ELASTIC RESPONSE OF MULTI-STORY SHEAR BEAM TYPE
STRUCTURES SUBJECTED TO STRONG GROUND MOTION

R. L. Jennings* and N. M. Newmark¥*
1. ABSTRACT

The elastic response of a multiple degree of freedom system vibre-
ting -as a base excited shear-beam is analyzed by superposition of normal
modes. Absolute viscous damping is included in the theoretical treat-
ment, both for model analysis and for direct numerical integration of
the governing equations of motion. The two methods of anslysis are used
to compute the undamped response of three multi-story structures to 12
recorded earthquakes. The results of the two methods are compared and
conclusions drawn about the use of modal analysis to compute the maxi-
mum response of structures to time~varying ground displacements.

2. INTRODUCTION

The total effect of an earthquake on a structure with an infinite
number of degrees of freedom is complex. To obtain a useful solution
it is necessary to meke simplifying assumptions about the structure
and the energy input to the structure.

If the ground motion is essentially horizontal, and the structure
is of rigid frame construction it is not unreasonable to treat the
system as a compound oscillator with rigid masses connected by shear
springs. With these assumptions the response of the structure can be
analyzed mathematically.

Other authors have made modal analyses of undamped structures
treating them as cantilever rods vibrating either in flexurel>2, or in
shear. The question as to whether the structure will vibrate in shear,
flexure or a combination of both is not easy to predict, although some
relative measurement of this is determined by the rigidity of the
structured.

It is the intent of this paper to develop the modal analysis of
damped structures vibrating in shear modes only. Absolute viscous
damping is considered. The modal anslysis of a two degree of freedom
shear beam with intermass (relative) demping has been developed inde-
pendently of this investigation.l* The results are generally of the
same nature as those presented herein.

¥niversity of Illinois, Urbans, Illinois

699



R. L. Jennings and N. M. Newmark
3. THE MECHANICAL ANALOGY

The system to be analyzed is shown schematically in Fig. 1. To
treat & structure as a "shear beam", it is assumed that:

(8) The distributed mass of the structure is concentrated at
eguidistant floor levels. This is Mi'

(b) The masses (floor slsbs) are infinitely rigid and do not
rotate during deformation.

(¢) The entire shear stiffness at any column level is concen-
trated in one linear elastic shear spring with stiffness Ki'

(4) The structure has linear absolute viscous demping measured
with reference to the absolute velocity-<not the velocity
relative to the ground. (See Fig. 1)

(¢) Tuere is no foundation rotation.

With these assumptions the complete motion of the 1*® mass of the struc-
ture 1s governed by one second order linear ordinery differential
equation:

M¥% o+ K (5 =% 1) -K o (% - x) + 8; (%) =0.... (1)

with the initial conditions that the velocity and displacement of each
mass are zero at the beginning of the excitation. The dots indicate
time derivatives, while the subscripts designate the mass or spring
considered (See Fig. 1). Note that the acceleration, velocity and dis-
placement of each mass are measured with respect to a fixed datum and
not the base of the structure.

The magnitude of the sbsolute viscous damping for each mass de-
pends on the viscous constant § 4+ By definition 81 is chosen to be

Bizﬁﬁcr-—-%mavwl *TVvesseneassene cons (2)

where Wy is the circular frequency of the first mode.

This arbitrary choice of the viscous constent gssumes that the
fundamental mode dominates in the genersl vibration.

There is one equation similar to equation (L) for each of the n
masses. In effect there are n e%tions in (n+l) unknowns, the dbso-
dlute displacements x.. The (n+l)“" unknown i the gbsolute ground dis-
Plecement, X5 suppﬁed. as & boundary forcing function. The base
acceleration, ¥ , is integrated twice to obtain X thus reducing the
problem to the Solution of n simultaneous differeftisl equations in n
unknowns.
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Equation (1) may be solved by numerical integretion or modal ana-~
lysis. The modal analysis is now developed.

4. GENERAL COMMENTS ON MODAL ANATYSIS

The theory of modal analysis is based on the assumption that modes
exist for the structure being treated. A mode is & harmonic, or damped
harmonic, wvibration in which all parts of the system oscillate in phase.
or in anti-phase, reaching their maximum displacements simultaneously
and meintaining a fixed ratio between displacements during each cycle
of vibration. For an undamped system of n masses, consideration of
conservation of energy shows that modes do exist, and that there are n
different types of modes each having, in general, e different natural
frequency. These are known as principal- modes.

The undamped structure can be forced to vibrate in any one of its
n principel modes by proper choice of initial displacements. The sys-
tem will continue“to oscillate in this one mode indefinitely until ex-
ternal excitation modifies the vibration. This characteristic of the
undamped structure is caused by the fact that undamped modes are not
coupled. Again from conservation of energy it may be shown that these
uncoupled modes may be superposed.

However for a damped system, with certain exceptions discussed
below, the damped modes will be coupled, and free vibration cannot teke
place in any one mode shape. The general damped mode will decay expo-
nentia.lly5 and phase differences will occur between the masses when
vibrating in that "mode". This phase difference in the mode itself
mekes a general modal analysis impossible. However, if the damping
coefficients for each mass of each damped mode are properly chosen, the
mode may be forced to decay in such & fashion that all masses remain in
phase6. Then a modal analysis is possible.

Thus we see that if we "uncouple” the damped modes by a selective
choice of the damping coefficients a modal analysis is permissible.
First the undamped modal analysis is developed, and then this method
is extended to develop the necessary relations for a damped modal

analysis.
5. UNDAMPED MODAL ANALYSIS

Any deflection of an undamped elastic system may be resolved into
& series of components related to the principal modes by modal partici-
pation constants. Thus we assume the displacemeut of the ith mass re-
lative to the base of the structwre to be:

uw =X - X =Z ey fi’j .., (3)

J modes

where ¢, is the timewise participation of the jth mode and £y 3 is the

normalifed modal displacement of the i'h mass in the j'B mode® The
value of ¢ 3 is easily determined from the orthogonality of the principal

701



R. L. Jennings and N. M. Newmark

modes and the theorem of virtual work. Since the inertia forces per-
form the work in a free vibration, the work done by the meximum inertia
forces of the k¥ mode when passing through the displacements uy is

w2 2 2 Z
W, = (Mlmk flk)(ul) + (MQ«.;k fek)ue Foaee. =W M £u (i)
i masses
But since u, is given by equation (3), the work of the inertia forces

in the kPP ‘mode can also be expressed in terms of cs @ad wy, the cir-
cular frequency of vibration of the k'R mode.

= o2 .
Wk-mk Z{CJZMifikfij}""""' (5)
But from the orthogonality condition for the principal modes

Z‘Mi 9 i‘ij =0 If JE K ceecetsaiescces (6)

we f£ind that only the k"2 mode does any work, i.e.

- 2 .
wk""kckZMi B rreeeenes Ceereanans eeese ()
Equating the work done from equations (4) and (7)
ZM:[ Tk Y
i

c = —————————————— T O (8)

k
2
ZM:L fik

No epparent sdvantage has been obtained by these transformations,
since c, depends on u, itself. Thus the modes still remain essentially
coupled. Ve now obseXve that the coupling between modes was csused by -
the definition of u, as given by equation (3). A more judicious sssump-
tion. for u, will in&eed uncouple the modés if we introduce a modified

value of c;‘ The modified velue of ¢, 1is suggested by equation 8).

If we assume that
ui = xi - o -_-;cj fij ¢J PsecassresssnEr e (9)

where the kth vglue of ¢ 3 is given as

ZMi fik(constant)
ckzz Sreessssannsneace (lO)

2
M Ty

i
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it w111 be shown that @j is a "normal"” coordinate that uncouples the
modes. For simplicity we choose the constant in equation (10) to be
unity,

Since a forced vibration may occur such thet only the kth mode is
excited, 9, may be determined by substituting

(“i)k = ¢ Tie%

into equation (1) and setting 8; = O. Then equation (1) is multiplied
by the constant fiyx, and evaluated for each of the n masses of the sys-
tem. If these n equations are then added, the forced vibration in the
k%8 mode is governed by the relation

2
X 3 f + c Q ...‘. = e s B oSl 12
Xo ZMi fik + Ck tﬁk ZMJ_ ik KTk [ ] 0 ( )

where the bracketed term is a long expression involving all the spring
stiffnesses and the normalized mode shapes. Replacing cy by its value
from equation (10) reduces equation (12) to the form

3+ [""""2]‘-’:<= S H ereieeeeeeneen. (13)
M

M ok
a4

It can be demonstrated by direct evaluation that the coefficient of B
in equation (13) is the square of the circular nytural frequency of
the xtR mpde. Thus we have '

P +w P = - R, eevrciveiiiiiiiiiieiieia (1)

Equetion (14) is simply the forced vibration equation for an undamped
single degree of freedom system subjected to the page disturbance X .
Thus by a proper choice of cx (equation 10), the modes have been °©O
uncoypled, and the timewise response of each mode may now be computed

by sQlving equation (14).
6. DNAMPED MODAL ANALYSIS

As was mentioned in section 4, it is possible for damped modes to
exist if the proper modsl damping coefficients are chosen. These
coefficients must also be a function of the mass to which the damping
applies in order to keep the masses in phase in the mode. Thus the
technique used is to assume that damped modes exigt and solve for the
coefficients necessary to keep the modal displecement ratios constant.

As In section 5 it is assumed that

wo=x - X =ch- fij CPj cecassscssscseas (15)

o
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and f;; have the same definitions as previously chosen for the

where 3
% modes, but @3y is now & damped function of time.

uniampe

Repeating the technique of section (5}, the equilibrium relation
for the kIR moue reduces to:

2
285, T, % 5, . T,
e . w 1 Tix ik 2 ss . 3 “ikik 16)
L O, [ s S X P, T e X esemeaee 4 5506 @ (
&k LW P k%% "o T Yo FH T,

Aiso it may be shown that a single degree of freedom with undamped fre-
quency w and & viscous demping coefficient By when subjected to the
base disturbence 350 ; satisfies the relation

. +ik-' + 2 = =¥ —f—-).{ voescsessevows (17)
Pt % T Py o ~ M Yo

Equation {16) reduces to the form of equation {17) if Bji is assumed
to be a function of M;. Thus the selection is made that

Biy ™ By My conciiiiiiiiiiian, (18)

Substitution of ;3 from equation (18) into eguation (16), reduces
equation {16) to:

B+ Bad, * 6t @ =K - Bk ceeeeneennen (19)

Comparing equation {19) to equation (17) it is observed that Py
is the response of a damped oscillstor to the disturbance 'x; if

8k=$kmk vresevescssrecoosnnas e (m)

Since equation (20) satisfies equation (18), the modal dawping as de~
fined in equation (18) is correct as long as ¢ is interpreted as the
respouse of a damped oscillator. The only restriction on the solution
is that 133 be smell for all modes. This restrictioh is necessary due
to the fact that for large amounts of damping, the damping forces may
be larger then the inertia and spring forces and the modal vibration
t{illaltjecome aperiodic. If this happens the modal analysis no longer
s valid.

7. NUMERICAL INTEGRATION

An alternate solution to equation (1) may be obtained by simulta~
neous numerical integration of the equations of motion for all the
masses for specific ground motions. This integration bes been per-
formed on the University of Illinois digital computer, ILLIAC, using
the iterative method developed by Newmarkl. A time interval of seven
milli-seconds was used in the integration thus assuring stability and
providing rspid convergence of the numericsl procedure for all struc-
tures analyzed. The ground motion records {see section 8) were
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integrated by the Trapezoidal Rule using a seven milli-second time
interval , or a partial time interval where necessary %o include all
peaks ofi the accelerogram. The resulbs of these integrations are
summarized in Reference 8

8. MODAL ANALYSIS COMPARED TO NUMERICAL INTEGRATION

The two methods were compared by direct application to specific
cases. Three undamped multi-story structures were subjected to earth-
quake ground motion and the response computed by each method.

The shear beam type structurgs irested were a four, eight, and
sixteen story building characterized by a linear variation of story
mass and column stiffness. They are shown symbolically in Fig. 2.

The input consisted of 12 U.8.C.G.S5. earthquaeke acceleration re-
cords reduced to digital form compatible with stendard ILLIAC input
routines. The base lines of these records were shifted slightly to
nmake the residual ground velocity zero gt the end of the record. Use-
ful information regarding the integration of these records is pre-
sented in Table 1. In some cases the maximum ground displacement
reached unreasonably large values, and the usefulness of the records
was questioned. However sdditional minor adjustments reduces these
maximum displacements considerably while still insuring that the ter-
minal velccity is zerc. Recent studies at the University of Illinois
have shown that these minor adjustments have a relatively small effect
on the response of the structures considered herein. The responses
have been computed for those ground motion records which were not ad-
Justed to reduce the maximum ground displacement.

RESULTS OF MODAL ANALYSIS

The modal analysis technique is useful as an approximate proce-
dure in predicting upper bounds on the maximum response of a structure,
but holds no particular advantage over the numerical integration tech-
nigue if an exact answer is desired. Thus it is desirable to use the
modal analysis procedure only to compute the maximum model responses
rather than a complete tir: history of response, and superpose the
modal maxima to obtain an upper bound on the true response. The maxi-
mum. modal responses are proportional to the maximum value of ¢ for the
particular excitation considered. For the recorded earthquakes these
displacement maxima are gvailable in the form of published spectra.
Thus to predict the response of & particular structure to an earth-
gquake of given intensity, the investigator need only compute the shear
modes and frequencies (&s an spproximation, these may be computed by
numerical technigques), extract the corresponding values of ¢ from
published displacement spectra and superpose as many modes as deemed
Decessary.

The above procedure was followed in this study, but the modes and

frequencies, and the spectral response ¢ were computed exactly for each
mode by specilal computer programs.
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The modal responses were supsrpeosed in two ways:

(a) The modes were all assumed to reach their meximum values
simltapeously. Thus the absolute velues of all modal
shears were summed to provide an absolute maximum upper
bound on the response. ‘

(b) The most probable response for a uniform structure is given
as the square root of the sum of the squares of the modal
maxima. This value is also computed even though the struc-
tures tested are not uniform.

In Tables 2, 3, 4, and 5 typical results of this investigation are
presented. For a more complete summary of data, the reader is referred
to Reference 8. Table 2 presents results for the four story building.
Table 3 presents the resuwlts for the eight story building, and Tebles
Lk and 5 present the results for the 16 story building. The column
labeled "exact" presents results of numerical integration.

The results show that in all cases, the true answer computed by
direct numerical integration is less than the upper bound. These data
glso indicate that for the short building, the maximum shear agrees
best with the absolute maximum of the modal shears; for the' interme-
diate height building the maximum shears range about in the middle be-
tween the root mean square value and the upper bound value; and for the
tall building the meximum computed shears do not vary greatly from the
root mean squeare value.

These results are quite reasonable and support the assumptions of-
ten made in earthquake resistant design that for short structures it
is possible that all modes may act in phase, while for tall buildings
subjected to random shock the fundemental wodes dominate the response
and thus it is reasonsble to use the root mean square value.

9. RESULTS OF THE NUMERICAL INTEGRATION

Although results of the damped modal analysis are not available,
the significant results of the numerical integration of .equation (1)
with absclute viscous damping included are presented.

This integration wac carried out for all 12 earthquakes for the
3 structures previously mentioned. Absolute viscous damping was in-
cluded, but the damping was assumed to be constant for all masses.
The demping was defined to be:

=P8, = B MW eeeeeieiiaiian.. (1)

where the demping coefficient, B, was chosen to be 0, 0.02, 0.10 and
0.15. M__ represents the average mass of the structure, while uw is
the fTundamental circular freguency. This arbitrary definition of
damping assumes the fundsmental mode dominates the vibration. This
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essumption is not unrealistic since the higher modes demp out faster
than the fundamental..

The important results are summarized here:

(a)

(v)

(e)

For all values of damping, the shear distribution over the
height of the structure is essentially parabolic. Figure 3
shows the distribution for the undamped response. This re-
sult sgrees with earlier findings reported by Tung and
NewmarkS. ;

2",6 demping reduces column shears to about &% of their un-
damped maxima, while 10% damping reduces the response to
about 30% of the undamped value. The results for 15% damping
are not materially different from the 10% results.

The maximum base shear does not appesr to be generally a
function of the maximum ground accelereation or the maximum
ground velocity. Theoretically, the most probable value
for the maximum base shear is given as:

1
~ 2
vmax—\/é; [:(Vj)max:‘ ...... eeereeeees (22)

where the maximum base shear in the jth mode is

(Vj)max = chjflj (q)j)max

¥

An average spectrum has been prepared by averaging all 12
earthquake spectra and is shown in Fig. 4. It is noted that
it is a smooth curve in the range of frequencies tested.

For these ranges of w, the equation of the curve is roughly:

P, .
do1e™0ty eeane (24)
®

‘Thus equation (23) becomes

i
2 .2 -0.2u,
Voox = 1.21clcplj }3[}3 f5e % ..... (25)

All terms in equation (25) are constants for s perticular
structure except ¢y . Thus the maximum base 'shear is propor-
tional to ¢,. For the undamped motion ¢ 1is the solution
of equetion (14) which is known to be
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1 T e . , .
cpl('r) = - :;Jj f £ sin u,l(': T 1. (26)
)

The maximum values of ¢ have been tabulated in Reference 8
for each of the three structures treated for all 12 earth-~
quakes. It was found that in 17 cases ¢, @ppeared to increase
roughly in proportion to the increase of maximum ground accel-
eration, while in the 19 other cases @y, increased roughly
proportional to the maximum ground velocity. Thus no genersal
relation between P and earthquake intensity seems to exist,
and so no specific correlation between maximum base shear
and esrthquake intensity was found.

(&) The problem of fatigue may bhave a very important bearing on
the failure of multi-storied structures. For an eleven sec-
ond earthquake (accelerogram 17) the undamped four story
building had 39 reversals of shear in the base column. These
intermediste maxima occurred gpproximately once for every
one-fourth of a second of earthquake duration. Five times
the intermediate maximum shear approached within 10 percent
of the gbsolute maximum value. Fewer shear reversals
occurred in the upper columns.

10. CONCLUDING REMARKS

It has been shown that shesr beam type »uructures may be analyzed
by modal anslysis if restricted values of absolute viscous demping are
assumed. Upper bounds and probable values for the maximum column
shears may be computed with the assistance of published displacement
spectra for recorded earthquakes. If the principal shear modes are
computed by numerical techniques, the method ensbles solutions to be
cobtained for eleborate systems without setiing up snd solving the fun-
dementel equations of motion.
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12. NOMENCLATURE

cj = Modal participation constant for the ,jth mode.
i3 = lggim;ziad model displacement of the ith ws in the
i = Subscript labeling mass or displacement. i =1, 2, ...n.
J = Subscript labeling mode. j =1, 2, ..., k,...n.
k = $pecific value of J.
K1 = Shear stiffness of ith spring.
Mi = 1th mass.
n = Number of degrees of freedom of system. This is aiso
the mumber of messes and principal modes.
uy = Displacement of ith mess relative to base of structure.
X, :'ci > ¥. = Displacement, velocity and acceleration of the 1th

miss relative to a datum fixed in space.

X , X , ¥ = Displacement, velocity and accelerstion of the ground
(Base of structure) relative to a fixed datum.
Vi = Shear in ith colum.

th

V.., = Shear in i"® column in j mode.

709



V..

i

R L. Jennings and N. M. Newmari

ey
Work dome by the inertia forces of the KB mode during a

rece vibration.

Coefficient defining percent of critical absclute viscous
damping in the structure.

Coefficient defining percent of critical damping in the jth
wode.

Viscous damping constanl for the ;4B mess.

Th

Viscous damping constant for the ith mass in the J ' mode.

Time variable of integration.
Timewise dynemic ampilification of jth mode.

Undamped circular frequency (Red./sec.) of ,jth principal
mode.
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Elastic Besponse of Multi-Story Shear Beam Type Structures

SdDI NI NHAID YVAHS ROWIXVW

ONICQTING XHOLS 8 qIJIAVINN JO SEESNOJSTY TVOIJAL

¢ TI9VL
66° 0651 T6°9052 88° 6512 . 20074 387
90" 9SHT 02 ghbT 0L 05T 20074 PUZ
20" 0¢4T LL:oglt L1 LLST I00Td PIg
€6 g2t 89°90LT 6Q° 2Lyt X00TI U
6 LS0T 09° 0651 0L 64<T I00Td TS
oL %58 61" 0621 €0° 60TT 00T W9
12°¢19 g¢ HSTT 69°666 J00Td 43l
66°gSh 69° 689 2e oL 100Td MY
- 6 WVIDOUTTAOOY
€2 69¢ #9°61S QTG 0014 387
S he . 6 9%y 9L°Tg¢ J00Td PUg
64" H1¢ oh' lgg 26°2¢¢ J00TJ PIE
96° 082 26 e 28 2T¢ T00Td Wiy
H9° 042 29 L3¢ e cpe 00T W16
02 46T 1M 6l2 g¢gee I00Td 139
66 onT 6L°2¢2 6g° 66T J00Td u3L
7$°6Q 66° 15T e let J00Td Mg
. ¢ WYYDOUTTAOOV
_ 2(SASNOJST TYIOW )X A SASNOJSTY TYIOW I ASNOJSTY  LOVXCH

715



SdN NI NUATD UVHHS WONIXVW
ONIATINE XHOLS 9T QEAdWVIND J0 SUSNOJSHY TVOIdAL

R. L. Jeonings and H. ¥. Newnark

Y TIAVL
LL*LTTT 00" L4ST g2 LTIeT J00TH 391
€eTOTT T 6¢HT g6 HQTT I00Td PUS
¢ TLOT 9L QST 65 2HTT J00Td PIg
Lt egot 26°glet 20° €OTT JOOTH W3
8T %96 Le2r 902t ST*6€0T J00Td U3S
€0 926 o TETT g1 496 JI00Td U39
26°999 62 6201 TC Q06 J00TE U3,
¢H Q6L L0966 20°9.8 J00Td U3g
9912l 0% 4h6 G6° 009 J00Td Y36
Sg° M9 9¢" 260 0% ¢TL J00Td WIOT
16°694 L6*T6) €5° 609 XOOTH YITT
T0°Ogh 12 20L 92° 218 J00Td W32t
h°T6C Lz o019 TL w2y IOOTH UICT
9¢>T0¢ £0° 604 og°LSC JOOTA UM
¢a oz [ AL e19 TL 092 I00Td UBCT
L6 60T L whe 6z ont 0074 WI9T

k WVHDOBTTAOOY

-mﬁamzo&ﬂmm TYWION )X \, SEBNOJSEY TWIOW T TENOJISEN  LOVXE

716




SdDI NI NIAID HVIHS WOWNIXVW
ONITIING XMOLS 9T QHJIWWINN 40 SASNOISHY TVOIdAL

Elastic Response of Multi-Story Shear Beam Type Structures
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