NONLINEAR TRANSIENT VIBRATION OF STRUGTURES
By RYO TANARASHIL
SYNOPSIS

In this paper the writer discusses two important probtlems regarding
to the nonlinear transient vitration of structures against earthquake
shocks. The former studied in part I is the problem of analog computer
analysis, and the latter considered in part II is one of the theoretical
analyses of the torsional vibration responses of framed structures.

PART I. ANALOG COMPUTEZR ANALYSIS

Preface: For the design of earthquake-resistant structures, tehavior cf
the structures under the action of earthquakes would have to be clarified
as exactly as possible, and hence a series of analyses on this problem
have been carried out in recent years. When a structure is subjected to
large dynamic loads, the stresses exceed the yield point and the behavior
of the structure will be of nonlinear type. Then, it is very difficult
to analyze the problem if the structure itself is not simple. An electro-
nic, low-speed analog computer, recently built at the Faculty of Engineer-
ing, Kyoto University, was equipped with a backlash element and enabled us
to obtain accurate transient responses of a viktrating system with an ideal-
ized bi-linear, hysteretic restoring force.

Application of Analog Computer: Computations by means of the analog com-
puter are made with assemblage of a set of elements such as amplifiers,
potentiometers, servo-multipliers, etc. The computer simulates a collec-
tion of basic building blocks interconnected so that they are governed bty
the same set of fundamental equations as those describting the system to
be analyzed. In the electronic, differential analyzer, the components are
capable of summation, integration, multiplication, and generation of arbti-
trary functions. Thus it is capable of all the operations necessary to
solve ordirary nonlinear differential equations.

Then, the nonlinear vitration of building structures is studied in
the behaviors of idealized multiple-mass structures for which case the
fundamental differential equations of motion for the system subjected to
an earthquane shock can be written as follows.

/W"/Y,‘* G.’ (“;;t)—G'.,] (“;,,; t) = —.M/\/G (1)
where ¢, = A/‘ - X =y (See Nomenclature) Introducing the

quantities /D‘-=4/)€;//14,; » G; (u.-)= ki?i (u;) ’
Eq. (1) can be written as
/\/l: + /bb??" (ui) Qp:;;‘*/ (ai'l)é&l/éc. = -—XG . (2)

In the case of i = 5, for example, the block diagram of the analog

1 Prof. of Structural Engineering, Kyoto University, Kyoto, Japan

1223



N 3 + fay 3 Felnre Bk Be
SomDULeYr COorresponging Ut ie fe} 18 3nOoWn in

nown in Eq. (2) or Fig. 1 are
iements, but in the case of
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single ma : : z ;
* ' s not so complicated as in Fig,
2.

ilthough it is desirz*le that thes aciuel strong ground motion is a-
dopted as for the program source of imput, we have no rehabZ.Le records of
strong motion in Japan as yet. Therefore, the full-cycle, sine-, cosine=-
and rectangular-acceleration pulses are introduced bty way of inpui;; func~
ticne, XG/p , corresponding to earthguake shocks. For example, F:Lg: 6
shows the block diagram of ihe function generator of full-cycle cosine
pulse,

Results of Analvsis and Discussions: The analysis has been made for the
seven values of @; 0°.ideal piastic), 13°, 23°, 309, 369, 41° and 45°(1lin-
ear). Ground mctions were assumed %o have a combinat.ilcm of various values
of O and T/Tc. Paranmeter O related to the value of X has been chosen
from among the five values, 0.2, Ou4s 0.6, 0.8 and 1.0; ratio T/To ranged
from 0.6 to 2.0 at intervals of 0.2,

S
1

The ground acceleraticn as well as the responses of the gystem, i.e.,
the displacement and velccity, were automaticzlly recorded by the comput-
er as functions of time. 4 total of 840 sets of response curves were anaw
lyzed for single-mass systems. 3ind, in arrangement of these responses,
our attention has been paid to the quantities Xp, Xps Xz and t as shown
in Fig. 5, which is an example of the displacement response curve obtained.

(4) Spectra Xp and X, relating to T/T,

The transient maximum ampiitude of the nonlinear system, X,, and the
maximum displacement measured from the initial equilibrium position, Xp,
are plotted in Figs. 7~12 for the ratio 'I’/To with parameters @ and .

In Figs. 7~9, spectra drawn ty broken lines and chained lines show the
responses corresponding to the ground motions which have the same velocity
or the same displacement but different durations, Observation of the
spectra will indicate what follows.

1) When the absolute value of ground acceleration, ¢, is small, i.e.,
X = 0,2, vibration of the system is elastic regardless of the shape of
ground motions and the nonlinear characteristic of the restoring force @-

2) For the range of @ from 30° to 45°, each of the spectrum curves
shows a distinct peak, which lies in the region of small T/’I‘o. The loca-
tion of the peak moves toward a2 larger value of T/’l‘0 as parameter ¢p de-

creases, When & approaches zero and & is large, the spectrum curves have
no peaks.

3) Comparison of spectra for different values of & indicates that the

“backhone curve of the spectra stands steeply if @ is large encugh, while
the slope of backbone curves decreases with decreasing of ¢.
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4) The spectra of Xp plotied for the ground mctions with the same
ground velocity or displacement show distinct pesks around ‘T/'I‘o = 0,7
with small variation in their locations.

From the above observation, it can be mentioned that the maximum dis-
placement of a vibrating system with a certain value of & cannot be deter-
mined even when (X may be constant. This implies that the response of the
system has nothing to do with X alone but it is also closely related to
T/T , and that a reasonable criterion of specifying the maximum distortion
of the system during an earthquake would be the velocity or displacement
of the ground motion rather than the ground acceleration.

(B) Spectra of Xp/X.

In order to study the results in detail from another point of view,
in Figs. 13~15 plotted were the specira of the ratic of X, to the corre~
sponding amplitude of ground motion ;. These diagrams will clarify the
following features.

1) With a few exceptions, the maximum amplitude XR/XG decreases uni-
formly as T/T, increases.

2) If the ground acceleration is small, say, & = 0.2, we can see that
the vibration of the systems remains elastic, and that the shape of the
‘pulse is of 1little consequence for any value of [

3) The greatest maximim amplitude XR/X occurs for small &, and with
increase in O the peak shifts its location toward a smaller value of T/To-
When ¢ is further large, no peaks can he seen at all,

4) In most cases, the slope of the spactrum curves decreases as the
restoring force of the systems enters into the plastic range. Consequent-
ly, in the region of sSmall values of T/To, X /‘LG becomes smaller for a
larger value of (X, whereas in the region of %arger T/’l‘o this goes in the
other way. Therefore, the spectrum curves as a whole intersect each other.

(C) Relationship between Xp and T/T,

After the action of a ground motion is over, the position of equilib-
rium of a vibrating system differs from the initial location because of
plastic deformation occurred in the system during vidration. We present
the residual displacement of the system from the initial position of equi-
librium, X_, which is shown in Fig. 16. Features of the same kinds of
this diagrgm may be summarized as follows:

1) For the larger value of @ than 30°, it is noticed that X is ap-
proximately equal to zero for any values of o and T/T .

2) When g is zero. Xp increases with T/T,, but regularity in the
shapes of spectra cannot be found.

3) When @ is small, however, we see that for smaller values of T/T,

than 1,0 dispersion of spectra is not remarkable regardless of , and
that for the larger values of T/T, than 1.0 the dispersion of spectra is
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now notable regardless of &,
(D) Relationship between t/T, and ot (with T/T, and @ as parameters)

The values of the ratic of the period of vibration of the system -at
the maximum amplitude, t, to the elastic natural period, T,, have beel_’x
plotted againstaandshown in Fig. 17 in which the case of T/Tg = 1.4 is
represented. From the same kinds of this diagram we can obtain the same
conclusions for two kinds of ground motions.

1) It may be said that when the value of ¢( becomes large, the period
of vibration of the system is considerably elongated. Moreover, the elon-
gation of the period may be associated with T/T., in such a way that larger
values of t/T_ is effected by the increase in T/T.

2) When ¢X is small, the value of ’c/TO is smaller than unity fo:; a
small value of T/To. This means that in this case the maximum amplitude
of the system occurs during the forced vibration era.

3) Dispersion of the spectrum curves, depends upon the value of T/T o?
namely, remarkable dispersion is ohserved when ‘I‘/’I‘0 is relatively large.

4) When T/T_is larger than 1.2, the largest value of t/T, is result-
ed in the system with an ideally-plastic restoring force characteristic.
Also, when T/To is smaller than l.6, the value of t/To for the linear sys-
tem is constant ard approximately equal to unity.

Conclusions: In this analysis, it has been shown that the electronic,
Iow-speed analog computer is extremely useful and time~saving in ohtain-
ing responses of the vibtration systems with bti-linear, hysteretic restor-
ing force characteristics. The accuracy of the responses ohbtained by the
analog computer has teen found to check favorahbly with those computed by
the Phase-plane-delta method under the same conditions. It has therefore
been confirmed that we can employ this computer to the asseismic analysis
of structures,

PART II. NONLINEAR TURSIONAL VIRRATION CF FRAMED STRUCTURES

Preface: 1In general, displacements of both structures and the ground will
not necessarily be in the same direction hecause there are unavoidable
asymmetricities in mass- and rigidity-distrivutions of the structures in
many practicalcases. Then, the structural behaviors contain inevitarly
so-called torsional vibrations, Therefore, it may te said that the re-
sults of analyses on the structural responses in the direction of the
principal axis of structures are likely to confine the complicated phe-
nomena to one possibility which arises as in a special case.

On these torsional vibration problems of the structures several theo-
retical analyses have been reported already so far as the linear vibration
systems are concerned. However, these results did not seem to point out
the occurence of the ghenomena of unstable torsiocnal vibrations, as will
be discussed later. <from this point of view, this paper treats the analy-
sis on a simplified structure of specific type by Meissner's graphical
construction.
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Equations of the Unstationary Torsional Vibrations of MuMi-story Framed
Structures: Let us consider a rectangular N-story framed structure of L
by L7 spans, planted in a rigid foundation., Since dead loads of the
structure seem to concentrate usvally on each floor level, we may idealize
the dead load on each floor level as a mass. Even in the nonlinear tehav-
iors of the structure, shearing deformation of the floors in their plane
are so small that these deformation will te neglected.

Now we adopt X, Y rectangular coordinates and nomenclature following
the body of this paper.

Denoting restoring force functions, which do not contain time t ex-
plicitly and relate to the relative displacement hetween the stories, by
P, gfFY , we can obtain the general equations of the nonlinear torsion-

al vibration as follows:*
Mg » B B G €8-G 2 806)
~F 0~ 8060 )~ (5,+ 8708 = -M, 7,
Mz, + 211G (x+578) - (x,, 76}
{00 )~ (2w g G0N = =M, %,

\
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In the linear problems, the terms
Eﬂ"){(%‘,é"’d)_(%_ﬁ. {:_’;)q-/)} et E_::.,{[y_h/_, ii’/’éﬁ)__ (yJ_, f:r)ﬁ‘ ) }
wa G 10e -G O G K o0 2 )= e [ B))

in Eq. (3) are products of force and displacement, but these terms in
the nonlinear analysis appear as nonlinear functions of displacements.

Eq. (3) then appears to be simultaneous nonlinear equations, so it
is always very troublesome to get solutions of the equations in transient
states even when the distribution of mass and rigidity is symmetric in
either the Y- or Y-direction of the structure.

Although the exact solutions of Eq. (3) can not be given analytically,
such a step-by-step procedure as Meissner's graphical construction or the
phase-plane-delta method introduced by Prof. L. S. Jacobsen, or numerical
comput itions by finite difference method are available to obtain approximate
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solutions correspending to several initial conditions. Thus we are sble
Yo analyze this problem by seeking many a solution for each initial con-
dition presumed and to study the nonlinear torsional vibration phenomena
ty comparing these solutions to each other.

Solutions of Transient Vibrations of One-story, Cne-spaned Structures:
Let ug consider first a rectangular structure of one-story and one-span
on @ rigid foundation as shown in Fig. 18, Then the equations of motion
of the structurs are written by giving N =13 r =1, 2; r*' = 1, 2, as
follows,

M+ F Uy E70)+ F ™y~ £760) = - M3, (40)
M/?: + G(l)(z+,7u)6)+ 6(2;x+)2(z')5) - "’M/.ia (Lb)

IG§ F iy €O F Yyt Dy g D G o 910,

From Egs. (42),-(4b) and (4¢), we have

ME +(1+eEIF (B (/L &IF (ZIretsG (z+zi§'-'§% *ef,'zﬁ(t*z—‘;'f%)- ~My, (53)

M:’é,+(/+e£€,)1-7tz,>+(/+e§f>)§fz,)+e§2Q(z+z-§}g-}engg(z~z§-}§= ~-MZ, (5b)

M +G (g T (2 5o ) = pA, (5¢)
where
& (2) M
y*‘f@ 2, 4 %"‘f (9=Zz and eaT,

The natural periods of small—-amplitudé vihration of the structure
are obtained from the dimensions shown in Fig. 18. They are

Ty = 2%/ 5.00k/M .. in the X-direction,

1Ty6 = 2n/ Z.55k/M .. the fundamental mode of simultaneous vitration
of Y, and

2Tye = 27/ 25.47%/¥ ++ the first higher mode of simultaneous vibra-
tion of Y. .

Here we let Tr and T_be periods of the structure, both when it con;
sists of either rigid of Boft frame alone,

T, = 27/+] 20.00k/K ++ of rigid frames,

T, = 27/ T.50K/H +« of soft frames.

Assuming two kinds of elasto-plastic hehaviors of the structure as
given in Figs. (194) and (19B), we obtain the sdlutions of Eq. (5) by

Meissner's graphical construction, and show them in Figs. 20 and 21.: The
ground motions are considered now to act in the Y-direction only, i.s.,
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X, = 0, and to te of the same mean velocity., Periods of the ground motions
ars adopted ty Tr’ T and lTve as mentioned atove (which correspond to ine
dices in Fig. 20 and 21)

Between the structural behaviors subjected to such ground motions' for
one period durzticn, any striking difference is not recognized. Put we
are able to say that the structural behavior sutjected to a ground motion
of / period, though it is not shown here, appears so little that we can
not” tit its response curve together with others in the same scale,

The authors have observed, in latter case, that the structural rehavior
oscilating in 5Ty period under action or ground motion shifts itself into
the vibration ir 1Ty9 period after the action of ground motion disappesrs.

Stable and Unstable Problems of Structural Rehaviors due to Torsional Dis-
flacements: Since the restoring force characteristics of structures usu-
aliy seem to be of soft spring type, we write them as

GO =rC-pC0+ Y0 C#50, 8503 ©

#e now assume that the displacement x is so small in the vicinity of the
origin that powers of x ahove the third may be ignored in comparison with
lower powers and thus replace Eq. (5¢) by the following equation

MZ + (2£-687260 x -2Bx"=-MZ, . (7

We can ohserve easily that one solution of owr prohlem is given by
x = 0., The angular displacement 6 arises due to the ground displacement
in the Y-direction alone even though X, = 0 and x = 0, so that the cues-
ticn is whether this sclution is stable or not when the angular displace~
ment increases,

It is perhaps of interest to interpolate at this point the treatment
of the stahility problem on a purely static tasis, as in the theory of
elasticity. By dropping the acceleration term we ortain from Eq. (7) the
following equilibrium condition

a,x + a,x’ =0 (8)
wifh a) and ag given by
24 - 68,6
a; = -2/6

In the theory of elasticity, displacements x are usually restiricted so
small that nonlinear terms in x can be ignored: in this case the equilib-
rium condition takes the form &,x = O, with a; defined ty Eq. (9). Conse-
quently x = 0 unless ay =0, the latter equation in turn furnishes
from Eq. (9) the following "critical" value for 6:

, B _ | | .
ecrzt. - i.‘/ 3/67‘ o
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v trium be-
at which the structure would tegin to collapse, since the equili
comes indifferent for this value of 8 in the sense that x is now arbitrary.

We turn now to the dynamical treatment of the protrlem which yields )
the same value for 9 . We replace x in Eq. (7) by v(@v/dx) and obtain
the first order equa?.ﬁn

3
dv _ [ _ax+a,Z (11)

dx M v

with a. and a, as defined in £gs. (8) and (9). Consideraticn atout the
character of Bq. (11) at the origin is analogous to examining the sta*il-
ity of

__5_{_2:’;_:._ /! &X (12)

aAzx MV

on the phase plane by Poincaré-liapounoff's theory. Therefore, if ay is
positive, the equilibrium point (0,0) of the frame is a necenter”, while
it is a "saddle point" if aj; is negative.

If a; > 0, 2 slipht disturtance from the equilihrium position results
in a oscillation, rut if a, < O, the motion departs widely from the
aquilibrium position even upon thie slichtest disturtance. From Egs. (9)
and {11) we can conclude, therefore, as follows: '

ijifex 8rit.? vibration of the center of mass in the X-directicn
ia star1STHat : '

ii) 1f © > 6pit,, the vihration is unstatle,
In this case, the coordinates of singular points are expressed ty
x = xV(-ar/a;, = =V £-38n26")/8
= 2V 3520, - 0% (13)
from kgs. (9) and (10).

when a; > 0, i,e, 8 < 8,34 , there are two positiovns of equilibrium
besides x = O, The fact that these positionsz correspond to the saddle
point is clarified by the following considerations: Now, let us consider
one of the singular points in question (/{-a 57a3, O0). By a transfer of

the coordinates by x - V(-3 a, =0, Eq. (11) vecomes
Av__ | 2a0-3a;V/¢ar)/a0’-a,d”
Ko M vV ()

Application of Podncar&-Liapounoff's theory to Eq. (14), as well a
. 3 Eq.
(11), equalizas the singular points of Eq., (14) with th; ones of
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Adv _ [ 2a,0
Ao - M : Py (15)

in character. Since 2a; > 0, the two equilitrium points, x = /(- a5,
are saddle points. As the rotating angle of the structure 8 gradually
increases from zero, the absolute value of x decreases. When & reaches

) o s X tends to zero, In this case of € > ecrit s these three singular
po{%Es concentrate into one point x = 0, and consequently, it is known
that the origin x = O is now an unstable singular point. The trajectories
of these two cases are indicated in Figs. 22 and 23. Fig. 23 shows the
movement of the positions of tae two unstarle singular points due to the
increase in © when 9 < eérit-'

Since the frames can not have any stable state so that it behaves
very unstahblly in regard to the amplitudes of torsional vidrations if 8
becomes greater than 8 rit.? it is desirable to make 8.4, larger. If
characteristics of res%or%ﬁg force of a frame in the x-direction is of
hard spring type, we have to reconsider the case where £8<O0 in Eq. (6).

In this case, Bcpit, does not exist by Eq. (10), and there are nc unsfahle
phenomena ohserveé.

However, unless twisted wires are prestressed, the effect of wires is
not recognized very much in the case of small amplitudes. Therefore, Eq.
(5) can te changed into :

G(C) = £C-(B-x8D’° | (16)
in which A£>0, x>0, B>0 .
The reason why we have the coefficient of C3 containing &2 is the fact

that tg§ unstable phenomena are directly related to the increase of 8,
Also, is convenient to carry out the following analvsis. We obtain

a,=2{k-3(8-a@°) 501 W
a, = -Q(ﬁ—aﬁ‘)

O,pit, = 218 (/= T=Fak 37/ 21
( O< Ak /3892 < / ) |

corresponding to Egs. (9) and (10). In this case, though the origin is
stable for 8 <. 8,4 but unstable for 8 > 6.p5¢,, 85 well as menticned be-
fore, there are no other singular points except the origin, so far as
a3<0in 8> 0,54, Since the increase in 6 leads to a.z > 0, two new
equilibrium points given by Eq. (13) arise and these positions are pre-
vided for

X=tvViapia,=tV-1A-3(B-aB) 61/ (X8 B)  (19)

Having the coordinates transferred into these positions we know that Eq.

y  (17)
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715} ig availatle, However, since 2a]T< 0 in this case, these new singu-
lar points o~ = 0, v = O are centers. JThus the frame, which was unstahle
for 8.2+, > 8, moves to two other stable states. It is noticed here‘bj.r

that the effect of strengthening by twisted wires is remarkabtle, even if

it is slight.

Conclusions: Since most structures are asymmetric in the mass and rigid-
ity distrirutions, and since ground motions are rarely acted only ir one
dirsction, torsional vibration of the structures in the event of earth-
quakes will be unavoidable. Therefore, it is indispensable to investigate
unstable phencmena which may lead the structures to collapse.

For the practical design of buildings, it will be the best idea to
endow structures restoring force characteristics of hard spring type, and
at the same time, we shall need to make the rigidity of structures distri-
huted as uniformly as possible in regard to the ultimate state rather than
the slastic range of stiffness members.

In this sense, it will he more advantageous that the torsional be-
haviors of the structure should be taken into account by assuming a sels-
mic wave resonating with the natural periods of rigid frames T, as a mea~
sure of destructive earthquakes. This fact is shown in Figs., 20 and 21,
Hesonance with the natural periods of rigid frames concentrates a seismic
force on the rigid frames, and if yielding of the rigid frames precedes
hereby, it lets their rigidity approach those of soft frames, and at last
this makes amplitudes of torsional vitrations small, being influenced also
by dissipation of energies due to yielding, This mav be the same thing as
the effect of "plastic equilibrium of stress" or "self-help".

Further, we have to pay much attention to the fact that ununiformity
of loading masses may hring a worse effect in the plastic region of stiff-
ness mermbers in the structures, . -
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NOMENCLATURE

Part I

M : Mass

X : Relative displacement of the mass with respect to the ground

G : Nonlinear restoring force function

Distinct ground displacement

>4
[®]

p : Circular frequency of vibrating system st its initial state

k : Spring constant at initial state of vibrating system

i : As a subscript, refers the symbol to its appropriate floor of build-
ing

@ Slope of plastic range of restoring force characteristics of vibrat-
ing system

o’ : Maximum value of ground acceleration

X : Parameter proportional to the value of X :

T : Duration of ground motion
T, : Elastic natural period of vibration of system
Xp ¢ Maximum total amplitude of system

Maximum displacement of system

&

Xp : Residual displacement

t : Period of vibration corresponding to maximum total amplit_ude
Part II | ‘

N : Number of the stories

L, L' : Number of the spans in the X, Y-directions
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I, Y : Axes of rectangular coordinates
t : Time
n, 8, ¥y v' * Positive integers

Relative displacements in the X, Y-directions and rotating
angle around the center of mass of the s-th floor, respec-

tively

Xgs Ygo 98 :

Mg, Ig : Mass concentrated at the s-th floor level and the moment of
inertia about its center of mass

PSP, 6frY : Restoring force functions hoth in the Y, X-directions of
the s-th floor level of the r, r'-frame

ey .
fs s 7?9 : Distances from the center of the s-th floor to the r-th
and rt*-th frame '

Xos Yo ¢ Uround displacement

F) lTye’ 2Tyg + Natural periods of vibrations in small amplituce of the
structure in the X-direction, of the fundamental mode of
simultaneous vibration of the Y-direction, and of the
first higher moce of simultaneous vibration of the Y-
dircetion, respectively

T.s Tg ¢ Natural periods of rigid and soft frames

k : Linear spring comstant

G({) : Nonlinear restoring force function

53 / : Coefficients of the {3, (7 terms

M : Mass

Bcrit, : Critical value for o

v : dx/dt

& : Positive constant

1234
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Fig, 1
Plock diagram of the analog computer in

the case of idealized multiple-mass
structures subjected to an earthquake

shock PI8s)

Fig. 4

Restoring force curve with dead
zones in the case of wooden or
steel structures
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Fig. 2
Plock diagram of the analog
computer in the case of single
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Fig. 3
Nonlinear, hysteretic
restoring force curves

Fig. 5
Example of the displacement
response curve ohtained hy
means of the analog computer
together with the quantities
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of the nonlinear
system X, are plotted for the ratio T/T, with parameters ¢ and X
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Spectra where the maximum displacement measured from the

initial equilibrium position X
T/T, with parameters ¢ and o<
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p are plotted for the ratio
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Spectra of the ratio of XR to the corresponding amplitude of
ground motion X; for the ratio T/T,
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Fig. 18 Two kinds oi‘ elgastic plastic
Rectangular structure of one-story restoring force curves

and one-span on a rigid foundation,

for which the solutions are obtained

by Melssner's graphical construction
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Solutions of Eq. (4) obtained by Meissner's graphical con-
struction for the restoring force curves shown in Figs. 19
() and (B)

Fig, 22 Fig. 23
Phase trauectories of the two Phase trajectories showing
cases, 0 < ecrit. snd 9 > ec it movement of the positions

of the two unstable singular
points due to the increase

in 6 when © <ecrit.
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