APPLICATION OF PROBABILITY METops po peSIGN THE EFFECT
OF SEISMIC FORCES ON ENGINgmgyyg STRUCTURES

By
Ho Fo Barstein*
The present paper™ is an attempt 4, apply for the design of struc-
tures for seismic forces probability methods, which are widely used
nowadsys in radio engineering and autamatie regulation theory (1.2).

1. Seismic Acceleratdon of the Structure Buyyngation &8 & Random
Process

It is well known that most atrong.mgtion earthquakes are caused by
tactonic processes in the earth-crust which are commscted with ruptures
of its contimity at a certain area,

A seismic wave occuring at each Tupture, due to an unordered loca-
tion of geological stratifications, undergoes on its way an infinite mumber
of reflections and refractions and gomes tq the foundation of the struc-
ture as irregular waves which cause unordsred randos movement of the
foundation.

Let us set a number of instruments in a seismic region under similar
conditions and then observe some earthquake, The accelerograms recorded
present some functions of time Fy (%), Br(t) vv.... Fy(t). The random
character of functions is displayed in the fact that though all instru-
ments are identical, the values of functions at any definite moment of
time t are different. Multiplicity of these functions describes seisxic
acceleration as a random process, each of the functions of the miltipli-
city is called ite realization. Accelerograms of two typical earthquakes
are given in Fig, 1 as examples of realizgtions.

In a general case seismic acceleration is a non-stationary random
process. Let us assume that we know statistic characteristics of such
process and dynamic characteristic of 3 structare, 1.6. 1ts response to a
unit impulse k(t) which is called the impulse transfer function,

Here we use the correlative theory of pandom processes, i.e. take
into account only those properties of the process that are determined by
its average value

n(t) = F(t) (1.1)
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and a correlative function

B(t,t)= F(t)F(t) (1.2)

The line above the expressions {1.1) and (1.2) indicates averaging
according to multiplicity of realizations.

In this case the response of the structure to random action Qj (t)
at zero indtial conditions is:

L 4
I(ﬂ‘LK(t'T)Q(T)dT ‘ (1.3)
The average values of the response is:
k
X(6)=[K(t-T)Q(T) o7 (1.2)

The correlative function is: *

tet’
Bx(t,t’)’j]K(f-'T)K(t'— T)Ba (T, TNAT AT’ (1.5)

The mean-square value of the response is:

B

I’ﬁ:)=UK(t-7) K(t-T)Ba (7,7 )drd T’ (1.6)

where Q3 = -M3F(t), F(t) is seismic acceleration of the structure founda-
tion, M i~ mass at the point J.

Supposing that the response of the structure has normal distribution
it is possible to determine the probability of large deviations from the
average value according to the average and mean-square values of responses

=y

>
P“X’?l)Kelf"?‘érf— K>1. 1.7)

where 6= [ (-5 T ! is standard deviation.

However, such way of evaluating the dynamic effect of seismic action
is comected with intricate calculations and it is of little use in prac-
tice.

let us consider the spectrum approach to the solntion of this problem.
" From a great number of accelerograms recorded in various seismic regions we
shall select for investigation only those accelerograms which within a
certain interval have a fixed character upon the average (Fig.l). In this
case seismic acceleration of the structure foundation may be considered
spproximately as a stationary ergodic random prooess. For such process the
average F(t) and F(t)PF(t), obtained by averaging the corresponding quanti-
tiees of all realisations, may be substituted by the average values of the
same quantities according to time. Consequently, while determiming the
average value of ™m" and correlative functionB(t-t)=B(T) of a random
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process 1t is possible to use a single realization recorded for a soffi-
eiently great period of time.

let us establish normalized correlative functions for a mumber of
accelerograms, each accelerogram being the realization of a stationary
random process.

Normalized correlative functions R(7 ) for five accelerograms re-
corded at different time in some seismic regioms of the USA (3,4) are pre-
sented in Fig.2; the curves of formla '

R(T)=e % cospT (m 6+ 8% ) (1.8)
p:15?20

approximately representing experimental correlative functions are drawn
by dotted lines.

Pig. 2 mskes clear that the curves of the type (1.8) satiefastorily
coincide with the part of the empirieal eurves (0T ¢0.10~0.12 sec )
that is based on sufficiently reliable experimental data. The time of
correlating seismic acceleration, i.e. the interval of time T , within
which noticeable statistic connection between the values of the random
fonction ( R{7)> 0.05 ) takes place, is approximately equal to
1.0 - 1.5 sec. Then it is not difficult to ascertain that for obtaining
sufficient statistic data about seismic acceleration the duration of
period T on the accelerogram should be chosen queal to 10-12 sec. At
such interval any accelerograms may be considered in the first approxi-
mation as realizations of a stationary random process. For engineer
evaluations such assumption is quite suitable.

For establishing a correlative function of seismic accelsration seis-
mograms may be used. Let us take the given seismogram for a possible
realization of a stationary random process and establish the normalized
correlative function R4(7T) for seismic displacement.,

It is known that while differentiating a random process its correla-
tive function is subjected to double differentiation according to T .

Let us approximately represent a normalized correlative function of a
curve displacement as

Ra(r)=e™ " cospT

then for the correlative function of seismic acceleration we shall obtain
the following:.

Ra(1)=e ™[~ &)-a0's"| cospT + 4ap(o> ) simpirl} (1.9)

If the correlative function is known the well-known equations by
H:anhin(5 are of help in calculating another statistic characteristic
of selsmic acceleration - its spectrum density.
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Scwrs Lim %‘Ff{iw)r (1.10)

oo g
where P (Lw) is complax spectrum of acceleration.

It is assumed that the normalized correlative function Rc¢r)is (1.8),
then its corresponding spectrum density is as follows:

- P - w'+ m?
Stw) = 28(0)Le COSBT COSwTdT =2B(0) T T
where m=d"+ 8 ; a=a*- p* (a.1)

In Pig.3 there are given normalised spectrum densities Sk(w) cal-
culated according to (1.11) for correlative functions in Fig,2.

2. Response of the tem with a Degres of Freedom to
Random Forces in iransition Re
If X(iwt) is the transfer function of the system, i.e. its res-

ponse to forces is €*® and S(w) is the spectrum density of a random
force, than the mean-square value of the system response is as follows:

2 ) =55 5@ X Giw. )] dw (2.1)

where | X Ciw-t)]® is the square of the transfer function modulnd.

let us determine | Z(iwit)[® for the system with a single degree of
freedon.

The equation of motion of system is
MZ+(U +iv)cx = etet (2.2)

The attenuation is taken into account by means of the hypothesis
sst forth by E. S, Sorokin (6)

where

P 47 8

4+ B2 > v=4+~5’, "=

’

.6  is the logarithmic decrement of attemation, C xTewi 18 the rigidity
coefficient of the system and M+ is ite mass,

The generel solution of the equation (2.2)
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XAwt)=Xuliwt) + @ (et (4, pignot (oo t
-‘

+isinKwit) + Ml P Cw)fF(-w?+ uw?-tif)(caswt+iscnwt) (2.3)

Zu(iw,t)is the gereral solution of the equals .
part. It is represented by the sum of Qﬁ%&gﬁg’ﬁg‘g lt? right
the functions corresponds to attenuating oscillations ang th ons; ome of
the increasing oscillations, The increasing oscillation whe other - to
satisfy the condition of physical realization of the i ich do not

off in the general solution. Problem are thrown

P (iw)  is the transfer function of the :
ponse to the force eiwt ) System (its stationary res-

¥
5 n =
R ¥ T
Pz 2y + &
Compl bit '
conditinoxgsex arolirary constants A and B are determined from injtial

t =0, Re X (iw,t)= Re X (iwt)= 0} Hence at ‘nz--—zL (2.4)

V=¥, U1 the square of the transfer function modulus is

. ? _ . 2 awt -
Ix Glw,t|? =|® il {1+e “*ze ’}“"t[cos(w-th——%sm(wwot]}

27 e-«f-ca.t [wf - wiw-wiww?- w? ) .
mi(w*- 20wl + wfy StM(w-wnt (2.5)

The mean-square value of the seismic force acting upon the system is

QF (1) = MEF* (£) = By(o) (2.6)

The spectrum density of a random force is

S(w) = 2B1(0) & w? » m?
) w* v 20wW7+ Mm% (2.7)

Substituting (2.5) and (2.7) o (2.1) we obtain the following:
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o) = [S(w)Imw t)l dw
* _2_%(&)3{(“8-!%) - Zé;“t(ws wit+& Sinwst)Ts

-2 K'e.;w’t [w? SiNwstTs rwqscos 6011.'1"4]}

T\ » 1 S" (w? +M*) A0
! (w*- 2uddwrwtXwhszawt M)
[ +i(1+t‘)u+2aw4+-m—]

20} [wi+ 26 ¥ W {40+ 7 M- 2 M%) w3 + 200 MW, + 4]

2

_ 1 E (w*+m?) COS wt dw
27 Lw (w4 2uciwt+wi) wr+2aw?*+m*)

e’ﬂt
z m [ A(pws,g't-asmpt)+ -%(p cospt+« Sinpt)]
'{'Uit
e

+20’¢01

[c(coswm{- Sinwst) +25(coswit +L sin 'wn;)] (2.10)

A =-C - 2m(a+ wi)rewt-m*
(wi-M*Fr 4(a +wd ) Mrawd) wi
. 2m(a+rwirA+m? . zwt(am dYA-m?
-m* ) D - —me

-

1 [" ()W m*) coswt dw
T Lo (W*+2aw?+M*)(wH-2Uwiw’+w?)?

-t
= fa 3 [A«(p_cas,gt-—(xstnpt} +P—‘;(pcospt+o(san,et)]

£ L [E4(605w4t-{—$qut)+-& (coswst +-£-smw,t)]

+ m—-‘{ [(11— ) w,t) toswet - %"SL'H wqt]

+ —,- [(1+-%w4t)<:osw4t+-i-wt s;ant]} (2.41)
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r o= f w (w?- wi?Ww? + M) sinwt cdw
4 ZTT. o (Wh- 20 W?wW? + wW)? (W* + 22w+ M*4)

-dt

= g7 | M(20pcospt - asinptds Bisinpt]
o hon

t W{C{‘g‘wit coswit +(1+ -g-cmt )sin U.h't]

+ 2(‘){2

i

+ &2 [E(Ycoswt +stnwit) + B sinwt]  (242)

[ —qut Coswﬂi +(1+ —-wat Jsinwt ”

[(wf- MY - AMA (w2 + a P (- w?-2a)
[(wt - m* ) +4alwi+ a)(wt-m*>

— AT (TR @) (e? + @)- M+ 24 (Wi )
+ 4Am*lwi+ay |?

B‘1 - - Tn.2 w-, - 2a"{tw1 m4‘i’ AaCu)1+Cl)] Am4(w1 + a) }A
4(0.)1“’0.)[601 -m*+ 2(1((.01 +a)]

M=-Eq=

Di= 1+ [2wiwi+a) - 4 M (wi+a)d+ Balw? +a)?]As

- [w#-— m* +4(w1‘+a)’] B

Ci= 2(a+wi)Bi- [wi-m*+4a(wiva)] At

=2(Aa+widA1— B4 ;
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The mean-square value of the dymamical coefficient is as follows:

i miet

274
g!{t 81{a>

~Sat -‘g—wﬁ ¥
= 25‘&1’:[{1*6 ‘)K*?B (CDqut+-2-San4‘t) T2

- Zie_-}w‘t(w?sm Wit Te+ W+ Cos wat TL)] (2.13)

The diagrams of dynamical coefficients 4(t)= '\/gf (t) established
for frequencies of free oscillations of the system w:=20.94 , 6.28 1/sec
are presented in Fig.4. The diagrams show that for the g?t?m with the
frequancy wi=20.94 1/sec. (structures of average rigidity). already
st t > 3 sec. the value of dynamical coefficient ¥.(t)is close to the
value of ¥ in stationary regime, i.e. at t+<e ; for the frequency
wi= 6.28 (flexible structures) £.(t) practically coincides with ¥+ at
t > 8 sec,

Since the duration of an earthquake averages 15-25 sec. and transi-
tion regime for real buildings and structures with frequencies wi= 31.4
~2.09 1l/sec. attemates already at t approximately equal to 10-12 sec.,
the action of seimmic forces upon the structure may be considered in

stationary regime.

The £, diagrams established by formmla (2.13) at t -~ for the case
of spectrum densities Su(w) shown in Fig.3 (at §=0.1 ) are presented in

Fig.5.

The same figure shows the curves 2 obtained by prof.}. L. Korchin-
sky while treating a series of seismograms of earthquakes which occurred
in the USSRH; the "a" curve is adopted in Standards and Codes for Building
in Seismic Regions (CE~8-57). The /3 curves for the part T > 0.3 sec.
closely resemble the ¥, curves.

3. The Action of Seismic Forces upon the System with Two and
Three Degrees of Freedom

The mean-square value of the structure response to these forces can
be easily determined if the spectrum density of the response is known.

Iiz‘ (Zﬁ*xft)z = 517""' [“Sn(‘d)d‘d (3.1)

Iet the expressions X#(iw), Xu(iw), X12(iw) and X(iw) be
complex and complex conjugated spectrums of the structure response. The
first index at X (iw) is the mumber of the co-ordinate and the second is
the mumber of force.

Then
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s (Lw) =Pu(iw) Qe(iw) = - MiPr (iw) F (Lw)
X (w) =Pt (1) QT bw) = - M ¢5 (iw) F*iw) (3.2)
Xr2(iw)= Prz{iw) Qz(iw) = ~ Mz Prz (1) F (iw)
X (iw)= Preiw) Qeliw)= ~M2 Piiw) Fliw)

Here Pr1liw) and <F’1z( iw) are transfer functions for the response
of point 1 to forces applied at points 1 and 2,

Phi(iw) = Pul-iw): Pu(iw) 5 Praliw)=Pul-iw)=Preliw)  (3.3)

Filiw), Fi(iw), Fe(iw)and F#'(iw) are complex and complex conjugated
spectra of seismic acceleration F(t).

Hence tne spectrum density of the response is as follows:

. z . ) *, .
Sx1(w) :_&gl}é;%_’;’__u))l = .'i-._‘u/:: [IH(UW)""XW( b%!][ Zﬂ! !:ﬁd!"’ Z 1!! LW!!

= ]¢41(Lw) }151(“)) +2 Pdiw) Prz2(iw)S12(w)* H’n(i.w)rs 2 {w) (3.4)

Salw)= B1(0) Su(w) 5 S2(w)=B2(0)Su(w) ; Saz(w)='%qu(0) Su(w);

B«(0)=TIF ()5 B2(0) = MIF (t); Sulw)s 200 il (3.5)

.and
xXi= 1’14*7(1:*'22:1712— 3[Bq(o)A1(Tﬁ~T?z)*’ﬂn?—é—c-’l!\zﬁ;rur)]
*Wr%uw)%(ew)sﬂwuw (3.6)

where M+ and M2z are masses of the system.

Tor the system with three degrees of freedom we find out the follow-
ing:

X3=(Xs + Kaz + xﬂ) I “‘Pﬂ{uw [51((4))1"?12((,60)1 Salw)
+ ‘4’13(:.«))' Sa(w)r 2<P«4(uw)¢'1z(uw)qu(w)+2%(uw) Pos(Lw)Selw)
+2 ‘Pn{;w)‘?ia(I,W)Sza(w)]dw BN

Safew)= M3 Falt) Sulw)s ss(w)=%q352(0)su(w); S.;(w)=~}l};-z B.(0)Su(w) (3.8)
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The formulae for the determination of Puliw),|Ps(iw]’, Ajx, Tix are
cited in the work (8).

4. The Determination of the Design Seismic loading of the
Structure

let us assume as a design scheme of the structure a cantilever elas-
~ te rod with masses M; concentrated at the points 1,2... n. Then the
design seismic load acting upon the structure which is considerea to be
the system with a single degree of freedom, may be determined according
to the formula

Pe = E Myedds (4.1)

Here § is the dynamical coefficient determined according to the
envelope of the diagram family which is presented in Fig.5.

EMy X
Mred= === is the reduced mass of the structure, concentrated at

the point k; xy are the co-ordinates of the curve defining the first mode
of free oscillations of the structure.

Qees =YF*(t) is the acceleration of a design earthquake for a
given seismic region. The design acceleration is determined on the
grounds of statistical treating a series of accelerograms or seismograms
recorded for a certain period of time, e.g. for 20 - 25 years, The repe-
tition of design acceleration is evaluated according to its guaranteeing
_ which may be taken for 1 - 2 per cent. It means that the exceeding of
the design acceleration should be expected wpon the average once in 50 -
100 years.

Fit) is the mean-square value of a design earthquake accelera-
tion calculated according to the accelerogram for the interval of time
equal to 10-15 sec.

It should be noted that the problem of seismic regionalization of
the USSR territory is the basic one for determinming seismic loadings of
the structure. However, the solution of this problem presents some
difficulties due to the absence of a sufficient number of accelerograms
or selsmograms of strong-motion earthquakes characterizing the seismic
activity of a given region. Therefore in the present case for determin-
ing a design seismic load it is possible to use sseismic coefficients

Kq = .i%';‘_’:., adopted in standards CH-8-57 acting at the present time.
Such assumption makes design seismic loads calculated according to

the probability method and those calculated accoming to CH-8-57 practi-
cally the same.

For systems with two and three degrees of freedom the design seis-

mic load is determined according to the formmla (4.l1) for each re&lced
mass M.
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Reduced masses are calculated from equations
;mjx;n= Mk Xw, (K=1.2.3) (42)

here TMj - masses concentrated at points 1,2 ..... n, Xjk - co-ordi~
nates of the K-mode of free oscillations of the structure. Frequencies
and modes of oscillations of the structures may be determined according
to the method of successive approximations.

The dynamical coefficient is

— s 3
- z Xk
PVE L 2

Y}is calculated according to the formulas (3.6) and (3.7).

For the system with two degrees of freedom

Liem = 52B1(0)+ 2 T2 B1(0) §11812+By(0) %2 5 (4e4)

For the system with three degrees of freedom

i?cnrt = 8§11 Ba(0)+ 832 B2(0)+ 813 B1(0) + 2 -TT%’ B1(0) 811842

+2 --%—:B1(0)511519*'2%32 B:(0)8:2 843 (4.5)

where é}k are unit displacements of the main system.
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