable parts of the resovonse due to the
simulated motion are damped and decay before the application of the
principal motion, for a building has usually a damping ratio of 5 %
or more to its critical demping. Thus the modified motion has a
uniquely defined f* in accordance with the definition of "stationary
random motion". Then we can calculate fZ from F(iw ) as below,
according to the Parseval theorem: if we put

=

G(w) = {ﬁ%—’-‘ IF ) (3)
we have . -
= Grun do . ()

The function G°(w ) is called the power spectral density and has the
following property of giving the mean square of response of a linear
system acted upon by the random motion £(t):

e [Tstiw) e dw (5)

where S{iw ) is the ratio of response of the system to the applied
sinusoidal motion €% of the frequency w , often called the "frequency
response of the system".

The foregoing discussion which has been confined to the mean
behaviours of the motion im, however, not enough for our purpose of
obtaining the maximum value of response, It needs, in addition, to
take into account any statistical characteristics concerning the oc-
curence of the maximum value in the time history of an earthquake
motion. But they have not yet been determined from records actually
observed, s¢ let us assume the normal probability distribution, often
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used in the problem of random motion. According to this distribution
rule, we can estimate the maximum value from the mean deviation under
a definitely prescribed probability for occurence of the maximum
value. Therefore, if we notice that the response of a linear system
also satisfies the normal distribution rule so long as the ground
motion does, we may be able to put the following relation between

the maximum value fy,and mean value.f?i of the ground motion as well
as Smyand Js2 of the vibratory system: '

A - Smx _ [ (6)
T max .,/}"2
This ratio A is the desired magnification and will be called the
transmissibility of the system.

As regards the spectral density G*(w ) of the ground motion of
earthquake, Kanai (Ref. 4) has presented the opinion as a result of
analyses of many past earthquake motions, that the spe¢trum observed
at bedrock is characterized by a constant pattern, while that at
ground surface is multiplied by the vibration property of the ground
layer. This idea may be expressed by the equation in its simplest
form: _ 2 @t

I+4h?—\7;2

G (W) = B

B = corud, (7

w? ’

Z 3
| ——=] + 4 hg -2
( 3) 3¢

Obviously, this equation posseses a '"dominant frequency” v, for a
unique peak of spectrum. hg is a parameter, which indicates the
sharpness of the peak. It is said that the dominant period T

(= 21 /V,) depends on distance from epicenter, intensity of earth-
quake ang especially rigidity of the ground layer, and usually lies
in the range .of approximately 0.2 sec to 1.0 sec. The correlation
function R(T ) corresponding to Eq. 7 is written by

R(T) = | G coswt duw
[

- Ts{—fg(nmh;)e, co9 (VgJ1-k3 T)

Yt (1-4n2) P8 him (V [ToRE T)Y L (8)

For simplicity, we will confine ourselves to Eq. 7 for the
spectral density of acceleration of the ground motion in the follow-
ing description., First, let us calculate the transmissibility for
a single mass-spring system., This transmissiblity, when considered
in more detail, may be better called the acceleration transmissibility,
for the sbectral density used here refers to acceleration, and the
amplification thus obtained means the ratio between the two maximum
accelerations. As the frequency response S(iw) of a single mass-
spring system having natural frequency Vs and damping ratio hg can
be written by

)
I +2hs 52

(”1 LII’
/- e +2h_s
..vsz Vv

S(iw) = (9
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A\ can be evaluated from the equation in accordance with BEq. 6:

(0 H+ 4h:% / +#}L;.~1—Jw—:- B dow
AR LT N (B g T 8
x o( ) v ( ) 'V . (10)

I +4h3 25

=) e 5a

The integration of this equation can be carried out by means of the
contour-integral:

&

2 I o B b
N = .E.(R ..;.E:_PI;._LP)
P - A (AT, - B&) + B+ B T)
' Y+ 8¢
P - Az-(dln‘{?’ls?-)'l" B:.(dz SZ+ B’-r’)
2 2 2 '
Y+ 8,
B= (1+4h}) [1-13 ,
-JI-hy, P:"'h ’ A_J/’h':-. ﬁz‘hsq (11)
[ - {z-—t(r zh,} h,(/ h3) + 443 v,(l—zh,})
— sl
5 4{: t(/- zh,)} by T — £3 v’h’ =%
1 2 2 V Z\2 2 L2
A—/+(M,—-’-+#h)(/ 2h3) + 44 ,Vi{(/-zh,)_ahg/-h,)},
B-(#h‘,;i,wh,)zh,//— +/6 h3hy v, (1 zh})h;.// —hj .

where 1z ’ x,;, A,, B, can be written by the exchange of the subscripts
gand s inY, ,3,,4,, B, respectively. Thus we can evaluate A\ as

a function of the frequency ratio¥/vs or the period ratio Ts/Ty, in
which Ty = 2% Mg, if he and hg are given. 1In Ref. 5, the numerical
results for variocus combinations of these parameters are shown, though
they are omitted here because of space limitations,

It is instructive to examine how the resulis thus obtained agree
with the exactly calculated response results, For this comparison,
the anslyses by Housner and joint authors (Ref, 3) are avaiable,
which indicate a number of plots of maximum acceleration experienced
by & single mass-spring system damped or undamped against the vari-
ation of its natural period, when it is subjected to past actual
earthquakes, Fortunately, the curve called there the "acceleration
spectrum of response', corresponds to our curve of the transmissibility
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A versus the period ratio Ts/Ts. For convenience of imspection,
let us rewrite the coordinate scales of Housner's spectrum in our
dimensionless form. While the tramsmissibility is easily produced
since the maximum acceleration of each earthquake is known, the
period ratio is difficult since the dominant period is unknown,
Then, the only way to estimate it, is to make the reasonable as-~
sumption that the response spectrum should have a peak at T, = Tg,
(Fig. 1). For this purpose, the spectrum for the damped system may
be taken as appropriate rather than that for the undamped systenm,
because in the latter case the peak can occur at the "quasi-resonance'
with weaker but longer continued ground motion as well.

Thus we can compare the results obtained here with the exactly
calculated results shown in Fig. 2, where by our analysis the spectral
density of the ground motion is taken as Eq. 7 with a definite value
hg = 0.3, and by the exact results the average values of the' total
of the available data are plotted at the isolated period ratios of
0e5, 140, 2,0 and 3.0, (see Fig, 1), In Fig. 2 we find that there is
reasonable agreement between the results. As a result of the exami-
nation, we can derive the following conclusion: the agreement in the
effects of damping of the system proves an assurance of the assump~
tion of stationary random motion, and also the agreement in the shape
of curves shows that Eq. 7 substituted by hg = 0,3 is applicable as
a standard spectral density, to which we will restrict ourselves in
the following description.

While Eq. 11l evaluates the acceleration transmissibility, we
can obtain similarly the equation determining the velocity transmis-
sibility A, which means the ratio of the maximum velocity of motion
of system to that of the ground motion. In & similar manner the dis-
placement transmissibility Agqwhich implys the ratio of the maximum
(absolute) displacement between them can be obtained. When the
spectral density of acceleration at the ground is given as G*(w),
the spectral density of velocity becomes &*G*(w ); the density of
displacement becomes w*G2(w ), Hence, each transmissibility is ex-
pressed by the form:

J:'[su w2 do

R
[}

2
v

> (12)

o S s SR

«© 2
j CT‘.(‘:) dw
o w

Applying Eq. 11, these integrations are obtained approximately as
follows:
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The numerical results of the above equations inserted by hg = 0.3
and hg = 0.1 are graphically illustrated in Fig. 3, where we see

that the velocity transmissibility becomes almost constant in the
range of T;> Ty . This feature agrees with the Housner's velocity
spectrum, though the author's is refered to the absolute velocity.

(13)

It has been shown in the preceding description that the present-
ed method gives us results of considerable accuracy for the earth-
quake response problem, in spite of its simpler method. Accordingly,
it is natural to proceed to the extension of this method to any
system having many degrees of freedom, As an example, let us take
a n-storied mass-spring system. Then, the equation of translational
vibration of the system forced by the ground motion a,ei*tcan be
written as

Lom, t
Myl +) (Golket Ryply) =y Q'] (=12, 1) (A)
=

where the superscript dots indicate differentiations with respect to
time, and

m; = mass concentrated at the j-th floor level, numbered from
the lowest floor,

u; = translational displacement at the j-th floor relative to
the ground,

k;, = spring constant defined by force to be applied at the j-th
floor when a unit displacement is imposed at the L-th
floor alone,

¢j, = damping constant associated with the above spring constant,
which includes both internal and external damping.

It is well known that these simultaneous equations can be solved
approximately by the following procedures: at first, we determine
the normal function §, of the component $, under the assumption of
undamped system, and next, evaluate the generalized mass m,, gener-

alized spring constant k, and the modal dampirg constant c, by use
of the expressions:

~ 2 » i
mP‘jZImﬂiP ’ "r".zlukn‘pir?w;

= J’ 2|

nm (15)
CP -Zg.Cqujr?tr ’ (P —I’Z,'“,TL),

J=l k=t

Then we get the solution written in the form of the frequency res-
ponse S;(iw ) subject to the j-th mass:

5}(5‘“) - Z ij

w? iw
P=i P |- -,E; +2fb,,“';;'

1+ 2hp

(16)
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where

Cp 2 kp
fLP = _2—‘71??—1);— b VF = ”"F (17)
and &
Zl m; Pip
P = T Pip (18)

which may be called the "excited normal function" for coanvenience.
The square of absolute of S (iw) becomes

SJ (Lw) e l; ifp Q:P(w) + ; ; §j? §J‘1’Qp;r(w) (19)

where Prs
. /+4hp%';
Q.pp(w) -
wz
(l VPz) 4h,r-—:
2 w3 6 (20)
w? 7 W w
& o) - (1-% +4n,, v,)(l v;+uh1,\,;)+4<h.,h,—-—-3v; 7

{( x)H.( h3 V’K I- %—E)zi- ah,,i;,’é}

In accordance with Eq. 10 for a single mass-spring system, the ac-
celeration tranmsmissibility A; at the j-th mass can be written as

sz 3,2, N (21)

P=t 4t
where

® 2 2 @ 2 2
jo Qppl@) G (W) dw A2 L Qw(w) Gy dw
® 2 ’ P = % _, .
j G(w)dw J Gw)dw
[} [}

In this expression, A, is identical with the transmissibility for

a single mass-spring system whose natural frequency is v, and damp-
ing ratio is hp, and may be called the auto-transmissibility. Apy
may be called the cross-—transmissibility and is related to the phase
difference between the p-th mode and q-th mode in a statistical sense.
The reason is that, if the phase difference is denoted by (1 , the
resultant transmissibility of both modes can be obtained from the
expressions, as easily understood from vector diagram:

N= BN+ 3, X + 28,35 ApAyy ool -

According to Eq. 21, the same resultant can be written in another
form:

App = (22-a,=b)

é;p}\n * i}t ‘H'+2 f)!’? X

so that the cross-transm.sslbz.l:.ty must be

)\,’n- }\”, )\_%,cocﬂ . (23)
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The cross-transmissibility plays a great role in a response
problem of & system having many degrees of freedom, because it is
true that the maximum response of any mode does not occur simul-
taneously with other modes, as pointed out by Clough (Ref., 6).

As the integration results of Eq. 22-b becomes very lengthy, we will
now write in brief, with the subscripts 1, 2, 3 in the places of p,
q, 8, respectively:

2 ,1 by V. b, v
———ee e | = L ~3xa
N U+4h;).['—‘;_},,3’( b, v K+ B3 ot Kz) , (24)

where b, , by, b;, K,, X, and K; are given in the Appendix, The nu-
merical results of Eq. 24 are not given here because of space limi-

tations, but are contained in Ref. 5. Only a typical result is graph~
ically demonstrated for the case of h, = = 0.1 in Fig. 4, where
)pria plotted as a function of T,/T, for various values of parameter
T3 /Ty Though the curve should have two peaks in the neibourhoods of
Tp/Ty = 1 and m,/T, = 1, we cannct here clearly recognize the peak

at the latter, except in the case of T,/Ty, = 1.2. Acroas the peak
the curve tends to zero. This means that both modes become perfectly
out of phase with each other at the limit, Then we obtain the re-
sultant tranamissibility,

2 2 .z
xj..zl 3. %, (25)
which corresponds to the conclusion of Ref. l.

While in the preceding description the cross-transmissibility
was given for acceleration, it can be also obtained for velocity
as well as displacement in the same way that we obtained Eq. 13
in the case of auto-transmissibility:

2 , bj VJ bs V' . I'4
2 (I+4h’g)71—h;( by Vi Kit by Ve 2T ’) )
for the cross-transmissibility of (absolute) velocity, and

) Ve be Vi

2 ] b
» B, o K
N (1+4h3) il-h%( b v 1B, V3 K+ 3) (27)
for the cross-tranamissibility of (absolute) displacement.

It is apparent that the resultant transmissibility at any mass
in a system has necessarily some phamse difference against that at
other masses; in other words, the individual transmissibility
obtained from Eq. 21 2oes not occur at the same time. Therefore,
it is more direct for practical design to evaluate the two values
of transmissibility sA; of story shear and mN) of story moment.

As for the transmissibility of story shear, if we define the excited
function of story shear by

8
zmk (28)
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the result is given for the j-th story as

nn
2 - 2
The transmissibility of story moment can be obtained in a similar
manner.

Example (1)

As an illustration of how the presented method is applied, let
us consider a ten mass-system, the physical properties of which are
characterized by linearly varying distribution of masses as well as
spring constants, as shown in Fig. 5 by the dimensionless ratios,
This system is identical with that used by Tung and Newmark (Ref. 7)
so that it can be compared with the exactly calculated results.

The excited normal function #, of the system can be obtained
as drawn in Fig. 5, where we see only the first five modes. As the
remaining higher modes have less effect, they are summed algebraical-
ly and used as a 6~th mode in an approximate meaning. Let us assume
all the damping ratios of the modes to be equal to 0.1l. It is proba-
ble that the damping ratio of the higher mode is larger than that of
the lower modes, but the influence of this difference on the response
appears small. The numerical results calculated on the basis of the
above quantities are graphically illustrated in Fig. 6, for the dis-
tribution of transmissibility,\; of acceleration as well as sA; of
story shear with the variation of the parameter T,/T,. The corres-
ponding result of Ref., 7 is limited to a specified case that T, is
1.32 sec and T3 is approximately 0,22 sec (Subway terminal, Los
Angeles, N 39 E, Oct. 2, 1933). It follows that T,/T& is 6.0 and
then Ay for the l-st mode is calculated to be 0.405 for h, = 0O.1l.
As a final result, a plot of story shear is demonstrated in Fig. 7
together with the exact result of Ref. 7. In the examination of it,
we see a rough agreement between both results, a few deviation in
which are probably caused from the existence of another lower peak
near 0,5 sec besides the peak at 0.22 sec in the concerned ground
motion,

Example (2)

Let us consider the problem of a system, in whi¢h an earthquake
induces a coupling motion of lateral translation and torsional ro-
tation. This will be expected in a building having its center of
rigidity away from the center of gravity at any story. For sim-
plicity, we will deal with an idealized model ¢f uniform shear-
beam structure characterized by a straight axis of the center of
rigidity (elastic axis) as well as a straight axis of the center of
gravity, parallel and apart by the distance s. Let x, y, z be
rectangular coordinates with the origin placed at the center of
gravity in the base floor, the x-axis taken through the origia
in the direction of the applied motion, the y-axis perpendicular
to the x-axis, and the z-axis coincident with the axis of ceater of
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gravity, as shown in Fig. 8. For this configuration, we can write
the following vibrational equations, when the damping is ignored:

ma U -G F{u-586)

2 2
3t az , (30)
128 36 J F(U-58) ,
2t az’ 3 2*

where displacement in the x-direction at a point on the z-axis,
twist angle around the elastic axis,

mass per unit height,

shearing rigidity per unit height,

moment of inertia around the z-axis per unit height,

torsional rigidity about the elastic axis per unit height.

/I T A T [}

u
é
m
G
I
J

For stationary vibration, these simultaneous equations can be solved
by familiar expressions:

(1) The natural freguencies 1).:’, and V;f), where the subscript n
refers to the degree of mode exhibited along the height and the
superscripte (1) and (2) refer to the lst and 2nd mode of coupling
rotation, respectively, are

W an-f W @ 2n-~l
Vn 'TOTHJ*&- W= 1)
2

{ §* - 2
d\in_f( _'é_ )iJ (""' €3+ e:) Eo ’ (32)

where H = height of the system,
i.= mass radius of gyration, i/m,
e,= elastic radius, .JJ/G ;

(2) The distances f, and f, between the center of gravity and
the two instantaneous centers of rotation are

d:

Pl = Y S (33)

z di |

where the subscripts 1 and 2 correspond to the modes;
=
{3) The excited normal functions §:'(x,7)and§'(x,7)arq
W I B -
B, x4 = ;;c ’-3 (zP! R

JSA 2r I Z _H- s (34)
" - goh 1 (2Pl RX
ér (t) g’) R P;’fz 1?—1 m( 3 H ) .

It is particularly informative in the present problem to examine
the relation between p, , 8 and el/s, the last of which means the dis-
tance Ps between the center of gravity and the instantaneous center
of rotation by the statical application of lateral force uniformly
on the system. This relation ias obtained from Eqs. 32 and 33, and
is indicated graphically in F:Lg. 9 by the forms of dimensionless
ratios f /i,, 8/i, and i, o/ in addition, there are drawn the curves
of period ratio T./Th = V& v“’, which is equal to d,/A, and hence
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relates to £, /£, . In this figure, we note that, when {,/f5 keeps
constant, £ /i, becomes smaller than fg/i, as s/i, decreases,

This tendency can be understood from the following, If i,/f; is
unchanged, as the eccentricity s/i, reduces so the length of e.
becomes smaller, that is, there is a greater concentration of highly
rigid structural members at the center of the building. Then we can
say that the mass radius of gyration, i,, plays a determinative part
in making £, smaller, while it is independent of the determination
of ¢ « As a result, it can be concluded that the building character-
ized by such concentration of rigidity distribution must be subjected
to a more severe dynamic twist than that predicted in statics. How-
ever, there is another cause opposing the above conclusion. We find
in the same figure that the smaller amounts of eccentricity produce
a closer approach between the two natural periods 78 and Tﬁﬁ This
tendency will have the result that the motion hardly occurs in the
state of explicit resonance and heance the response decreases. These
opposing results can only be resolved by the response computations.

For simplicity, let us consider only the two modes half-sinu-~
soidal in shape along the height, We assume the damping ratios h{’
= 0,1 and K% = 0,2, and deal with the four combinations of T,/T|” =
1.2, 1.5 and #,/i, = 2.0, 4.0. The evaluation is carried out for
distribution of transmissibility of acceleration on the y-axis.

The results are demonstrated in Fig. 10, where the transmissibility
is plotted as a ratio C to the corresponding transmissibility for
a non-eccentric system with the fundamental period 77 so that the
results are valid independently of the level of height. It is ob-
vious that the ratio unity always holds at the instantaneous center
of the 2nd mode where only the lst mode appears. As a reference,
the dotted line is added, according to the éexpression:

P-t |
¢ = 1e At )

s

which is equivalent to the statical displacement due to uniform load.
By rough examination, we can see that the distribution of Eq. 35
gives a rough agreement with the response curve, independently of
T?/Tb. This result means that the above described two contrary
causeés cancel each other out.

Appendix

Eqe 24 is written in detail as follows. If we use the symbols
with the subscript 1 :

a,= |—2hy , b=2h,J1-k, m,=|-%h], n,=[I-0H,
b=1-8hi+8RY, 4 =4U—-2t)RSI-K,

K =-a’-3ab’, S, =3a’b, - b;
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and the similer symols with the subscripts 2 and 3, we have
-] Viy? v ¥ Vi \2 U2
Bu / za"a”(vz) + Pl (‘{J“;) . 812- zbl {a'l(.‘_j.;) ‘a-zs "-DJ;) '

om I —2ma B R Com b
£ 1= {mae oY e moma S+ e (4P

B ~[mar mlgiT) o o (34 shihs (3

Fos 1+ 4ahs (B Fo= 4b,hy (3" »

G~ B,Cu=B.Cp > H,= B,C, + B,Cpy»
L=-EF.-E.F, - J=E,F, + E,F»

K~ LG -Hh) + T (s Ghy)
GF+ H2
Au= 1 - 20.0, (%) + b, (32)", A, =2b,]{0:(¥) _a,}%a :
V

Ca= 1 =200, (%) P (3" (. =2bf %) a}(32)
Ezr" - {ml(%f)z"‘ mz} a;+mm, P, ("‘Tz) +4hh, T2 ( ')3
E.~ —{m,(%&’+ m,} b, + m.m, g«,(_ﬂ + 4h.h, 52(1/', s

5

v
Fu= 7+ 4a,h5 (337, F. _“,;,:( 7
G~ AuCay—AnCy, - A,C, +A,.C.z -
I~ E,Fu— ExFu » J; - EnFu +
K - Jel@m- “zhz)*Jz(HanﬁCuha) ,
: i+ H:

bm -2l m@ s Am bl 2
By~ | ~20,& 0 R(3) s B, 2b| a3 a (3
£ 1 w2} i T 30
Enm A3 ma S} be e mimag, (LaF (U7 4hhass (WP,
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Gs"A!l B.u_A;z Baz ' Ha‘Aaz Bgl_. Au Bsz s
I! —4h;(,~2h:)531—8h:4,—'h§ E31 »
J, = #h3(I-203)E, _+8R [I"RZE,, ,

Ky = I (Gany —Hshy) +Js (G by + Hyy) s

GS + H;
2 / (b v by V)
Ao (DY 2 Vs
T R B G R R k).
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MODE |
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0.092 -0.141 -0.165
o 1.0 2.0 3.0 0.219 0.023 -0.107
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d.

& Statistical Method of Determining the Haximum Response

DISCUSSION

F. Borges, Laboratorio Nacional de Engenharia Civil, Portugals

I much appreciate the paper presented but I wish to call the
attention of the author that to compute the probability of collapse
of a structure during a certain number of year, what is of princi-
pal interest from the point of view of safety, it is necessary to
combine the randomness of the behaviour of the structure with the
probability of occurrence of earthquakes of different intensity.

If this is done, it can be shown (l) that the mean values of
the response of the structure are of more interest than extreme
values.

Tajimis

I appreciate your suggestive attension. I generally agree
with your opimion. But, in Japan we have not yet so enough histori-
cal data or knowledge related to the probability of occurrence of
earthquakes as applied to the statistical analysis. Therefore,
still in this stage, 1 believe that extreme values of response
should be used as bases of design.

(1) Borges, J. F., "Statistical Estimate of Seriomic Broding",Prelimi-

nary Publicatian, V Congress of the International Association for
Bridge and Structural Engineering, Lisbon, 1961.
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