THE SEISMIC STABILITY QOF EARTH DAMS

by N. N. Ambraseys %

1.1 Introduction. Earth dams when subjected to seismic movememts of their
foundations do not behave sither as absclute rigid or perfectly elastic
oscillators. If earth dams were absclutely rigid, the accelerations at all
points within them would be equal to those of the ground on which they are
founded. Field observations and experiments however, show, at lsast qualitative-
1y, an increase in response with elavation, a fact which indicates that earth
dams have considerable elasticity and that they may quasiresonmate with certain
ground motion componerts. The cobserved increase in acceleration with elevation
shows beyond doubt that the seismic coefficient should also increase with ele~
vation, and that the crest of an earth dam may be subjected to accelerations
many times larger than those of the ground.

For small seismic disturbances, earth dams respond appraximately as elastic
oscillators; in general however, the response of such structures to strong ground
motions would be non-elastic. The analytical treatment of such a problem is
extremely involved. Approximate simulation of earth dam sections by other sec-
tions possessing linear stress-strain characteristics is therefore worth attempt-
ing. The use of highly damped linear systems or yleld spectra, although not
rigorously consistent with the bshaviour of the dam, may give & solution of the
right order of magnitude and be adequate for engineering purposes.

The device of using linear oscillators is to some extent justified by the
fact that, irrespectively of whether earth dams behave as elastic or elasto-
plastic bodies, their initial response is elastic. The treatment of the earth
dam problem in an elastic framework is a first step forward although it is by
no means the camplete solutdon to the problem.

Common practice in earth dam design in seismic regions ignores the non-rigid
nature of such structures, and a constant seismic acceleration is used throughout
the structure., Barthquake resistant design codes do however recognise the non-
rigid response of tall buildings, aslthough for earth dams they enforce a constamt
seismic coefficient, Figure la. The author recently made an attempt to obtain
information concerning methods employed in varicus countries far the seismic
stability analysis of earth dams. With the exception of the 1957-USSR code(17),
all other codes enforce a constant seismic coefficient which is independent of
the dimensions of the dam and properties of the fill materisgl; this coefficient
can be assessed from seismic probability maps.

The Russian code of 1957, however, enforces & seismic coefficient in spectal
form, which depends on the seismicity of the site. The magnitude of the seiamic
coefficient increases linearly towards the crest. The coefficient depends also
on the dimensions and properties of the fill and foundation meterials. When the
amount of critical damping in the fill material, and spectral intensity at the
site are known, the seismic coefficient is shown in Figure 1b.

. The fact that earth dams under selsmic disturbances do not behave as gbsolu—
tely rigid oscillators was §irst discussed in a paper published by the Ministry
of Construction in Tokyo(19). Papers on this problem were pullished by Mononobe

#Lecturer, Dept. of Soil Mechanics, Imperial College of Science, London S.W.7
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(1936), Martel (1938), Heiland (1940), Hatanaka (1955), Ambraseys (1959) amd
Napetvaridzhe (1959). The important conclusion that can be drawn from these
papers is that the highest ground accelerations are not necessarily those
which will cause the greatest’damge to earth dams. A study of the results
shown on Table I of the paper dealing with the seismic behaviour of earth dams,
shows that the maximum destructive effects on earth dams may not occur in the
immediate vicinity of a fault-break or epicentre. At a distance of say 20 to
60 miles from the fault or epicentre much more damage may occur.

From Table 1*¥ it appears that failures of earth dams are caused by long
period oscillations, and that fajlures can be more easily caused by large slow
movements of the ground than by high frequency shaking. The -high frequency
shaking, predominant on epicentral regions, may however produce rock slides
from steep slopes or flows and slumping of loose soils.

It is not surprising, therefore, that while earth dams situated in the
epicentral region of destructive earthquakes did not fail, those at distances
of 20 to 60 miles were damaged by the longer period of ground movements although
the ground accelerations were much smaller. ' .

In this paper, assuming earth dames to be elastic bodles, the seismic co-
efficients for different cases are discussed., The soil strength parameters
appropriate foar the calculation of the seismic stability of the fill and foun-
dation material are also discussed.

The Author is grateful to his colleagues at Imperial College, in particular
to Dr., D.J. Henkel, for many helpful discussions. ’

2.1 The seismic coefficient for an elastic symmetrical solid,

In this section, the formulation of the problem under consideration will be
presented in same detail; limitation of space does not permit detailed presen-
tation of the solution and only bare outlines of the analysis will be given; the
methods used are standard and the treatment is purely formal.

. Let us consider an elastic solid occupying the region defined by L3x20,
HPy2h, vith symmetric conditions far z:s b(y)> z)-b(y), where b(y) is a
contimous function of y8 , Figure 2a. Such a solid would be (i) a strip,

if b(y) is a constant with H2y»pP , (ii) a symebric wedge of arbitrary
crogss-section if b{y) = £(y), and (iii) a symmetric truncated wedge of arbitrary
cross-section if b(y) = £(y), H2yp h, with £(h) finite.

A particular case of (ii) or (iii) is that for the completly symmetric
wedge b(y) = a.y, with H>y>» 0 (Figure 2d) and that for the truncated symmetric
wedge b(y) = a.y with HPy>h, where a is a numerical constant (Figure Ze),

_ Suppose that the shear rigidity of the solid varies with y alone, this
variation being given as a wntimious function of y say G,(y), subject to the
condition that it does not vanish in the finite range [O,H]or[h,H] .

Let us consider the response in shear of the elastic solid described by b(y),
(Figare 2a), vhen its rigid boundaries at x = 0, X = L, and y = H are subjected

» Ambraseys, N,N.(1960) "On the seismic behaviour of earth dams" 2nd World
Conf, Barthg. Eng., Tokyo.

§ See Appendix for explanation of symbols.
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to an arbitrary unidirectional time deperdent acceleration g,(t), which acts
from t = o uniformly at its base and over the two vertical sides and at right
angles to the plane of symmetry of the solid.

If the elastic displacements due to shear, relative to the moving
boundaries, at a poirt be wu(x,y,t), the oscillations of the solid in shear
obey the equation

Qi Vu+ _g_ggy 24 4 pys [%% el -gwr]aomm- o

Yy o)
where
a(y) = GBI > o;  p¥) ==b(y)es™2; Gy (¥) = Gy.G(y)s

G(o) = G(1) = 1, and s is the velocity of the shear waves which correspon
to Gy for a given unit mass density of the solid, :

The boundary conditions for equation (1) are given by:

wo,yst) =0 veveenne(2); u(L,yst) 20 seiiiiiecninonenes (3)
u(x,H,t) = 0 oc.-....(l[.); —33—?—7— at y:h ssesssssvas (5)

and

ulx,y,t) = %_é—- 20 FOrt = 0 eeevveereveeacrvsses (6)

We assume that the variable coefficiemts™of equation (1) are restricted
in the region [n,H] by the following conditions: q{y) and its derivatives are
all continuous; qfy) # o; p(y) is continuous, and the range [h,H)remains for
all cases finite. :

The most convenient method of solving equation (1) under the conditions (2)
to (6), involves the application of a multiple Fourier type transform

o L
Us(my.j-95)= j ju(x,y,t) sin(mx)exp Et (j -%)]dtdx
0

where j>c/2. This transformation with the boundary comditions (2), (3) and (é)
reduces equation (1) to

L(g) * 32p(F)ug * B(¥753) = 0 seererirnencancnienenl?)

where

Lawr 4 [1 8-+ py 24 ] %
RC)',j )= "'J rﬂo(t)p()r) sin (mx)exp I—t (j -4 )] dtdx

and m=r®/L withr odd.
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now necessary to find solutions of eguation (1) -and also find values

is
£ i for wrich there exists an inmtegral of (1)-continuous and having a con-
inuous derivetive, not identically equal to zero, and satisfy t.gle transfoz-'med
cuncary sonditions (4) and (5). The variable parameire ply) is a negative

a::-er ard § is 2 mumerical parameire the value of which is not given before-

2y bhoey oV @

The non-nomogeneocus squation {1} can be shown to correspond to a non—~
homegeneous integral equation with, in general, an unsymmetric nucleus, which can
be sasily solved in series form, provided the nucleus is first symmetrised and

ne existence of a solution of the Fredholm equation is justified. The complete

inversicr of Ul lm,y.i-c/2) does not presemt analytical difficulties amd it can

asily oe established that the soluwion of (1) under the boundary ‘conditions (2)
o (&) can be expressed by double series in normal modes. For small values of

damping the seismic coefficient will be given by

jA

ot
iy

3

@ b

o0 o H
4 ot £ TRX
k—g_z: &Zgz '2;57"5”\ ("‘"—"L )'Ft\()’) J;, 'Fh(W)P(W)dW . Sa ————- )
where
{t
Sz = J 9,0t sin [W‘W Ct—t’)] exp [—.Awm_ (t—t')J dt’

L]

mat;“ éngy} are the fundamental functions, forming an orthonormal system, and

:J. s{l’ siz.ng tn:hhcmogeneoustquaoxtlon associated with (7) in the range [h,H] and
isfy the appropriate boundary conditions. T damp

frequencies of the oscillating solid. s The Wy are the un ed

¥any physical and engineering problems depend for solutio omo-—-
Sztggs;zl squation of (7). Such solutions, howeeg.;r s can belobt?a?n:g ?x:fyhf or
gmz 7 :;efgrms of the va.rla.!_:le coefficients involved. It can be established
“ ?aritiesoafg;n;ous equation of (7) possesses less than three regular
somlutian o ée A b: - which will depend on the form of G(y) and b(y), its
s S oty oh e.medsol in term§ of elementary functions. With threes regular
funixwwbiom e be e _Utm{l, while no longer expressible in terms of elementary
regiler s{ngnlaritmias coag in terms of hypergeometric functions, When two of the
remlting eotion s esce an irregular singularity is obtained and the

q on has confluent hypergeometric functions as solutions.

Hence, although formally a wide ity @

- b variety of problems can be solved, for

Zowms 16§rmmlys;: the evaluation of results-from transcendental functi.’ ons
volved, and in some instances when the zeros of confluent

hypergeometric functi i :
solutions become w:isi‘;btiefespe“ to one of its parameters are required,

In the followd i -
mumber of stmctura?fztgj:m we shall derive the seismic coefficient for a

2,2 Shear response ,
of wg‘zmr:'i&ldit "focwerb. urdens. Let us consider the case of an overburden
¥ UpFIng the reglon L>X)O, H?y}o, —w(z <+w: (Figure

2v}. It can easily be
giver by y be shown that the f:z;f:mmtal functions in this case are
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‘Fﬂsy) =J§.C°s 2—’5‘.1 TE]I/D] (‘l)n‘.!, = 1,2, 3' ______

The undamped frequencies of the overburden will be given by

Y/
Wor = <—g-){[%-1m]‘+ (.;;.)2}" eeeereenn(9)

and the seismic coefficient is

P

ke G Ze0e0™" cos (LY /5)sn(TE) S -0

)& T=i,3

In the case when the shear rigidity of the overburden diminishes upwards
with a wonstant gradient, there will be a lower finite 1imit to the rigidity
at the surface, Gy. By inspecting the fundamental equation it will be noticed
that the characteristic values and functions involve confluent hypergecmetric
functions as well as the zeros of such functions with respect to their first
parameter. A detailed discussion of this problem here is not possible; it is
of interest, however to note that if u tends to infinity (one-dimensional problem)
then the hypergeometric functions reduce to Bessel functions. In this case the
frequencies of free oscillation are given by

2,
W;.n(_g_)_!.'éb_..aﬂ eeveereraenanans @)

and the selsmic coefficient is given by

ke 57 LYY @-T @Y @Y) 5, ... a2)

24 ;i J2@4) /72 (K aw) -1
2.3 The embankment problem, Complete wedge. In this case the

solid ocoupies the region H3y»o, L7X»0, and -ay<z §tay, (Figure 2d).
It may be assumed that the shear rigidity of the sol:}d is independent of y.
The or-thonormal fundamental functions f;(y) can easily be shown to be given by

fae =8 7, (Ray/D) /7 (2n) D

The frequencies of free oscillation of the wedge are

%
Warel§) [ 20+ (I2)* ] rvereerns (13)

1349



N. N. Ambraseys

and the seigmic coefficient is given by

[od

k'fﬁi 2. 2risin (LEX ) To(8nY /D) g3 ..n- .. i
1,2

=12 rEs an Ji (3n)

which is identical with the expression derived by Hatanaks (1955).

2.4 Truncated wedge. The solid in this case occupies ths region Hay2h,
I>X 30, and -ay <z <*ay, (Figure 2¢). The frequencies of free oscillation
of the solid are now given by

%
- 2
War= () (1=K {a""»r{—’f—r—(;‘;—‘f—l} } ----- cennes (4%

while the seismic coefficient can be expressed in the form

s

rlsin (rix ) RACAWNACIENACIRAC AR TP

k-4 3
3 m—z‘: 2@/ 3P (Kat) - 1

0]
-

3

2.5 Discussion. All symbols used in the preceeding sections are explained in
the Appendix. 4 complete treatment of sections 2.2 to 2.4, though following a
different analytic approach, is given in references (11) and (12). Numerical
values for the parameters a!, ﬁ‘n, and a% as functions of k', k" and n are
given in Tables I and II, n

For the one-dimensional problem it is of interest to note that for k"=o
the seismic coefficient for a truncated wedge, (equation 16), reduces to thst
for a complete wedge (equation 14), and for k"=l it reduces to the case of an
overburden of constant rigidity {equation 10). In Figure 3 the variation of
the seismic coefficient pertaining to the first mode, at the crest or surface
of the oscillating medium, and for the one-dimensional case, is depicted as a
function of the parameters k' and k". Point A on Figure 3 corresponds to the
case of an overburden with constant rigidity; point B to that for a complete
wedge. The curve betwsen points A and B corresponds to the truncated wedge
problem, while the curve between A and C corresponds to the case of an over-
burden the rigidity of which increases linearly with depth. For higher modes
of oscillation plots similar to those in Figure 3 can be obtained.

?igur_e 4, shows the variation with depth of the seismic coefficient for the
one~dimensional cass when the coefficienmt of truncation k" varies from one to

zero, that is when the solid degenerates from a layer of finite thidtness to a
complete wedge.

Figure 5 gives a plot of the first six dimensionless periods of oscillation
T wihich are characterised by a value of the truncation coefficient between zerv and

and one. For the two-dimensional case a nomographic represemtation for the

periods of free oscillation T, are given in reference (13).
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3.1 The seisgmic coefficient for a symmetric wedge and underlying elastic
layer of finite thickness. The geometric configuration of the dam foundation
system to be considered in this section is shown in Figure éa. For the sake
of simplicity we shall consider here the one-dimensional problem ( u~»co)
with k" = o and G(y) = constant, It can be shown that the equations describ-
ing the motion of the dam-foundation system in shear deformation are:

2. .
22;; + -‘;‘7- g;"-s‘ [\.h +CYy -go(‘b ] = o for the dam

and

2 2 [ .
%“;_22‘ -5 [U2 +C- U2 ~ o) ] = o for the foundation
The prescribed boundary conditions are given by

UChi 1) = Chi, )5 leCt)=os Qa0 ot y-o:
G,-%=crz.?;‘72, &t y=hi; W(xo)=Uacy,0)=0

and ) .
UeCY,t)=uU2Cyt) =0 , at t=-o

The solution of these equations for u; and up is rather involved, and
we shall only give expressions for the frequencies of free oscillation of the
system and the seismic coefficients without going into analytical details.
The frequencies of free oscillation of the gystem are

—  reevesesisncessasnansecenass (17)
W= (B3

and the seisgmic coefficients for the dam and its foundation are given
respectively by '

- = Jo(Bn YD) Q. ... 18)
k=22, —5n qmm o2 |
0
Kp=2 >0 Mo(y) R UL LT p—— (19)

n=%2 anP, (g mm)
where

B@mN =4 [mcos@anTi@n) + SinGan) Jd]

= [ Sin@n {J@n)/bin - To@n) } -COSGE]: @]
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and

- -

Mo(Y) = C0S (gan L5220 ) o (Bon )~ SINGARY, ) To (Bim )

Again the symbols used in this section are explained in the Zi‘uppendjx.
Yumerical vaiues of the parameter &an are given in-TabJ..e I1I, while the
functions Polg,m,n) amd EnPo(q,m,n) are plotted in Figure 6b.

L.l Application of the seismic coefficient in design problems.

In this section the practical use of the seismic coefficient derived in
the earlier sections of the paper is discussed.

When standard acceleration spectra for the dam site are available, the

seismic coefficient may be expressed either as the root sum square of the first
m modes of oscillation:

or as the meximm absolute value of the first m modes:

K=1{Kal

where for any particular problem m need not be greater than four. For earth
dame the appropriate expression for k appears in practice to be th?t §iven
by {21), and this coincides with the expression employed in the USSR{18J,

nax ¢ 1D

Hence, in computing the design k, the values of kp to be used may be
obtained from either of the expressions derived in the preceeding sections, by
replacing S with the appropriate acceleration spectrum. It should be noted
that the value of critical damping to be used for the higher modes of oscil-
lation must be greater than that used for the fundamental.

When acceleration spectra for the dam site are not available, it may be
assumed that the dam, under damped conditions, will resonate in its first mode
for ore full cycle with a ground acceleration component of amplitude equal to
the maximm seismic accelerationol, given for the region in seismic probability
maps. The chaice of more than one cycle of ground motion occurring (a) con-
secutivdy, (b? with period equal to the fundamental of the structure,(¢) in a
direction at right angles to the axis of the dam, and {(d) with an acceleration
equal to the mmdmm for the region, is remote,

However, when this method (Resonance design method) is used, careful

examination of the i sit itd
mist be observed. prevailing site conditions, geology and structural details

When the resonance design method is used, S5, i i
< D s in the expression for the
niaicism:lﬁmmli is replaced_byd-.g {(A) and only the first term of the
S‘mwm- this case S(A) is the magnification factor for o cycle
ol o S damped oscillation of the structure in its first mode, and values
given in Tahle IV, For undamped conditions, a somewhat similar

;‘F”M.m was derived by Hatanaka (1955) where the magnification was taken as
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TABLE IV

A 0 5% 10% 15% 20% 25% 3%
S(A) 3.1k ... 275 ciey 234 oe.. 202 oei. 1.80 .ee. 1463 ... 1.00

After the qistributzj.on of the seismic coefficiert for a particular problem
has been established, this is introduced in the stability analysis of the
structure,

The stability analysis of an earth dam should be examined by the method
based on the principle of limit design. The shear stresses in the structure
and in its foundation are prineipally due to gravity and inertia body forces,
and the state of limiting equilibrium is considered to be brought about by a
reduction in the shear strength of the soil. The factor of safety may then
be defined as the ratio of the actual strength of the soil to that required to
maintain equilibrium. The strength required to maintain equilibrium is calcu-
lated from the two dimensional state of equilibrium along a potemtial failure
surface, which in the presence of horizontal inertia forces appears to diverge
considerably from the circular arc usially employed. For practical purposes,
however, the failure surface may be considered to be a circular are, or, a
combination of arcs and planes. The horizontal inertia forces, which will
deperd on the magnitude of the seismic coefficient and corresponding we%gsms
of the slices, may easily be introduced in Bishop's method of analysis .

In designing on the principle of limiting equilibrium, although local
overstressing within the body of the dam will occur, the average strength of
the soil along & potential failurs surface should not be less than that
required to maintain equilibrium, If this condition is violated, a portion of
the £i11 will slide along a potential failure surface. MNovement may be a few
inches or meny yards. In designing, therefore, on the basis of limiting
equilibrium there is no point in questioning how long it takes for a slide to
develop or that before there is time for it to do so the direction of the forces
which produced loss of equilibrium will be reversed. Once a potential failure
surface is developed and a portion of the £fill slides on it, no matter how small
the displacemsnt, on the basis of limiting equilibrium, a2 failure has occurred.

For cohesionless material of low degree of saturation, with an angle of
friction @', on a slope inclined atﬁ to the horizontal, the factor of safety
F against local sliding under the influence of a horizomtal acceleration k.g
can be shown to be

When the resonance design method is used, the factor of safety against sliding
over the whole surface of the slope is given by

1 -0.983(2)xtanf —em e —eo(23)
0.98 S(A ) + tamB

F=ta:n ¢/

. - . ‘stribution of k
Bjihovskii. (1956) derived a similar expression Pased on the distribution
shown in Figure 1b, which, however, may overestimate- F by as mach as 30%.
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5.1 3Strength paraseters. The soil's strength parameters to be used for the
staciiity analysis of an earth dam under seismic conditions must be examined
very carefully. when an earth dam and its foundation are shaken by a strong
earthguake, the available shear strength to resist the seismically imposed
shear stresses is not the full strength of the soil, since far the static
stability of the structure a certain amount of the soil's strength has been
mobilized by static forces, The strength mobilized for static equilibrium is
osfter 60% or more of the tobtal strength. The strength available to resist the
seismic stresses will not in general be the remaining strength on a static basgis.
Tne reason for this is that the application of the seismic forces will lead to a
change in the pore water pressures in the f£ill or foundation material, The
time of loading by the seismic farces is so short that no drainage or dissipa-
ion of pore water pressure can occur and the failure conditions in these
circumstances will involve a pore pressure differemt from that implicit in the
assumpticns rade when computing the static ‘stability. Hence, the strength avail-
able +o resist the seismic stresses will be that which the soil will have if,
after being stressed to the poimt which represents the stress conditions for
static equilibrium, it is then sheared under undrained corditions.

One important characteristic of the resistance of soils to seigmic stresses
ig that, when saturated they will fail under undrained conditions. In these
circumstances Lhe saturated soil appears to behave as though the angle of shear-
ing resistance were zero and the availahle strength is independent of the magni-
tude of the stress changes. Hence, saturated soils and soft weakly cemented
sandstones under seismic conditions apparently behave as cohesive materials and
the value of their apparent cohesion ¢, will depend on their stress hist.ory.(g)

) Without going into details, the appropriate testing procedure to be followed
in determining shear strength parameters in soils may be summarised as follows..

5.2 Jrmedistely after construction. .

(:'.) In the case of fills of comparatively low permeability there may be no
appreciable decrease in pore water pressure in the campacted or foundation
material by the end of construction. The shear strength paremetérs c' and 4!
of the soil mast, therefore, be determined from undrained tests with pore
pressure measurements, and the appropriate values of pore pressure for the
particular factwr of safety must be used in the stability analysis.

{ii) If the £ill material is co i

z mparatively permeable so that by the end of
construction no appreciable pore water pressures will exist in the fill, the
shear strength paf-ameter§ et and ¢' mst be determined from undrained tests
ca{'ned out on anmisotropically consolidated samples. A range of consclidation
i:rzmﬁpg str;;s ratios for the consolidation process must be used so that the
rpmgﬁi ? ective stress parameters may be obtained for any point in the

o {ﬁliitf‘oghmmauy consolidated saturated foundation materials of low
commazt. wili hz appropriate tests on specimens remoulded at the natural water
show oyr and g=o when sheared under undrained conditions.

{(iv) For permeable saturated foundation materi

for ials, for which the pore
g::iﬁfmmmlnﬁﬁy s:t. o};p by the structural load may be considered to gave
bo o and g oen o construction, the appropriate strength parameters will
dated s llowirs no iatera.lse values can be obtained from saturated samples consoli-~
the consalidarion yield, and sheared under undrained conditions. Since
o T At lon pressure decreases along the base of the dam approximately in
: oport ot mzazialmc?tbf the £i1l z}bove it, the undrained strength of the
ieswmme et 1 be expressed in terms of the ratio (cy/p),, where p

pressure, c; the undrained strength or apparg'nt cohesion

1354



The Seismic Stability of Earth Dams

and 2 a suffix denoting anisotropic consolidation. Bishop (1955) has shown
that for sands consalidated under K  conditions and which have not been
unloaded, the ratic of the undrained strength to the maximum conselidation
pressuré is only 1/3 of that for isotropic consolidation. For materials
which have been precompressed this difference is likely to be smaller.

5.3 Long term stability.

(1) For the fill material below the phreatic line, the appropriate tests
will be undrained tests on samples initially consolidated under the anisotropic
stress condition which obtains in the field and then saturated before shearing.
The strength parameters will be (cy/p), and g = o.

(ii) For the fill above the phreatic line, the strength parameters will be
c' and g', obtained from consolidated undrained tests on campacted samples,
with pore water pressure measurements.

(1ii) For the foundation material, assuming full saturation, the strength
parameters will be (cy/p), and # = o for non-sensitive soils and oyp, # = ©
for sensitive deposits,

(10) The testing procedures mentioned in this section are described in reference
10J.

6.1 General recommendations for earthquake resistant design.

1) Monolithic or articulated concrete diaphragms endanger the stability of an
earth dam ard these as well as concrete revetments upon which the impermea-
bility of the structure may depend, should be avoided,

2) Thin layers or lenses of weak superficial material should be removed from
the surface of the foundation.

3) Placing of the spillway on the main structure, or crossing of the dam by
outlet or draw-off pipes should be avoided.

L) Cut-off walls should preferably be of puddle clay of generous thickness, and
where compacted clay core walls are used they should be of generous propor-
tions and should preferably slope upstream. Filters of generous dimensions
are absolutely mecessary.

5) Substantial free-board should be allowed for, but even so, rip-rap protection
of the downstream slopes is essential.

6) Weak abutments should be avoided, and when weak formations are grouted care
should be taken that grouting pressures are not excessive.

7) In the reservoir basin potentially steep banks which may become unstable under
seismic shocks should be flattened to a seismically stable slope before
impounding in arder to avoid tsunami-type water waves.

8) Outlet pipes should be provided with valves both on the reservoir and outlet
sides and the mechanism for the control gates and valves should be simple and d
designed for rapid operation in an emergency.

9) It is advisable to examine the stability of the upstream slope of major earth
dams under rapid draw down conditions coinciding with an after-shock, It is
not unlikely that tilting of, or slides in the reservolr basin may set up waves
after the major shock, which may produce almost instantaneous draw down, In
this case the top part of the dam may be subjected to a 30 to 50 feet drew down
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slus the action of inertia forces.

curdation materials such as saturated silis, loose or medium saturated
ca-ds ard sensitive clay deposits should be avoided. DMaterials of very
i Feerert elastic properties should be also avoided.

11) The post-seismic stability, both of the fill and foundation should be
zired. High stresses applied to and removed from soil masses will result
in sett.ng up residual pare water presswres and their dissipation with time

may lead either to further consolidation or swelling of the fill and
fsundation material (AX{7).

:

22) Straddiing of an active fault by major earth dam should be avoided.
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8,1 Appendix

L=Ilengbh Ofdam P
= Height of dam or thickness of overburden ...eecvecsescsosnee coasss L
=Width at cz‘esb bwl LA IR R L IR R O ) LR IS A A AU I I A B A I AR R B IR L B B 3 A ) L

Width at foundation level ......... vesnas veocscnans seveeen veeacen . L

R W v v
it

= MoQUIUS OF PAZLAILY v vvevenvseennsessensessosososceonnesonsnnneese ML T2

]
[

Acceleration dus tO Zravily ..eeieeeiecescercesssoccencesssnansesens b vt
k = Selamlc coefficiom ...ccovevcrrnveaccassrecnovessronscasss PR §

s = Velocity of shear waves ........ hresreesareces Ceessens teeeeesiesss LT-L

¢ = Damping coefficiemt ...... ceseesnsrserssaressrnaerne seeseanns vee. T

X = Fraction of critical damping (B) ..ceseeeerecernorracsossnaeessses 1
w = Undamped frequency ....««sses. eteeerieenessessensreesaennanaesess T
T = Undamped period ....... ceeaestsrerensirens cassenvenssevraense vees T

u = Displacement at a point due to shear, relative to moving
" Depl ° P ’ boundaries ....... 1

s ' 2
Bolt) = Seismic ground acceleration ......cceesceseses cevesesescssses LT

X,¥,% = Rectangular coordinates .......cceceecercarransacrrcccsenvennes L

y! = Coordinate measured downwards from crest or surface of
overburden se.e.e.. L
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H = Coordinate of rigid base of dam or foundation measwred
from arigin of X,¥s% 8XES  se.eeievrrrererrirtietritnnsanons L

h = Coordinate of crest of dam or surface of overb............ .s L
}“ = Ratio of length to heigh of oseillating body covvveevnranne. 1

2
k! = Rigidity ratio, pertinent to overburden protulem k! = (G—t/Gb)‘l'/

K" = Coefficiemt of truncation, pertinent to embaniment prohlem
q = Stiffness coefficient; q = m (Dp/Dy)
m = Stiffness retio; m = (51/52)

ah = mthroot of Jo(ah)¥; (k'ap) - J;(k'ah)¥ (ah) = O
aj = n~th root of eq. similar to that for a), but with k!

an = n~th root of Jy(ay) =0
§n = n=th root of m.tan(qd,) = Jo(!n)/Jl(E'n)
1,2 = Indices denoting properties in the dam and foundation respct.

b,t = Indices denoting properties at the top and base of dam/overb.

n,r = Indices dencting transverse ard longitudinal properties
’ ’ — KZ‘

Y‘sa'.“{(! -Dk' )}"I’K‘}
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TABLE I

k! (}b/Gt, ai a’2 aé
9534 ... 1,100 ... 34.080 ... 101.370 ... 168.833 ...
0.9434 ... 1.123 ... 28.079 ... 83.363 ... 138.820 ...
0.9259 ... 1.166 ... 21.538 ... 63.730 ... 106,097 ...
0.9091 ... 1.210 ... 17.61 ... 51.950 ... 86.462 ...
0.8696 ... 1,325 ... 12.386 ... 36.246 ... 60.285 ..
0.8333 ... L.440 . 9. 775 ... 28.396 ... L7.197 ...
0.7692 ... 1.690 ... 7172 ... 20,549 ... 34.111 ...
0.6666 ..o 2.250 ... 5.104 ... 14.281 ... 23.649 ...
0.4000 ... 6.250 ... 3.107 ... 8.066 ... 13.222 ...
0.2500 ... 16.000 .., 2.668 ... 6.580 . 10.666 ...

0 ... var 2405 vev 50520 ... B.654

TABLE 1II

kv aff aj aj aﬂ ag

0  +ee 240 400 5.52 ... 8.65 ... 11.79 ... 14.93 ...
0.300 ..ue 2,45 cve 5.72 «os 9.30 .., 12.60 ... 15.98 ...
0.158 ... 2,51 ... 5.97 ... 9.66 ... 13.26 ... 16.90 ...
0.200 ... 2.57 . 6.23 ... 10 05 ... 13.92 .., 17.81 ...
0.250 ... 2.67 . 6.58 ... 10.67 ...m.so... 18.96 ...
0.300 ... 2.79 ... 6.99 ... 11.39 ... 15.83 ... 20.29 ...
0.500 .., 3.59 ... 9.60 ... 15.82 ... 22.07 ... 28.34 ...
0.800 ... 8.21 . 3.69 ... 39.34 ... 55.03 ... 70.73 ...
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TABLE IIT

ar a2 8

een 2504 vt 5,520 2.404

eee 12961 ...l - -

ees 1631 L., - -
sese 12375 cov. 3440 1.090
ceee 1,185 ... 3.035 -
esee 1030 .... 2,763 -

sese 0.915 ... 2,515 0.752

.o 0,831 [... 2,313 -

.o 0.625 ... 1.823 o.54,

«e O, veee L.325 -

.e 0-3&9 sea e loO[-lvo -

m=1 m=2
TABLE JIiIa
m=1 m=2
PQ(Qslxl) alPo(qyl’l) PQ(Q;z,l) alPo(q’z,l)

sese 04519 (... 1.250 0.519 .... 1.250
eee 0,641 ... 1.260 -~ eeee -
o e 0-795 o5 0w 1-3(1') - sasve -
eeee 0,980 ... 1346 1440 .... 1.570
ses 1,170 oo.. 1.385 - eiee =
eeee 1,380 .o0. 1.420 - eees =
eow 1580 .0.. L4l 2.170 .... 1.630
cvee L7777 oeea 1475 - iees =
eses 2,410 ... 1.510 3.030 .... 1.600
ceve 3421 .... 1532 - tese -
seve - cave lo560 - “sva -
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