STATISTICAL THEORY OF THE ASEISMIC DESIGN OF
STRUCTURES

By
V. V. Bolotim*

There are three different approachs to the design of structures on
seismic loading., The first one consists in represenig;:tion of values de-
scribing selsmic action by means of some deterministic fimetion of time.
Different kinds of such function were considered in references b~ 37
It is obvious however that any analytical laws have nothing in common with
actual chaotic earthquake accelerograms.

The second, semiempirical approach consists in the investigation of
the response of the structure to the strongest earthquakes which had
taken place in the past and which are-typical for seismic region con-
sidered. this direction some investigations and calculations were
made (4 =7}, The value of risk and the life time of the structure
expected could not be defined by this method. The structure designed by
this semiempirical method may be destroyed by the earthquake having less
maximum acceleration but more infavourable spectrum and phase character-
istics.

The third approach is based on probability methods. It is well
known that seismic forces have random character. In references(8 - 9the
ground acceleration was represented in the form of random set of noncor-
related impulses. This scheme is far from being practicable. The corre-
lation of accelerations in different time moments is of great importance.
It is expressed in presence of predominant periods in accelerograms and
in heightened sensibility of structures with definite free-oscillation
frequency to seismic forces.

A further development of the theory or the aseismic design of strue-
+ures must take in the direction of a wider use of methods of the proba-
bility theory and the mathematical statistics. The difficulties connected
with application of statistical methods to this problem are great, but
they are typical for many other applications. They principally conclude
in the lack of information accumulated by the impossibility of sharp
increase of information in the nearest future. The most important pro-
blem is to create a theory which could secure an adequate description of
response of a structure on seismic loading with minimum quantity of
empirical data required. :

An approach to the creation of such theory is presented in this
paper. It is supposed that seismic action may be described by‘means of
some nonstationary random functions of time depending on a finite number
of random parameters. For these parameters which characterlzg the earth-
quake as a whole (its magnitude, duration, spectrum etc) density of
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rrobability distribution may be found. with the values of parameters
fixsd sach nonstaticnary random function is approximately expressed by
feterministic functions of time and stationary random functions the spec-
tral densities of which are also determminated from the analyse of accel-
srograz. When a complete system of correlation functions for seismic
action is xmown it is possible to find a complete system of correlation
furetions for generalizated coordinates, bending moments, shearing forces,
stresses etc and then she momentary probability density of values men-
tisned may be found. A further investigation consists in the determina-
tion of mean quantity of exeeding of fixed level and in determir ~tiom of
exceding srobability during the earthquake. This probability is conven~
ticnal; the complete probability may be found by use of probability
density for parameters characterizing the earthquake as a whole. The
£iral results for the single-degres-of-freedom system may be presented in
the form of curves analogous to the well known accsleration spectra. We
cbtain a set of these curves depending on the probability of the prescribed
term of exploitation.

1. General considerations. let us introduce the generalized cooxdi-
nates corresponding to the complete division of unknown functions in the
equations if small oscillation of a linear system. Iet U(X,4,2,t) be
toe displacement of each point of system, U, ( x,4,2 ) are the forms
of small free oscillations. Prescribing the displacement in the form

u(x,gzz,ﬁhéf‘((t)uk(x,%,2) (1.1)

we o!;tain 2 set of independent equations for linear systems with viscous
damping: :

}x “'26&)&1( + W:)CK = () (1.2)

Bere vy and £y are natural fre i ici
quences and damping coefficients +
-fgstgeralized accelerat?ons which may be easily expressed by com{:ocg;;t)s
:q s tgofsvﬁd;)mcele:'ﬁg and by the functions Uy(x.¥,%) . The

AL.2) are for the case of vi
romite i1y 2] Tor he X scous damping, but further

lat us suppose that the generalized accelerations q.(t) are some

nonstationary random functions of time and functions of a finite number

of rando
el m?sf:m‘hel‘s Q5 %2 seer Gm , characterizing the earthquake

Qe=0k (25925 - 9m ;£ ) (1.3)
In the capacity of such parameters we may assume the characteristic
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of accelerogram envelope (maximum acceleration, duration of the earth-
quake, constants characterizing the increasing and decreasing of accel-
eration) and the characteristics of spectrum composition {(predominant
frequency, width of spectrum or Some other guantities describing the
correlation of acceleration on different time moments etc). For the
evaluation of structure survival only strong earthquakes are interesting.
Below we shall assume that for the seismic region considered a whole

N -number of strong earthquakes at a definite period of T years and
the joint probability density for parameters 9,, %a ;... 9 are known:

bo = P3 (3223 - 9n) (1.4)

When parameters %; are fixed the random functions have the same
external indications (the same envelope and spectrum) and only vrhase cor-
relations are different. The change of phase correlations may have an
essential influence on earthquake-resistance of structure causing infa-
vourable condensation of maxima ete.

let us introduce the complete system -of correlation functions for
: Qg (1)

Kq'f‘a_?l.-.a_}. ('é;,'tz, corts ) = D.j.(t)af,(-b;) e 'a-/e,('bs) (1' 5)
The ensemble average which is taken by fixed values of ¢, , ‘2* sese
gm 1s destignated with a lins.  For the calculation of this’average a
large quantity of accelerograms has to be kmown. In our case however
only a principal possibility of such averaging is important. Further we
shall show that under soms assumptions the funciion system (1. 5) may be
constructed in a simpler way.

If the complete system of correlation functions for gemeralized
accelerations Qy(+) is known the complete system of correlation func-
tions for geperalized coordinates f,(£) is determinated by following
formilas : :

K}P|f"...§p‘(tl ;tz, cae ts) =
= (‘ 1 )Af'jt:f‘hj’*(t‘ =Ty )«-e b‘/’s Ceft%)KQ)u %u afs(tu’t ’:rs)oll;dﬁzv--dlﬁs
(1.6)

in the formula (1.6) hw(t) 4is the impulsive transitional f\mctio:?
for the operator by means of which the transformation (Ly(t)to f,.(t) is
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realized. Correlation functioms caleulszted by means of formula (1.6) ziso
depend from parameters Dus Go seee Ip ©

2. Simplifying assumptions for gemeralized accelerations. The com-
position of compliete system of correlation functions (l.5) is a very
difficult problem. The analysis of actual accelerograms shows that with
the exception of a short initial time section and final time section with
small amplitudes the spectral composition is sufficiently little changed.
So the generalized accelerations may be represented in a fomm

a’k(t)"Ak(‘iuizg “-2‘/-,‘ ’&)y“(?rﬁ, s g %) (2.1)

where AF('{: ) - the deterministic function of time {(the envelope of
accelsrogram depending on gj s §a seee §v )y ¥ (€) - stationary
random function of time. tting formula (2.1) into the formula (1.6) we
obtain a formula for the second coxder correlstion functions:

K%fk(’&l,tz) =
i ta

= f 1: b; Ga-To)hilta-T)A (m ) AT )Kﬁﬂ(?r,}m,a, (2.2)

It is seen that for the solution of the problem it is sufficient to
know the correlation functions for stationary random functions Yw (¥
depending on difference 4; - +, c¢nly. In order to construet these func-
tions immeasurably lesser quantity of records is demanded. Two methods
are possible here, By ths first one the envelope for giwven accelerogram
mst be found and all the ordinates must be divided by A,.(¢t) . So a
sufficiently long realisation of stationary (more punctual, quasistation-
ary) random function and the ensemble average may ve replaced by time
average. For sufficiently long earthquakes with slowly changing envelope
parameters another method may be appiied. The accelerogram is divided
into sections which are sufficiently small so within their limits the
function may be considered approximately as a stationary one, but are
sufficiently large so each of them could be sufficiently representative.
Then the time average for each section will be calculated.

The analysis of accelerogram shows that for the envelope in many
cases the exponential law may be sccepted:

xe) =0 (£<0), Aut) ~Ae Fyey (£>0) &P

The simplest expression for the second correlation function sppar-
ently bas a form
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Kgy (o) = 1,87 Tees ot (2.4)

where W, is some constant, © is the predominant frequency of the
earthquake, J is the parameter characterizing the rate of correlation.
The less is the magnitude of . , the stronger is the correlation i.e.
the narrower is the diapason frequences in which the mosi part of seismic
energy is concluded. The last is ssen especially from the formula for
spectral density

1L Ko 1 LR (2.5)
P W= 5 L Teyar T2 Twrer LT

According to the data of I. i. Kortchinsky [31 who worked up the
accelerograms of nine weak earthquakes the magnitudes of parameters are
in average ¢ = 0,15 see™l, & =10+ 25 sec~l, The magnitudes of
are not determinated 1ill now.

Putting the formulae (2.3} and (2.4) intc the formula (2.2) we shall
obtain for the case of equation (1.2}

tta
K;};,‘(fﬂ,u% AgAx Ko [[ eocp [~ Eultatta—

Jwy=g;ow-e" "

T4~ Ta)—c{TatTa )~ 4| f’x"f—'z!] sin [J Wi-g; (4-

—)] sin[J0p — € (ta-To)] 056 (T1-T2) dT1 0% (2.6)

After integration we obtain the formula describing .the alteration of func-
tions K-‘Fif“ . Some interesting numerical results are obtained.
For calculating the metnod of canonical expansions LlOJ may be also

applied. On the ground of supposition (2.1) the functions Qt)and (L)
may be presented in the form

)= [ 2 @) Y (w5 £ $18) =) Belw) Ko, t) ol
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i w,1) are
vhere 2,{w) - random quantities, and canonical functions ‘f(w,

Jelw, £) = Ax (&) e™*

If the functions #,.(¢)satisfy the equation (1.2) for the finding of
X « G, t)we cobtain the equation

X +268 K + w2 Xy = — Y (w0, %)

with initdal conditions X ,(¢) = X« (0) =0 | fThen the correlation
functions are determinated by means of the formulae i,

Kig (400 [ g @)Xt Xy (wta)do @27)

In conclusion let us note that when we cannot neglect the variation
of spectrum composition during the earthquake two generalizations of the
formula (2.1) may be done. Firstly the parameters rrl 3eve @ MAY be
considered as slowly varying time functions. Secomﬁy the generalized.
acceleration may be Tepresented as a sum of terms taking into account the
varying of spectral properties by means of selecting the functions A.(¢)

The second 8tep consists in the determination-of Joint probability
density for generaliged coordinates considered in fixed time moment and
by fixed valunes of random parameters % s gz seee f"' « It is the
‘mtary*pmham.ntydemity r(ﬁ';v.,,)(“, ') « For its

; te system of moménts for Fis fas
see §a which aye equal to the values of the correlation functions

K“‘tfr"'b‘(f”ﬁ»""“) at-t,.t,_,...,-t,,t . Sowe
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must sclve some generalized problem of moment theory. | This problem is
very difficult and thus some simplifications must be made.

It is known that the components of ground accelerations, the horizon-
tal components especially have distribution near to the simmetrical one:
both directions of motion are approximately equiprobable. So the mathe-
matical expectation as all the moments of odd orders may be assumed equal
to zero. In connections with it the moments of second order and corre-
sponding correlation functions become most sigmificant. For a special
case when 'momentary" probability density is subjected to normal law it is
sufficient to find the second order moments only:

, 1 L
Thofo o hust) rpepmmayeece 12 L4 ()
. e

Bere |K| is the determinant of the matrix Kjr , Ljk is the reciprocal
nmatrix,

An additional investigation must be fulfiled which would show the
approaching of the actual distribution to the normal ome. It is well
known that the normal distribution takes place when the random value is
formed under the influence of a great number of statistical independent
sufficiently small random causes. It may be possible that we have such
situation by strong earthquake in points situated far enough from epicen-
ter. In the cases where the distribution cannot be considered as a normal
one it may be taken as normal for approximately evaluation of not very
small probabilities.

“Momentary" probability density permits to find the probability of
random event that generalized coordinates in any time moment are con-
tained in the limits between F, andf,+dfx . But we must obtain the
probability of exceeding of some dangerous value F during the whole
earthquake, let us calculate this probability supposing for simplicity
that the generalized coordinates are statistical independent (this may be
done, for example, when system damping is sufficiently sma.xll). Let us
assume that p=(fx,fe;t) is the joint statistical probability density
for coordinate and its derivative. Then the mean value of exceeding by
the coordinate $« of the level F in time unit is

L -

TP(F buit) hedh

The magnitudes #y and f, may be assumed statistically independent. The
mean number of the exceedings of the level F during the whole earth-
Quake is determinated as ‘

N, (fi>F )= f f P (E; ) plho fu 4fu dt (3.2)
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i i i f exeeding
This quantity may be taken as gpproximative ?valuation of
li%; when f], < 1. Tbis probability is obvious a copditional pro-
Far the pormal law of distribution we obtain:

IRERO) (3.3)
AL

PO fr ) = 2 Gy er[- 257 ] ¢

Bere J, ~and (}h are mean sgquaves for Fx and #« respectively,
determinated by formulae

&% XPIESW a) = ‘DZK kcéft*)
,g;;= Kf‘»f’, (‘é,f)} a)}h= Kj{‘ﬂ (’t’;"ﬁ), Kfpﬁ: (i‘ 1,'t ) h’td-f;f'tz !

The complete probability of the exceeding of level F is equal to
?G,>F)>]..i?(;¢,<>7:lfu gm)p’ (15 -gmddgse--dgm (3+4)

-

dence the expected term during which the level F shall be exceeded one
time is determinated by the formula

-
TGP Y557

{ T is a period during which strong earthquakes are registered, N is
the number of strong sartbamakes during this period; probability density
Py is normalizated with re pect to earthquakes mentioned).

A1l previous conclusions were made for generalized coordinates fx .
Stresses, bending moments, shearing forces are limear functions of gener-
alized coordinates (it is essential that the system as a whole remains
lirear). Let us assume some value v Yepresenting the linear combination
of generalized coordinates: V=CifitCafy+rs t+Cufun o Its correlation
fonction s given by means of formula

va (ta,ta) = ';Z: é CiCx Kfifx(f:ufz ).

Then the formmlze (3.3), (3.4) and (3.5) may be applied. For engineering
purposes the results must be presented in the form of curves analogous to
well knmown "acceleration spectra”. These curves depend on natural period
of structure, structural damping, prescribed term of structure exploita-
tion and prescribed failure probability to the end of this term. Two
last characteristics must have the same significance in aseismic design
a8 safety coefficient in usual statical design of structures.

4. Conclusion. The consequent of methods of the probability theory
to the aseismic design of structures demands the further development of
some divisions of applied seismology. The investigation of laws of sta-
tistical distribution of earthquake magnitode, duration and spectrum for
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different regions of seismic activity must be continuved. Maximmm accel-
eration and the dominant earthquake period depends on properties of the
ground in the given district. Consequently the investigation of the cor-
relation between the objective characteristics of earthquake (measuring
by value of releasing energy), the depth of focus, the distance from epi-
center, the maxiwum accelerations, the predominant periods and character-
istics of surrounding soils must be fulfiled, The knowledge of spectral
properties is scant. The investigations of correlation between parameters
of accelerogram envelope and characteristics of earthquake spectrum are
necessary. The problem of the distribution laws for "momentary" probabi-
lity of accelerations at earthquakes must be investigated too.

Our kmowledge of dynamical characteristics of constructions must
also be more exact. Because of difficult controlled influence construc-
tion foundament and joints the natural periods and especially the damping
characteristics are random values too. We note that statistical nature of
dynamic characteristics must be easily taken into account by supposing
that impulsive transitional functions in formulae of type (1.6) also
depend on random parameters. Then these parameters must be included into
the m(:mber of integration wvariables in the integral of complete probabi-
lity (3.4).

The theory developed in this paper is applicable for linear systems.
At the same time the behavior of construction in elasto-plastic stage is
of great interest. It will allow %o explain the often marked effect of
"accommodation" of construction to strong seismic action duve to sharp in-
creasing of damping and growing of natural period when nonelastic defor-
mations appear. If the nonlinearities are not great the method of
statistical linearisation may be used. Thus the proposed method after
some gensralization may be applied to the nonlinear systems too.
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