EARTHQUAKE RESPONSE OF BENDING STRUCTURES

DERIVED FROM A MIXED MECHANICAT~ELRECTRICAYL, ANATOGUE

x ax "
by R.I. Skinner, KX.M, Adams and K.J. Brown

1. INTRODUCTION

If the rational design of earthqueke-resistant structures is to
be used extensively, throughout seismic regions, convenient methods
mist be developed for the assessment of earthqueke~generated forces
and motions, A measure of the seismic forces to which a structure
will be subjected can be obtained by calculating or measuring the
forces which would have been generated in the structure by a munber
of the large earthquaekes already recorded.

As a contribution towards simplified rational design this paper
describes the measurement of the dyneric response ( shear force,
bending moment, and displacement) at any floor, of various types of
building, to some of the largest recorded earthquakes. The measuring
techniques used reduce the data to a form suitable for presentation in
a design handbook. Such a handbook, covering the earthquake response
of a range of building types ( shear, bending, mixed shear and bending,
flexing floors) is being prepared. The handbook sections for shear
buildings are descrl‘bgd in a companion peper presented at this con-
ference ~ "Paper "B 1) Skinner, Adams, Brown. The building data
which the structural engineer must obtain in order to use the handbook
are the effective floor masses {and rotary inertias), the inter-storey
stiffnesses, and an estimate of the damping factors of the normal modes.
The building stiffnesses are taken as independent of deflection, and
velocity damping assumed, so that linear analysis may be used
throughout.

The mixed mechanical-electrical anslogue used to obtain the
earthquake responses of buildings, which deflect in bending, and
with flexing floors, avoids the mechanical difficulties encounterfd
in applying an earthquske to a model, and avoids the complexity 2) or
the stringent demands on electrical components 3) of suggested electrical
analogues, Limlitations of the mechanical model as used are the diffi-
culty of setting up mixed bending and shear, and the impracticability
of including yield.
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The earthquake respanses of any particular building are obtained
in two steps. The properties of the building normal modes (gt any
ficor) are measured on the most convenient building model or analogues.
Then the measured normal modes are set up on a simple electrical
enalogue and an electrical signel, corresponding to a particular
earthqueke motion, is applied tc it, The earthquske response, at &
particular building flcor, is then cbtaired as a voltage proportionel
to the building shear force, bending moment, or displacement. This
normal mode epproach has a mumber of adveantages over the direct appli-
cation of the earthquske motion to 2 building model or analogue.

Attempts o excite a mechanical medel with esrthquake ground
notions lead to difficult problems of drive, controlled normal mode
damping, and measurement of the responses, However, the normal mode
properties of & mechanical model can be measured with ease and precision.
The model damping should be small but need not be known, A simple
simsoidal drive, of varisble period, is spplied to the model at any
convenient point and adjusted to one of its natural periods. The only
quantities which need be measured are the ratios of the displacements;
from these the modsl properties are calculated. The displacements are
obtained as voltages by allowing the model floors to shutter lights which
fall on photo~-multipliers. The woltage ratios are measured on a resist~
ance bridge which has a phase~sensitive detector to discriminate against
unwented normal modes. When a convenient electrical analogue exists,
as for shear buildings, a simisoidal voltage is applied to it and the
voltage ratios messured in the same way.

& conceptual advantage of the normal-mode approach is the clear
presentation of the effects of building masses and stiffnesses upon the
normal mode properties, end hence upon the earthqueke responses.,
Interpolation and extrapolation from the normal mode properties of
already known buildings can be made readily and this greatly extends
the range of buildings which can be covered in a handbooke The normal
node approach also reduces the number of significant building parameters,
aince only a few normal modes are significant in the earthquake response
of any particular building.

The electricel analogue of a set of normal modes, to which the
earthquzke is applied as an electrical signal, is very simple, Each
normel mode is represented by an inductor and a capacitor, with a
resistor to give the velocity damping. For greater precision and
convenience a conventional adding circuit is used to give the normal
modes the required relative weights, and to provide for negative res-
ponses. A section of the handbook gives the responses, to a mimber of
large earthquakes, of normel modes of various periods, dampings, and
relative weights. As further large earthquakes are recorded they can
be espplied to these normal modes and the earthquake responses issued as
a supplement to this section of the handbook. It is hoped that ‘
eventually a sufficient nmumber of earthquekes will be obtained to define
the modal responses as smooth probebility curves which will allow reli-
able interpclation. Any knowledge of local earthquake probabilities

snd types should be applied to the interpretation of these normal mode
Tesponses.,
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2. THEORY OF NORMAL MCODE PROPERTIES

The theory of the normal modes of systems with s mumber of degrees
of freedom is treated thoroughly by Rayleigh &) (1877). Those
features which affect the measurement of the modal properties of &
building, and the use of these modal properties to obtain its earth-
quske responses, are outlined here.

2.4 Idealized Building

The following theoxry applles exactly to idealized buildings with
the messes concentrated at the floors, Fig. 4. Deflection may occur
as mixed bending and shear together with flexure of the floors.
Initially the effects of angular momentum will be neglected. The base
moves inexorably without rotation.

2.2 Normal Modes Without Damping

It is shown by Rayleigh i) that the motion of such a systen of
N masses may be expressed as the sum of N independent normal modes.
Bach normal mode moves with all the messes in phase or antiphase and
with fixed ratiog of the N disgplacements.

The properties of a normal mode are completely defined by these
N-1 displscement ratios, together with the system masses and stiffnesses.

In principle a constraining mechanism could be applied to the
N masses of an idealized building to hold constant the N~ displacement
ratios at the values corresponding to a particular normal mode as shown
in Pig. 1({b). It is then evident that the building has only one
degree of freedom and will respond to base movements as a simple
resonator. The complete motion of the N-mass building can be resolved
intc that of its N normal modes by setting up N bulldings, each with a
mechanical constraint which allows one mode only to operate, Fig. 1(c).
Now, if an earthqueke motion is applied to the base of Fig. 1(c), the
digplacement, shear force, and bending moment at any floor, and in any
normal mode, occur at the appropriate floor of the constrained
buildings. The response at any floor is then the sum of the modal
responses. The method of snalysis described below uses this approach
adapted to permit convenient and precise measurements to be made.

A simple mechanical resonator can be set up, Pig. 1(d), whose
shear force response to a base motion is numerically ecquel to the
building shear force, bending moment, or displecement, at a given
floor, and in a given noxmal mode. Before setting up equations
defining the equivelence, we will examine the effect of velocity
damping on these idealized buildings.
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2.3 Idealized Building - Damp and Drives

The effects of damping in the tuilding must be taken into account
and also the effect of the unavoidable demping in any model set up to
measure the normsl mode shapes.

Consider the system of Fig. 1(a) oscillating in a single normal

mode. Without damping or driving forces it oscillates =steadily in
thls mode with no constraints.

The following damping forces are now added.
Absolute wvelocity damping,

)\r = —Amr(ir+ib) (1)

Relative veloclity dampingy the damping forces must safiafy the
relationship,

(Energy loss, storey r) = B(maxisum potential energy, (2)
‘ storey r)

Tt is shown by Rayleigh * (1877) that for such damping the

normal modes retain their undemped properties of independence and equi-
rhase mass movements.

If we substitute the velocities of mode m in eqns (1) and (2) and
negative values of A and B, we obtain a set of driving forces which
excite normal mode m only. Other distributions of driwving force
generally excite all modes, In particular, a base accelerationAp may
be translated, by d'Alembert's Principle, into forces Aymy. which are
not of the above form and therefore excite all normal modes.

Damping forces with other than the above distributions cause the

normal modes to interact with consequent mode distortion and change of
natural period.

2.4 Normal Mode Fquivelent Resonators

Apply velocity damping, as given by egn (2), to the idealized
building and let this give a damping factor N, in the normal modem .
Now a; a base acceleration Ap of period T to the systems of
FPig. ffg and let the natural period of mode mbe T,, . Since the
normal modes behave as simple resonators, the displacement, shear
force, and bending moment responses, at floor r, in modem , are
given (for small damping) by
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T

A Vs 4 4 A
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(3

e ’ 14
where xgm ’ Sw and Mr,m are the responses, at floor 7 in mode m,
to a statlc acceleration of amplitude g - It should be noted that
these dashed quantities are the actual static displacements, shear
forces and bending moments that occur in the building with the hypo-
thetical mechanical constraints of Fig. 1(c). Purther, the sum of
these modal static responses is equal to the actual static displace-
ment, shear force, or bending moment of the building., This follows
since removal of the constraint sllows the static responses of all
normal modes to occur simultanecusly.

We may compare eqn. (3) with the static response of a simple
resonator of mass m, period Tp,, and damping factor N, as
illustrated in Fig, 1(d).

/Z,—,m T2

b (&)
9 T2-T2 +/nmlnT

Shear foroe = Ab

The shear force response of the simple resonator is therefore
mmerically equal to the modal response of eqn. (3) when

{‘/ﬂ‘"}' {xt",m ' S;’m rM;;m} (5)

Hence, if an earthquake motion is applied to the base of Fig, 1(4d)
the shear force responses give either the displacement, shear force,
or bending moment responses of the building normal modes at floor r .

The two steps by which the earthquake response of a building are
obtained may be described now in terms of Figs. 1( c\' and 1(d). The
static nomal mode responses, Xzm , 9pm and Mgm , are calcu-
lated from the modal displacement ratios of the building Xrm/Xn,m,
which are measured on a lightly demped mechanical model. The next
step is to set up the modal equivalent resonators for any floor I', as
defined by equs (5) and Pig. 1(d), as an electrical enalogue. An
electrical current, corresponding to the ground motion of a particular
earthqueke is applied to the analogue, With apnropriate calibration
the earthquske response of the building at floor r is cbtelned as the
sam of the wltages across the electrical snslogue resonators.
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3. MSASUREMENT CF NORMAL MODE DISPLACEMENT RATICS - EENDING STRUCTURES

A mechanical model is set up with the masses and stiffnesses pro-
vortional o those of the building under investigation, The radius
of gyration of each floor mass must be scaled by the same factor as
the inter—-storey heights. The damping of the model is kept as low as
possible and a sinusoidsl driving force is spplied to the lowest mass.
4 moving mass acts as a variable shutter for a uniform illuminated strip
which is viewed wlith a photo-multipiier, giving an electricsl signal
proportional to the mass displacement,

The period of the driving force is wvaried until the farce is in
phase ture with the modal displacements. It follows from
eq. (4) that the model is now being driven at the natural period of
one of its normal modes, The motion of the other normal modes, which
are non-resonant, will be much smaller. 4 resistance bridge is set wp
which measures voltage ratios equel to the model displacement ratios.
The bridge has a phase-sensitive detector which discriminates against
the phase quadrature motion (as given by em. (4) ) of the other normal
modes. This feature is particularly useful when investigating the
shape of a normal mode near one of its nodes. Since scaling the
model leaves the shapes of the normal modes unsltered, the measured
displacement ratios are equal to those of the building itself,

The natural period Tm of the building may be celculated from the
measured displacement ratios xr,m/:’(r;u s together with the building
masses and gtiffnesses;, or it may be obiained conveniently by scaling
from the period of the model.

ho CAICULATION OF NORMAL MCDE STATIC RESPONSES

, It is pow necessary to calculate the modal static responses
Xrm , Spmend Mpy from the known building masses My , stiff-
nessesRy,Kp,ond normal mode dampings, end from the measured model
displscement ratics xr,,./x,v,m s and periods T,,. The modal responses,
at their natursl periods, are cslculated first. The static modal res-
ponses are then obtained by dividing by the resonant rise of amplitude,

Lef.1 Modal Displacement at Resonance - xr.m:

The actual displacements of the building normal modes are now
calculated from the measured disgplacement ratios by using a power
relationship which defines the modal damping factor, This relationship
nay be considered as written for the system constrained to wove in
modem , Fig. 1(c). Vhen the base has an acceleration Ap of period

m ?

maximm kinetic energy = 2_.-;7- (ETT%- input power (6)
m ‘
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We apply d'Alembert's principle to convert the base acceleration
Ab to a driving force Ab Mr/ g at floor r, and obtain a fixed

base. Eqns. (3) and (&) show that these driving forces are in phase
with the building mass velocities for T equels Tpy. This gives the
input power as N
z LA me .
ing b 3 £,/
Eqn. (6) becones

___( ) i (277’;:)‘:; IA rm x

2 f Xim
Hence = Ab (T ) Ho i /x”'” (x’; £t (7
i=t (Z”'n)

This gives the actual resonsnt displacement of the building at
floor r , in normal mode m, in terms of the measured displacement

ratios.
LoL20oS

4.1.2 Modal Shear Force at Resonance - 5,—,m .

The shear force just below floor » may be obtained by summing the
inertia forces above that point.

N
Rl
Sr.m = “.Zr g x;.m

Hence Sr;m ( m) Z m" I - 1b (8)

(nr

4e1e3 Modal Bending Moment at Resonance - Mr,m .

The bending moment at floor 7 , in noxmal modeM , may be obtained
by summing the moments due to all the inertia forces above floor r .
For a uniform inter-storey height h ,
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M,

2

p my
==2_h(i-r) —¢ .
m ey (i ) 3 2“,,”

Nowr M s o -
-5 Tim" Si.m si-u, m

N
Hence M,;mz h. Zst'm - 1b~ft
iz ry) ’

4.2.1 Responses of Normal Modes to Static Acceleration -~ 3

’ 2 14
Xem  Sem 2nd My

‘hen eqns. {7), (8) and (9) are compared with eq. (3), it is

(9)

seen that the resonant modal responses have an increase of 1/2/m over
the static responses to a unifomm acceleration. Therefore if the
modal responses at resonance are divided by 1/2ny, , and Ap mede equal
g, the modal responses to a static acceleration g are obtained.

The displacement is given oz Xy, inches

2
, 7 x
= m) nm - in
x);m zg(in- Wn Xy, m
s N x'm
Sem=£ 2 m 2T -1
i=r xn.m
' gy
Mem= hi’m éHm - 1b-ft
m.
Where 0 - 5 i Zm
m N x, F4
Z m. (%L
inl ‘ Jt,,'

(10)
(11)

(12)

An overall check on the accuracy of the measurements and calcu-

lations is provided by the fact that the sum of the modal static

responses of a building is equel to its static response.
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Hence El Xr;t' = X,. (43)
N
‘.5 Sr,t' = 5:- (14)
N , , .
Z Mr‘- = M,— (15)

4 ’,
where X, S, and M, are the static responses of the building, at
floor r , to an acceleration g -

L.2,2 Static Responses of Noxmal Modes with Rotary Inertia

let the mass of floor r have a moment of inertia Ir about a hori-
zontal axis through its centre of gravity, and let &r be the anguler
displacement of floor I« The building now has 2 N degrees of freedom
and the shape of normel mode m is defined by the 2 N-i ratios

Xrm Br,m
Xn,m Xnm

The argument follows closely that of sections 4.1 and L4.2.1 giving
the responses to a static acceleration g as follows,

e . Bem
{Xr.m or Br.m}’= (2,1.) 0,,,{2 or —— | inches or

xN.m ZumJ) radians (10a)
, , N x;
=8Q m, == -1 (11a)
Srm mi}-:r { Zym
Mr.m' h Z S +Qn ZI,_ 8 - It (412a)
farst oy Nom
Where EN m: xi.m
Qm = i= ‘an.m g
N Xim t,m
‘.z;'[’n‘ xN,m) + II (Xn,m) ]
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5. DETERITNATION CF EARTHQUAKE RESPONSES (OF NORMAL MODES

The normel mode equivalent resonators of eqn. (5) and Fig. 1(d)
are now completely defined by the modal static responses of eqns. (10) ’
(11) and (42) (section 4.2), the measured modal periods, and the
estimated modal damping factors.

let Rm be the earthquake-generated shear force in a simple
resonator of one pound mass, natural period T, and damping factor
Npy Then the earthquake response of a normal mode equivalent
resonstor of mass Jf&mis given by

ﬁ:;m" Rt;m/ptr,m (19)

The maximum value of the totel earthquake response at floor § ,
due to all the normal modes, is obtained by summation. Let N equal
the number of normal modes.

A : = 3 M . S,
( ")mex - (“:—: ﬂni)ﬂﬂ _04[(,1 (l, /%r,:z a :/ﬂ- r;N) (17
“fhere

Mz Ma) . Moz, oM
= (,, /%:;:2,' B ’/%r:) ) (RI *he ——:’:—g-f-' +R”r/% ’;N) max

The magnitude of E is measured, for particular earthquekes, by
an electric analogue which is set up with resonant circuits for each
of the modal equivalent resonators of Fig. 1(d). This analogue, Fig. 3,
is the classical one in which inductence corresponds to mass, reciprocal
capacitance to stiffness, current to velocity, and voltage to force.
The earthquske ground velocity is obtained as an electric current fxgm
substantielly the same equipment as that described by Murphy et al.?
A convenient time scale is chosen for the electricel circuits end s
corresponding time scale given to the earthquake electricel current.
The earthquake-welocity current is pessed through each of the resonant
circuits to give woltages across them proportional to the modal responses.
The voltages across each of the electrical circuits are added (with the
appropriate sign) in a conventional electronic adder to give a voltege
proportional to the earthquake-generated building displacement, shear
force, or bending moment at floor . The maximum voltage is therefore
proportional to (fR,)max of ean. 17. The next step is to obtain a
voltage which is related to fpn,, of egn. 17, by the same factor of
proportionality. Since #, ni 18 the static response of normel mode 1,
a current corresponding to an ageeleration g is applied to the circuit
for mode 1 with €, removed to give the static response. The woltage
obtained is proportional to ofbg; , and the ratio of the earthquake-
voltage across all the resonant circuits to this voltage is E , in
accordance with eqn. 17.
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Velues of E (1, 0s06, 0,08) for T; : T,: T3 = (0.72):(0,443) :( 0. 05%)
and for 7, = Ry = N3 = 0,05 ere given for ths earthqueke recorded at
Teft, Califormia, (N.21.E - 21/7/1952 ).  Values of E(4, 0, 0) from
the response of mocde 1 only, are also given for comparison. ‘

In a practical circuit layout a single current proporticnal to the
earthquake ground velocity is passed through all the resonant circuits
in series. The inductors have ferrite pot-core magnetic circuits and
any convenient inductance. The periods and dampings are adjusted by
vexrying the condensers and the resistors respectively. The relative
weights of the various modes are then obtained by setting up sppro-
priate values of the adder scaling factors.

Typical tall buildings are found to give almost all their earth—
queke response in the first three modes. The amount added to the
maximun earthquake response at a given floor by any one normal mode is
generally considerebly less than the maximum response of the individual
normal mode since the maxima of two added responses seldom coincide in
time, BSince its individual meximum response sets an upper limit to
the contribution of a given normal mode, this gives a convenient means
of recognizing those which are insignificent and gives a rough indi-—
cation of the relative contributions of the significant normal modes.

6. RESPONSEOFAPARTICULARBUIIDDJGNT!ETAFTEAR@ UAKE

As an illustrative example the foregoing methods are applied to
find the forces generated in a partioular building by the Taft
earthquake,

A five-storey bending building has the floor masses, rotary
inertias, and inter-storey bending stiffnesses given in columns (2),
(3) and (4) of the table at the end of the psper. The damping factox
of the normal modes 1s estimated as 0.05. The shear stiffness is
agssumed to be infinite. ‘

A mechanical model is set up as described in section 3, with the
nasses and stiffnesses proportional to those tabulated in columns (2)
and (4), The rotary inertias of the model masses are obtained by
scaling the radii of gyration by the same factor as the inter-storey
heights, The modal displacement ratios are measured by the methods
described in section 3, and the values for the first three normal modes
listed in columns (5), (6) and (7). The modal periods are scaled from
the model and included in the table.

The building modal displacements Xpmfor a static acceleration of

g, are calculated from eqn. 10{a) and listed in columns (8), (9) anda
{105. (These include a small contribution from the rotary inertias.)
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The stetic modal responses are summed for each floor in column (11)

and the static deflection of the building (for a static acceleration g )
is given in colum (12). The static modal shear forces Spm and
bending moments M%m are calculated from eqns. (112) and (122) and
listed, together with the building static shear forces and bending
moments in columns (43) 4o (22). If the measurements of building
normsl mode shapes and periods are exact, and the sums in columns (11),
(16) and (21) are tsken over all ten of the huilding nommal modes, then
the values obtained would be exactly equal to the building statlc
deflections, shear forces, and bending moments in columns (12), (17)
end (22). The static responses of the first three normal modes of

the building have now been tabulated. When substituted in eqn. (5)
these modsl static responses specify the equivalent modal resonators

of Pig. 4(4a).

, The modal bending moments at the base of the hﬁ.lding”,,.: w.h.107,
M2 = 2.&.107, andl‘f;,, = 1.77.107 Ib-ft, are set up on the electrical
analogue of Fig. 3. The periods of the electrical resonators are
adjusted to give the naturel period retios of (0.720):(0.143):(0.054),
and the damping factor of each resonant circwit adjusted to the esti-
mated value of 0,05, The adder scaling factors are set to give the
resonant circult static 8 the same ratios as the modal static
moments at the base; (40u):(2.4):{(1.77). This is equivalent to
using resonant circuits with inductances in these ratics and using
equal values for all the adder scaling factors,

The anelogue is calibrated by applying a current corresponding to
an acceleration of g *to the circuit of mode 1, made to correspond to
a mass rigidly attached to the base by removing €, . This gives a
voltege proportiona_ toﬂ,’., = 40.4.4107 I1b~f+t, The earthqueke-velocity
current is now applied to the anslogue and the maximum output voltage
is proportional to the maximum bending moment at the base of the building,
with the same factor of proportionality as for the calibration voltage.

The ratio of this voltege to the calibration voltage gives
E (1, ©.06, 0.046).

For the Taft earthquake, the analogue measurement gives
E{4, 0.06, 0.046) = 0.115.

The response of the three bending modes at the base of the
tuilding is given by eqn. 17 as

(Eae

ixt ‘vi)mx = M- E (1, 0,06, 0.046)

(50.4) (0.445) 107
1.740°  1b-pt

i
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The electrical analogue, as set up for measuring the bending
moment at the base, can be altered to measure the earthquake-genersted
bending moment, shear force or displacement, at any building floor r .
simply by cheanging the adder scele factors to appropriate values.

To present a picture of the effect of varying the building stiff-
ness, we have given £ for a range of vealues of fundamentsl period, I, ,
Fig. (4 ), together with the response of mode {1 only, E (4, 0, 0).

From eqns. (13) and (14) the response of an individual mode, at
any floor, may be obtained as

Rim = Mim E (1, 0, 0) (18)

where E (1, 0, 0) is the response for the modal period Tm. For
example the shear force at floor r in mode 2 ( Tp= 0,143 sec) is given
by

Hg’z = Sé.a E (13 0, 0)

from the table, column (14) and Fig., (4 ). To obtain the true sum of
two or more modal responses they must be added throughout the duration
of the earthquake since the maximum values do ndét in general occur at
the same instant and may even occur in opposite dirxections.

DISCUSSION

Although the responses of a particular set of normal modes to a
given earthquake can be measured easily and quickly with the electrical
analogue‘: this does not immediately give the probabilities of various
earthquake-generated forces occurring during the 1ife of the building,
and it is on such information that a ratiomal design must be based.
However, when sufficient earthqueke records are obtained and their
statistical properties assessed, it should be possible to express the
nodsl responses directly as probebilities of the occurrence of varxrious
forces and motions. (* See Fig. 3)

There are two factors in the dynamic response of a building on
which more information is required before they can be defined adequately.
The values to be taken for the modal damping factors of a particular
building are difficult to assess, The effect of the building foundstions
on its dynamic response is also difficult.tc assess. The foundations of
some buildings probably make an important contribution to the normal mode

damping.
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NOMENCIATURE

M, - mass of floor r = 1b
Ir - moment of inertia of floor r - Ippt?
k,. - shear stiffness between floor.r~f and pr - Ib/in

Kr - bending stiffness detween floor mt ana r - 1b-£t/red.
N - mmber of floors

X,., X, - displacement, velocity, acceleration, of floor r,
relative to the base - ft-sec. units

xl;m" displacement, velocity, acceleration, of normal

mode M at floor r s Telative to the base -
ft-sec. units

Ke,Xr.m - @splacenent of £l00r o - in.

-
R

B,M,é‘m - angular displacement, angular velocity, of floor r,
* in nommal mode m, mlativetothebase-rad., sec,

units.

C 5 > A 5 = displacement, velocity, acceleration, of base
relative to rest position = ft., sec. units.
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5,. ~ shear force just below floor r - 1b
Mr - bending moment just below floor r - 1b-ft

Srm , M - shear force, bending moment, just below floorr,
in normal mode M - 1lb., £t units.

,/ﬂ,,,,- nass of equivalent resonstor = 1b
Tp - natural period (corresponding to normel modem) - sec

~ damping factor of normal mode M, fraction of
critical

X, S;M N;m - displacement, shear force, bending moment, due to
’ v a static acceleration g of base - ft., 1b units

Ap g,. - absolute, relative, velocity damping force « lb

Rr,M" ratio of the earthqueke response of a simple
resonator to its response to a static acceleration 9.

E (l,d,b,'-')— ratio of the earthquske response of a set of
weighted resonstors to the response of a single
resonator to a static acceleration g. (maximum

velue)
ﬂ r =~ response at floor r to earthquake base motion.

ﬂ - response of mode ym at floor r to earthqueke base
(Y
motion.
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HHORMAL MODE FESTONSE OF BENDING BUIIDING TO A STATIC ACCELERATION g

DENDING BUTIDING WITH STATIC ACCELERATION g

@) (2 3w (8) (7
Storey Floor Rotary  Inter~ Mode 4 Node 2 iode 3
No. Mass Inertis storey
r Stiff X X z
Ip 1b-£4° 1*:»/1‘2%s 15,1 Fr, o5 4r,3ﬂ 5,3
6 6 9
5  1.29.10 6.32,10 10 1.000 ~ 4,000 4.000
L 1.78 12.30 103 0.548  ~ 0,048 - 0,086
3 5,00 13,60 105 0.226 0422 ~ 04356
2 5,00 13.60 109 0.060 0,276 0.173
1 5.00 12,30 10 | 0.006 0.065 0.503
i
DISPLACEMENTS OF NORMAL MOIES~INCHES
(1) (8) (9) $10) (11) (12)
Storey
N;' X'r,‘l x'r,z x‘r,_’; méxtr,m X‘r
5 8.98 -0.207 0.004 8.78 8.90
1{- 6.68 '00014-5 ‘0.00’{- 6063
2 2.22 0,109 0.006 2.3
1 0,67 0,053 0.010 0.73
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SHEAR FORCES OF NORMAL MODES - 1h

(1) (43) (1) (15) (16) (47)
Stoxey

Nos

T st b i) st 2 s’r,3 ' éser,m S'r

5 2.27.10°  ~1.3440°  0.63.10° 1 1.56.40°  1.29.10°
4 4o 59 -4 o Tl 0.38 323 3.07 .

3 8.78 0008 "1 008 7@78 8007

2 10.95 2,80 =0,07 13,68 13.07

1 11.60 Le12 1.67 17.39 18.07

BEADING MOMENTS OF NORMAL MOTES -~ lbeft

€)) (18) (19) (20) (21) (22)
Storey

No. .

r it ryd Bt r,2 M'r,3 ﬁ;,éw r,m M’r

5 0,25,407  =0,52.10'  0.48.107 0,21,107  0,00.107
4 3,08 2,76 1.63 1.96 1029

3 8.29 "5-15 1060 2&'7‘& #036

2 17.55 -5008 "0.01 1201(-7 12:!&5

1 28,76 ~1e73 0.13 27.46 25,50

0 40,36 2,40 1.80 44,56 43,57
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