THEORETICAL RESEARCH ON THE TRANSIENT VIBRATION OF
STRUCTURES SUBJECTED TO EARTHQUAKE

by
Tatsuo Tajime*

INTRODUCTION
In dealing with the vibration of structures subjected to earth-
quake, induced free vibration cannot be neglected because of the short
duration and irregularity of earthquake waves. In 1926, the late Dr.
Suehiro pointed out the fact in his ar‘ciclef" dealing with the bending
vibration and the shearing vibration assuming that their rigidity is
uniformly distributed and that earthquake wave is sinusoidal.

In 1941, Drs. Sezawa and Kanai published an operational solution eof
the vibration of damped one-mass system, subjected to earthquake *’ Dr.
Hayashi solved the problem of the vibrations of damped multi-mass system
subJected to extermal force, by means of operational calculus and matrix
in 1942 ,) and Mr. Sugal obtained the mathematical solution of the vibra-
tion of damped bar excited by transient forces.

While, in the above-mentioned articles, external forces are intro-
duced in temms of forced action of differential equation, we have obtained
general solution by tasking motion of ground as term of forced action.

We confirm that research on transient vibration is of great value
to that of resistance proof of structures against earthquake. In this
paper structures are classified into three kinds, that is, multi-mass sys-
tem, bending bar and shear beam to simplify analysis. We take into account
damping property, based on internal friction, and rigidity and density
varying accounding to the height, on the assumption that motion of ground
be of sinusoidal wave.

This paper devotes itself to the research on the transient vibra-
tion of structures and, at the same time, on the stationary vibration
which would be rearched through it.

CHAPTER I. OPERATIONAL CULCULUS CF THE VABRATION
OF STRUCTURE.

Art. 1. Vibration of multi-mass system

Assumption and notation are as follows.
(a.) m; ...concentrated mass of the i-th story, in case that the mass
of any story of structure would be concentrated to the floor, which is

assumed rigid.

* Professor of Structural & Engineering, Tokyo Metropolitan Umversny,
Tokyo, Japan. Member of A.I.J.
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n M;., and m,

Let ¥ , v ard §, be 2bsclute, relative coordinates and ground motion
respectively, as Fig. 1.1{a} shows, the equations of the vibrations of
i3 ter e giver as follows,

mulii-zass sys

m ¥, + G5 ;) Cz(fz )+ (G5 -%G-5)=0
ngz + Cz(i&.“ ;'l) - {:3 (é‘)‘_ :5;3)*' gz (g‘x— ;I)_ ﬁa@g" E;) = Q

"""""" (1:1)

i ;H + (n—l(gh—/_ E-;-,.-:) — Cﬁ(én— gn—f)
+ kax—l (f.—/" ;b-z_)“' £ﬂ (;,,- ;H)=O
m‘" ng + Crv (éﬂ. - ;;—()1"‘ fﬂ (;x'— ;7!—!> =@

These equaticn are to be found in the article by Drs. Tanabashi,
Mizuhara and Taniguchi. )

Let the natural period, the circular frequency and the damplng cons—
tant of i-th story te 7; , w, and £ respectively, the following rela-

tions hold (1.2
10 I - 27&_/72 , {;/M; - wia )
C:/ims =2 k.00, -3)

Putting m,., /m = p, end substituting (1.2), (1.3) into egs. (1.1),
egs. {1.1) become

n

£+(2)ﬂw,+2)€3w;;4)é}l - 271,@2/4,;}; + (w:1+w:;4)}1 - wf'u., fs = — g.
G 2han v Cahseor + 2803 03) §, — 2hycosp 4~ w3
+ (s + w;ﬂ;)’: *W:/Jz fy = — 2';..
e e (1-4)
Tt = 2brs Gy ooz + Gy @ny 42 Tnonprs) o~ 2nllifiny By
s foes (g +Or fong) Yoy — Dy o =-
Foy = 2nton oy + Rnrn oy = i ey H 03 Y = = E,

(1.4) can be expressed in the form of matrix as follows,

LAY} + [BX{3} + [Cl{f} = - E.{1} (1. 5)

where[A]) indicates unit metrix of n~th order, [B] and{C]square matrixes
¢l n-th order and {} columm matrix of n-th order.

On condition that structure is place at origin of absolute coordi-
nates and is set at rest, the solution of (1.5) can be expressed in the
form of Laplace trar‘sformatlcn.

g = f Fgcer de -- n&)

o
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asg follows,

o} L] (1.7)
{yw} A
where 4 (p) is determinant of [4(®] , [StB] is adjoint matrix of L]
(A@=[A3p*+[BIP + L'C-]) ¥, (p) is assumed as follows,

5, (p) = —;-_—;&-M a‘eezt= @, (cos 92 + { dim g2 ) .3

On the assumtion that any root of Ar) = o , which is indicated
by ol, , is different from each other, let an element of adjoint matrix
[St)] be ,S' (o(,,) s then the appl:.ca.tlon of the inversion theorem

5',, ce)e? cee Sie @Yo St 4.9)
t)=da L + 4, e *
po=a l e Z;Z,, Tanlga) ©

A(sg) A7) e~ A,
Let determlnant obtained by su‘nstltutlong unit mto any element of the
j-th column of 4 (P) be Q,; (3=, 2, 3, «vv., n), s0 S"ﬂ (A, ) can be

proved to be reduced to " g 7 e T 7

Then eq. (1.9) may be expressed as follows,
= g ot

(ig) a -tft ) 2
() g FHCD G2
7/ ) a. AC g,)i + ao‘%_\l A (d,)(z‘g-v(,)%e (/-/O)

Art, 2. Bending Vibration

If we make coordinates as Fig. 1.1(b) shows, the differential equa-
tion of vibration may be given as

-z ...aaa' 2_2_2_. N x 7% TAD)
at* 2x 4 3¢ ox* atz
where a’= Er/F s &=ry/e (1.4z2)

BE......Young's modulus of the bar
JeeessMoment of inertia of the corss sectlon
Feeeso.Coefficient of intermal friction
Peeeo..Density

Now we assume that any of them is constant along the bar. We apply
the Laplace transformation to (1.1l).

As boundary conditions vthe following relations may hold,

X=0 Jh=o . _3%0_’?,& . } s
- : ;( ) J’Z(f) ’
zx=f : “ Zf -0 , xd 9
So, we get, )
v (¢
;(/’) = a2val) 5P (i-14)
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where ¢ can be given from pre (a'+47p) z‘;o , and
V@7 = (it caagloahss) (coags + cosbgz-2)
= airglacnd o (ot gz - ccoh g %)
+ (englantisl + s phecsh gl ) (e g7~ and. 9 ) (1.15)

U@l = /+c«4f1c4451 (116)

Applying the inversion theorem %o (1.14), by making use of Bromwich

int 1 €~ ioo
integrai, f eztv(zz) §.(2)d2 1173
@)= 2U¢
y 27“’ CHio0 v Z!)

where 2 is an expression of P in complex number and ¢ indicates a finite
positive mmber.

If we give the motion of ground as follows
(44 a, ._.L__. z
.00 = Zoain we 2z A } (.18)
F,0)= O (t < O)

we can obtain tle value of (1.17) by "Residue" calculation.
The part of forced vibration may be expressed as

a .
Je ()= -;}"-]/5;+7‘z' i (e + ) r.14)
where s> ¥, and 74 are functions of w , a and b, § is given from

‘t@ns s ?‘/ f‘ .
The part of free vibration can be expressed as

~fnt
PACEEY X L\/a,,tg,, € aim (Ut —E) (1.20)
ey
vhere &, , -$a3 are constants consisting of a, b s M o Ve and j
Vn +++.. circular frequency of n-th order
[ eeens damping factor of n-th order

£, is given from tow £, = 4,,/.!,; .

Art. 3. Shearing Vibration

Let us consider the case that ma'sses of multi-mass system are so
densely distributed that we can take the system as a continuous bod;)r
In such a case, the theory adopted in multi-mass system could be applied
to shearing v1bratn.on of a continuous body. The equation of shearing
vibration can be expressed as
3 2

atl 2x¥ 3:‘ =0
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where b is a constant depending on the damping factor and mass s & a
constant depending on the rigidity and mass, and both are assumed tc be
unvariable through the whole height. ‘

. On condition that the structure is placed at origin of absolute co-
ordinates and set at rest at the beginning, we apply the laplace trans-
formation to (1.6). Putting

B (P=%.¢p for %= o » o
2%(M od | - | } €1-22)
X = fe P2 mo  for 2t
we get ° 4 /.
, Coat & (f—
5p = 7t x) xS C123)

There o is given from o = p% /4% +a*)

Substituting (1.8) into (1.23) and applying the inversion theorem,
we get

Mg iqe T Mo Bt v
¥ = '(-2;,7;5) e < d.Z_“ ?,7;,%7) e _ (1.24)
AP Jpmig aF I }

nmy
where

M(p) = coak ot (I—x)=u;\£ @——-——%—Z;(j—x)
NP = p-ig)emh dl = Cp-5)corhr VE—;*-LT’—“;;,F }

The first term of (1.24) represents forced vibration, the second-free
vibration. Substitutiong (1.25) into (1.24), we get Te , which
indicates a term of forced vibration. '

(1.25)

;e = \/u‘.p y-lw(ff*_;c)* t Rouie? Py (gt+ 5') . (1.26)
where T :
‘ . x
o kT op (1= F) k(1= 5 ) +atpaick Yainp (1= 5) ks (1~ F)
- (copenky)’ s (ainfaity)?
oo BB T )aih (= F ) ~piuprk i eapli=F)eohi O~ 7)
(cop k)’ + (aipachy)”

A and }' are functions of a2, b, 1 and q. 4As a term of free vibration
we get :

§f= Q, Z \/(a,,ﬂ’,,')zf-(‘f,.*'f{)& e cos (wnt +¥,)
nmy
& x X "'"t . : .y
t38, ) ey tla-4) €  aiml(antrts) oL e

k74
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where

P

ang, = _(5_'.."..'_’_"1:_ , Tanf, = &~ Vo
a'+ ”\- ,' 6t - aa’

?‘« is the damping factor of n-th order and «ws the circular fre-
quency of n~th order. &,., 8., % and $¥/ are functions of a, b, g, 1 s
ard x. The whole vibration is expressed by ¥(2)=F ,+%,, and the relative
displacement to the ground may be expressed by Y= Geey~ 5,06

CHAPTER II. COMPARISON OF THE DEFLECTION CURVE OF STRUCTURE
IN TRANSIENT STATE TO THAT IN STATIONARY STATE

Art. 1. Comparison of the deflection curve of the bending vib-
ratory body to that of shearing vibratory body in case
that their rigidity is unifoarmly distributed.

We have made calculation of (1.19) and (1.20), letting the natural
period of lst oder Tr be 1 seq, the damping factor of 1lst orderAr=o0.03,
ground motion of simsoidal wave, the ratio of 77 to the period of ground
motion T is 4/3, 1,3/4, and % /7 unity ( 7Tz indicates the natural
pericd of 2nd order). Fig.2.1 shows how the deflection curve changes in
course of time and suggests the following conclusions. The deflection
curves in transient and stationary state at the time when the maximum dis-
placement appears have resemblance in shape in case that T / 7z falls in a
range fram 0.7 to 1.4 and 7y /7 =1, Therefore, the deflection curve
of free vibration could be considered to resemble those in shape., The
curvature of the deflection curve is the most acute at the lowest part
for 7; /T =/ and at the middle part or at the lowest part for 7, /Z7=/ .

If groung mption keeps the amplitude unchanged, the .curvature is
more acute for Ty /7 =/ than for 7z /7 =/ in a range from the begin-
ning to the 6th wave, but after that, on the contrary, it becomes more
acute for 7; /T =/

For shearing vibratory body, too, the same conclusions as for bending
vibratory body mentioned above have been drawn. )

Art, 2. Effect of the rigidity and density of shearing
vibratory body on its period and deflection curve.

We take now the structure which is wide in the drection of vibra-
tion compared with its height as shearing vibratory body.

Generally, a structure decreases in rigidity and density with the
height above ground. Now we take up two-cases:

Cage 1. Decreasing linearly with the height.
Case 2. Decreasing in steps with the height.

§ 1 Mgthematical Solution

The differential equation of vibration for the case that rigidity G
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and density @ are functions of the height = is as follows,
f(x)-éta—,-za- = -——{6—(7:) (2.7)

Assuming a solution of this equa.tion of the form Y= X(xJ.-T(¢)
where X (x), T (¢) are functions of =x only and of ¢ only respec-
tively, we see

£lG oo 45 } AP0 =0 (2.2)

where A is a eigenvalue.
Let 1 be the height of structure a.nd the boundary condltlons be ex~
pressed as follows,

X= 0 : X =0
» Xs_[ . %=O } (2.3)
For case 1, we assume first,
Gx)=¢c {1+n(ri~ F)} (2. 47
ch)’la{lf-»v(l— f-)} (2.5)

~where ¢ 1is the rigidity on the top, a the density on the top and m, n are
positive numbers.

In this paper, we have dealt with 18 cases which represent the cam-
binations for n=0,1,2,4,9,15, m=0, 0.5,1, to get eigenvalues of lst,
2nd and 3rd order for each case. (See Flg. 2.2(a))

For case 2, changes of G () are illustrated in Fig.(2.2(b)(c))
for example. We have adopted 11 cases among combinations of G (x) and f(Xx),

The numerical solutions have been given by the Analogue~Computer
equipped in Tsurumi Laboratory, Toshibs Co. Ltd. The results are illustrated
in Figs. 2.3, to 2.10.

§ 2 Natural Period

We have obtained the following conclusxons, based on these flgures
and some considerations.

(1) In case that the ratic of the rigidity at the bottom to that
on the top, we call it rigidity ratio later, is nearly unity, the slight
ohange of the rigidity has a great effect on the period, but the change
of the density ratio has only a little effect on it.

(2) The increase of the rigidity at the bottom brings about the
reductién of the period and its decrease results in the inerease of the
period.

(3) If the curve of Ty is replaced on logarithmic graph paper,
their curve can be shown to be almost linear. So, as an approximate
expression for T, , we obtain

(1e1) T,*% = 2.0m +28
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(4) The period of higher order can be obtained by using "[;

Tu = (0-’7'\«&8}‘1}/;\1 (2.6)

where N denotes the order mumber.

in {2.8), 0.7 should be adopted only when the rigidity and density
remain almot unchanged through the whole height and when the structure has
no walls between columns. Otherwise, 0.8 should be used.

(5) The rigidity of the structure, whose density is uniform].}t dis-
tributed, equivalent to the structure changing linearly in both rigidity
and density is illustrated in Fig. 2.5.

§ 3 Deflection curve X and dX/dx

Considering the same structure as in the preceeding section we deal with
the deflecticn curve, and dX/dx which are represented in vibrations of lst
to 3rd order and the shearing force of 1lst order.

{a) Comparison arong the distribution curves of deflection, and
chearing force in the siructure changing linearly in rigidity and density.

For six cases combined with G 1~1, 1~5, 1~16 for rigidity and r
1~1, 1~2 for density, the curve of deflection and dX/dx are illustrated
ir. Figs. 2.6 and 2.7, Fir, 2.6 shows that the deflection curve for G 1~1
is concave throush the whole height arnd G 1~16 convex at the lower part.
Fig, 2.7 shows that for § 1~1, d¥/dx decreases with higher level and its
maximum is at the bottom and that for & 1~5, G 1~16 maximum dX/dx takes
place at higher level from the bottom.

(b) Comparison tetween structures changing linearly and in steps in
rigidity and deusity by curves of deflection and dX/dx. For £ 12, dis-
tribution curves ot deflecticn and d¥/dx of 1lst order are shown in Figs.
2.8 and 2.9, respectively. The Figures state that there is little dif-
ference between them for deflection and shearing force and that differ-
ence becomes larger with the higher value of rigidity ratio for dX/d.x.

{¢) Vibration characteristics of the structures with great change in
rigridity at the lowest part.

Discontinuity is apparently found in curves of deflection and d.X/d.x
at a point where rigidity changes greatly and such a discontimuity can not
be found in tnat of shearing force.

(@) Position ¢f maximum dX/dx

The positions at which maximum dX/dx takes place are illustrated in
Fig, 2.1C by cembinations of G and P . Ve can apparently see that the
positicns of maximum d,'{/cix becone higher as the rigidity increases at the
lowest part.

Art. 3. Effect of the rigidity and density of bending vibratory
body on the period 2nd the deflection curve.

‘e take the slender stru:ture, which is high compared with its width
as bending vibratcry body. IHere we deal with bending vibratory body with
its rigidity and density increasing with the lower level of the height,
looking into the natural pericd, deflection curve and bending moment dis-
tribution.

§ 1 liathematical analysis

Putting PA=m(x), E T=B(x), the quation of free vibration is
expressed
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S 2 2
m = - ledk 27)

If we assume a sclution of (2.7) of the from J= Xx)- T () , where X (x),
T (¢) are functions of x only and of t only respectively, we see that

L7 2%
- dxr {B (x)-ﬁ—} (2.8)
T mex)- X
So, from (2.8) we get an ordinary differential equation
Jx {B(x) dx‘} Amcx) X =0 2.9)
where A is a eigenvalue. Boundary conditions are as follows,
= X .
x=o0, .g—--:a fn z=o (2.10)
mo A%
. z:-o) 7———:0 fﬁ Z'ﬂj (2.’,)
o, We assune Bex)=¢ + oo (#—x) (2. 12)
mx)=a+ b (L-x) : (2.13)

where ¢ anl a correspond to EJ and PA on the top respectively. We have
obtained an approximate solution by adopting Galerkin's method for natural
period and by Stodola's method for deflection.

§ 2 Natural period
The functions which satisfy (2.10), (2.11) are defined as

Vo= 6(F) - (D) (F) }
Y, = 20 (5 -r0(5) + (3

We have made calculation for 18 cases obtained from combinations of
rigidity and density as selected in the previous article. We have drmwn
the following conclusions.

(l) Natural period of lst and 2nd order decrease as rigidity ratio
increases and are independent of density ratio.

(2) As an approximate expression for Tz » Ve obtain

Y= —,4’2 7x+h,,h/, for that of 1st order (2.15)

Y=-— 47“2_,,*,_ . Na  for that of 2nd order (2.16)

Where X=log,n, Y=1log, and n is rigidity ratio, N, arnd N, are taken
as 1.8, 1.9, 2.0 and 0.25, 0.26, 0.30 respectively for density ratio 1, 1.5, 2.
(3) The period of 2nd order can be approximately obtained by usingT;

(a.14)

T =g 3.1z 7; (2.['])
(4) Tne rigidity of the stmcture, vhose density is uniformly dis-

tributed, equivalént to the structure changing linearly in both rigidity and
density is obtained as Fig. 2.5.
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§ 3 Deflection curve

We have obtained the deflecticn curve of 1lst order by Stodola's
method from (2.9). Fig. 2.11 shows the deflection curve of lst order,
for example, for demsity ratio 1.5. Fig., 2.12 shows the distribution of
bending moment along the height.

CHAPTER III. POSITION OF THE MAXIMUM dX/dx IN THE MULTI-STORY BUTLD-
ING AND RELATION BETWEEN aX/dx AND DISPLACHMINT RELA-
TIVE TO THE GROUND AND THAT OF ONE MASS SYSTEM

Art. 1. Positicn of the Maximum dX/dx in the Multi-story Building
(1) Two masses system

We put mass ratio m./m,, spring constant ratio ﬁ, / 75, s are assumed as
in the Table 3.1. 4s to the value of damping constant £, =4, = 0.01,
0.03, 0.05 are considered and as to the natural period T =T= 0.1 sec. is
adopted.

Transient vibration of the system is calculated for wvarious period
ratios in the case of simusoidal ground motion.

When the period of the ground motion is larger, extremely smaller than,
or nearly equal to the foundamental period of the building, dX/dx is more
acute for the lower story than for the upper in the course of the whole
vibration. On the contrary, when the period of ground motion is nearly equal
to that of the second order of the building, the upper story is more
disadvantageous than the lower,

(2) Three, four masses systems and shearing vibratory body.

In the similar way rmumerical calculations are continued. As the result
of the examination of dX/dx of any story of these systems in the*transient
and stationary condition in the case of sinusoidal ground motion, we see
that the maximum dX/dx in multi-story building takes place at an intermediate
position in the case when the period of ground motion is near by the founda-
mental period of the building.

Art, 2, Relation between d.X/d.x of any story of the multi-story-
building and the displacement of cne mass system relative
to the ground.

Representing the vibration of the multi-story building by bending
vibration, shearing vibratinn and vibration of multi-mass system, in the
oase of bending and shear we consider the relative displacement between
two points, and that of two masses in the case of multi-mass system.

These are assumed to be dX/dx of any story of the building and the quotient
of the Maximom dX/dx in the transient by that in the stationary state is
denoted by o . Similarly, the maximum displacement of these systems above
mensioned relative to the ground in the transient is divided by that in
the stationary, and this ratio is denoted by # . These o and 8 are com~
pared with those in the case of one mass system. Consequently, the value
of o0 and B are, so far as the value of the period ratio Tz /7 is about
0.7 to 1.5, equal to those of one mass system having same period ratio and
damping constant except the lowest story.
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At the lowest story only, the value of f and B of the building in-
creases by 20f over those of one mass system on the condition that the value
of the period ratio Ty /7 is larger than unity, and, on the contrary, de-
creases by 20% on the condition that the value of 7 /7 is smaller than unity.

(3) BRelation between the maximum displacement of multi-story build-
ings> and that of one mass system relative to the ground.

Let us compare the maximum relative displacement at middle point for
the shearing vibration, that of middle body in the system of odd discrete
bodies, mean value of the middle two bodies in the system of even discrete
bodies with that of one mass system.

By way of illustration, we have a few examples adopted here among
the systems having three or four degrees of freedom in the case when the
period ratio z/f=4/3. These are shown in Tab. 3.2 and 3.3. In the
case of bending vibration let us compare the maximum displacement at three
quarters point from the base of the body relative to the ground with the
maximum displacement of one mass system in the transient., This is shown
in Teb. 3.4,

From discussion above mensioned, we see that the maximum relative dis-
placement at the middle part in height of the building corresponds to that
of one mass system in the transient and stationary respectively, where the
period ratio Tp/7T (T is the period of ground motion) falls within the range
about 0.7 to 1.5. Similary, in the case of slender structures which are
relarged as a bending bar the displacement at a three quarters point from
the base corresponds to that of one mass gystem.

CONCLUSION

In case building is so perfect or little cracked, that its damping
constant is within the range from O to 0.16, we must expect that the maxi-
mum displacement in the transient relative to the ground is more than about
5 times larger than half amplitude of ground motion at the center of gravit
and its neiborhood, amd more than about 6 times lerger at the top of build-
ing,, when subjected to an earthquake motion in the condition that the peri-
od ratio is from 0.75 to 1.5.

In case the building is cracked that its damping constant is considered
as large as 0,3, we must expect that the maximum displacement is from about
3.5 times to twice larger than half amplitude of ground motion at the top
in the condition that the period retio is from 0.75 to 1.5, and when the
damping constant is to be taken up as large as 0.4, we must expect that the
maximum displacement at the top of the building is from about 3 to 1.5 times
larger. : .
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Fig.2.T Curves of dX/ax of Ist order
( Shearing vibration )
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Fig.2.9 Comparison of linear change
to step change by dX/ax curve of Ist order.
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Theoretical Ressarch on the Transient Vibration

The rigidity of structures whose

——
densily is aniformly distributed
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Fig.2.1] Deglection curves of girst order

F- .l 2 . 9 . o
for bonding vibretion, ( § bottom P Top =15) ig. 2 Bending momeat distribution

(P bottom / § tap=1.5)
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TABLES

Table 3.1 Mass ratioc amd spring constant ratio.

1st kind | 2nd kind | 3rd kind
mz/m, 1/1.5 1/1 1.5/1
ka /k, 1/1.5 1/1 1.5/1

Tabls 3.2 Relation between the relative displacement of the
three bodies system and one mass system, where a,
denotes half amplitude of the ground motion.

Transient Stationary
displacement of the
middle body (a, ) 3.75 2.25
displacement of one
mass system @, ) 3.8 2.3

Table 3.3 Relation between the relative displacement of the
four bodies system and one mass system.

Transient Stationary
mean value of the middle
two bodies (as ) 3.6 2.15
displacement of :
mass system (a, , 3.8 2.3

Table 3.4 Relation between the relative displacement of the
bending bar and one mass system.

Period Ratio T /T 43 3/4 1

Trans. | Stat. | Tran. | Stat.| Tran.
Stat.

displacement at

three quarters 3.6 23 2.5 | 1.3 17

point from the

base {a, )

displacement of

one mass system 3.6 2.3 2.5 | 1.3 16

(aa)
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