Study on Unstationary Vibration of Puilding Structure
with Plastic Deformation of Substructure

by Takuji Koborix* and Ryoichiro Minaiws

Abstract: This paper presents a general analytical method to chbtain tran-
sient responses of a "shear" structural system which consists of main elas-
tic, continuocus body at the upper part with arbitrary mass, rigidity, and
damp%ng distributions and, at the bottom, a poly-linear lurped system with
dampings, subjected to arbitrary ground excitations. The solution of the
equations of motion of this system are obtained by successive connection
procedures of general sclutions in corrcsponding linear branches. General
solution in each linear branch is generally expressed in terms of infinite
non-orthogonal complex eigen~function expansion series. In the special case
where convergency of the solution corresponding to nonhomogeneous terms of
boundary condition becomes poor in the neighbourhood of the boundary, the
general solution can be expressed in two parts one of which is the eigen-
Tunction expansion series and other is a boundary, homogenizing function.
Nl.mxerical calculations are carried out and applications of these nondimen-
slonal responses to dynamic, ultimate aseismic design are considered.

Introduction: Under the action of a violent earthquske, structural system,
above all, substructure including soil would not behave elasticslly but
elasto-plastically, It was already made clear that energy dissipation due
to hysteresis loop and nonlinearity of structural system extraordinarily re-
strained stress and strain responses of the structure, and the most destruc-
tive element of seismic waves had the period near to the natural period of
the structural system under the condition of constant ground velocity or
constant ground displacement’ and these facts would make the so-called dy-
namic ultimate aseismic design possible.

To establish this design method, it is important to study more in de-
tails quantitative and qualitative properties of earthquake responses of
structures in ultimate state as well as statistical characteristics of seis-
mic waves depending on various ground conditions, and relative displacement
1imits of various structures., For this purpose, earthquake responses of the
coupled system consisted of npper elastic, continuous, mainstructure and
lower elasto-plastic lumped substructure are analized as follows.

Fundamental Differential System: It is assumed that the upper mainstructure
Ts sn elastic, continuous shear body which has arbitrarily and independently
distributed inertia, rigidity, external damping and internal damping, and the
lower substructure is a lumped system which has translational and rotationsl
inertias, poly-linear spring characteristics and viscous dampings.

Transforming fundamental differential system with respect to fixed co~
ordinates to moving co-ordinates amd nondimensionizing this, following fun-
damental partial differential system corresponding to any branch of poly-
linear system is obtained. " 3 2 =
oL (D= [ {3+ 02} 18- 1], ) ~ 2 OFa Rt ={a®F v de D} Y } .
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where, E= %A, 7=(Y-YVh, t=(aNG/FAt, §E)=5348), &)= =a(h%), Ai(6)=di(hE)
de=de(hE);, eee (3)

= Dio/b/PAsGs » 5;=th/4on&,, Xa=HKa/h G s X =hKr/q,, J
? (4)

(2)

&= Eo /W/PAG, , €r=ErfiPAG.s Ha=Mr/t*fAs , M2 =Mr/hfAo
Br = Myiaal /1, , Br=|Qyietd /G,
and where, the nondimensional overturning moment is expressed by

M./ =-[1gH)+nd:rEHE - 132,142 (5)
Operating Laplace transformation, (1), ( 2) are reduced to the following fun-
damental ordinary differential system.

L= 1gtn+s 3&4(;35{1— %]} —s2a05) ~Skhede@®]¢=F(s.5)

LACEI %(&Hsb’d&fﬁ{z— FIRL {)Cg'!'SGR'i'S/lRHdg’ J¢=F.(s) 1 (6)
Wa)=[{900)+ sKd: O}~ [ 551, — DXn tser +SMajlil 14 =F2(%)
yWi@=[f ‘{3f§)+sad¢<§>}{£‘g lz—li}-l; ~{ser+s2urtZel,J$=yF, (s)]

7
Wah)= [53(0)4“3}101;(0)}{[2—1—{5‘_{1} {s€r+ Surll1l, 19 =y (S) “
where,
Ftgs)={5%a)+sTede®}F(s) - {sa(;)-rb'ed(e(i)il?/h +4|eeo \]
-az;)]*%‘@ +§{—[a‘d¢(§) 3§ (as)zlz-o (8)
Fiis)= fr‘dtfg)}a—g ] A% - (S/“R+€R)] g 1[‘(-0 /""R'(agat) l'tzo J
Fa(s)=syurF(s)— s,w,[f,u(q), oo Aefr 4L ! 4? )L‘ €rl O] tHicki “’JI af ze0

F©=1804 K6, sz(S)-—ig-i-Fz(s),
¢=£°°e""'zdt , F(s):j;"e"“ﬁ;dz, ] (9)

where, subindeces pand Y mean the partial differential system and the per-
fectly yielding of lower substructure, respectively.

Solution of Laplace Transformed Differsntial System: Four differential sys-
tems are possible 1o exist in the transformed space, however, as the most
general case, {L;W;,W,jis considered herein, ureen's functions for this lin-
ear system can be defined as in the usual way.®

1 G5.%5;8); L(G)=0 Ffor E%5 , VV..(G-) o (=12
lim {1658, 259y e = 1 GelE, 55 8)] Yy =~ 1/ 1§01+ 5K}
T G839 5 LGa=o, WilGp=—fg ij=1,2

Then, (7 and Q¢ can be formulated as follows, by using two independent solu-
tions ¢, ¢, which are easily obtainable from those of equation without
boundary operator by means of parameter variation.

G(5.858)=N(%¢:5)/[{3(5)+ sHdi(S)}Aur (5. 5) Ac (8) (10)
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where, Wi=Wj,tWj., © : operator for upper boundary and £>¢

£ @ operator for lower boundary and < ¢

A (§,3)= ¢t(§'s) ¢1(§as> s A (Y= “,1(4)1) M(‘Pz)\
w $.(5.5) $,5.9) S Watd) wile,) (12)
GE.)="35 Wa(d) Waldy) (13)
(5,9) = —L_ | Pi(5,9) huls, m}

G:59= 7 Wichy (b0 (24)

Using these Green's functions, the solution of nonhomogeneous ordinary
differential system (6) can be eaipressed as follows,
1
== GE IG5 -2, GilE:)Fe® (15)
where, X ({.5) is the modified nonhomogeneous term of the differential equa-
tion which satislfies the following second kind Volterra-type integral equationm.
X, 9= [[KE.639)A(5ds =F(E.s)

L+ s%d ) | s s
K(E 539 {90+ s¥ide (23340, (6,9) { 5.9 $(5.5
Leee  A(E9=F &= [ TE50FE% (16)

F(gg;)= —2:, b 3 7:®¢=f;§>(§, ) P(z,5)de

Substituting (16) into (15) and exchanging order of integration process the
solution can be expressed in the transformed space as follows.

2 A
¢=-f '&(g,;;sm;,s)d;—g;'&zcs,sm (4] Fouef 6 G594 1)

The third term in the above equation is produced due to existence of bounda-
ry operation in the differential operatorL(®). When rotational terms do not
exist, or when ?(S)Edz’@)so are valid even if rotational terms exist the
boundary operator vanishes and the third term may be elimgated. Moreover,
in these cases, symmetricity of Green's function G(,%;s) 1is valid because
following relations are verified.
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E’:‘f‘:chtm Wxt(?,)lr_[Mu(g) Wiu ($s)
P W2l (4 Wal(és Wau{g) Wau ()

ﬂfg:§'¥‘+Sa,[d¢{;)}dw(§)=6(s) for denominator (19)

In the case where symetricity of Green's function is valid corresponding
aquations can be considerably simplified. (see Appendix 1)

for symmetricity of numerator  (18)

Zigen-value, Zigen-function and Modified Orthogonality: In the homogeneous
T fTerential systemiL,w,Wp eigen-value and eigen-function can be defined
in complex plane, assuming S be complex parameter, f Su} are complex eigen=-
value series which are.successive roots of characterizstic equationdc(s)=0 .

Corresponding tofs.}, complex eigen-function series{% (9jwhich content homo-
genecus differential system and are not identically zero, can be obtained

as follows.
o . 1DES BES] _ I [ PEs) BES
L= wi(d) Wi L,; ccsv)} WaCh) Wald)lsms., (20)
C(Sv}: Mfé) — Wz(?b;)
;Wl Plls=s, | Wi(@seas, (21)

As 21l coefficients of the differential system are real numbers, there ex-
ist conjugate sets_of complex eigen-value {Sv, S.tand corresponding complex

eigen—fumtionf?f ,90,,‘} « Following relation between conjugate eigen-values

and corresponding eigen-functions can easily be calculated.

sv,§,=dv«_&;:,3,=-z%v-_f_i/%f,_(%)z eee (22)
wers A= [ atIRTE + pRIGEl + purl 9917 > 0
- 2 1 2 < 2 2
Dy =E[ di®] 95 ~(5°), 5+ de @945 + &I+ B4 20| (29

= GOG34 + Ko | FE L+ IRl RS >0

Eigen-values can be classified by sign of following quantity.
B= Gv_(Dey
v 24y (24)
D=0 npo damping R(Sv.5)=0
B >o conjugate imaginary eigen-values-----periodic

D>0 with damping 1R (S, )= ‘Dv/zﬁv<0.
B >0 conjugate complex eigen-values----damped, periodic
8 =0 one real negative eigen-value -~--damped, non-periodic
c <0 two real negative eigen-values-~--damped, non-periodic
@dﬁgl numbers {v} can be determined by sequence of equivalent absolute
values of eigen-values which are arranged from smallest one,

lsvl¢= S e ™ v * =
ISvle= VT +8F =/G./A, (25)

Modified orthogona]it}l%r the eigen~functions of the above
- differential
ay:Ete: is defined as follows, Defining cperation between% and %° as,
% ?i ] -’-L fufifﬂ- Feds +MR(PE) (5°),+ M lPE), (F5), + T X
X[ N[ dimipe(5%) }{ gt ) YOS+ de (% Py +ER (), () + €x(y” () (26)
Then, modified orthogonality is defined by the following relation.
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if, si- sj"-.to 5 [¢5 53.“]:0 ) (27)

This relation is generally nonlinear with respect to [ or j because of ex-
istence of the second term which contains §; andS;, therefore, a formal ex-
pansion of an arbitrary function can not be easily obtainable. The normal-
ized modified orthogonzl eigen~function series can be defined as follows.,

[n 5, m% 1= dj (28)
This system can be obtained from any modified orthogonal system which is

not yet normalized, ,
8= {2/14° 9o1%] (29)

General Solution of Original Differential System: Inversely transforming
the solution of transformed differential sysfem (17) into the original
space, general solution in the original differential system is expressed
by following formula,

s

.2 1.2
7={a [7'(5.;;r)*f(;,z)]d;—é[g;(f,zufim]+[ f [faTre £G.5.2: D]4543 (30)

where,

feoF,s) , fitoaFus
F(5.5:T)2G(E.5:8), FEDDEG(E,S) (32)
FE.8.2,T) D G(E,2;55)(L. 25 8)

Both hand side terms in (31) are generally related by the following inverse
formula. Teig

(/’:"’T“i—:" < dds where, ¢ > P (32)
r-ip

(5,0 and£;(T) , however, can be obtained formally from (8), (9).
‘f(E,’C) = a(E)ii‘('t)+32de<§)F(-c)+ a'&[d,;(f){m’(g')-m’(j)}l

~[§2+ (1), § @ (8)+ E-Te de(®)] mE)~E:2E)n & ee (33)
§.(@) = Ec0 [ e @ (83 mio L5 ~[ [+, Ma+ & Ealml)=Ecpagmtt)
$(T) =/41-f$(7:) +& Kdio){mlo)-min)i- aéi+(1)°}/41+£_€I]W0)_£WT72(0)
yheo = 1 Ba+F (), ]fz('t)=:t/3f_r+jcz(f) e (34)

where, {2z +(1) is an operator for the objective function in convolution
and (J’.)}fndiéa}tes the imitial value of that function. & is unit operator
of convolution, i.e. [E#fl=f, and, » and 7 indicate differentiation with
respect to ¢ and E respectively.

; (5T J(£,5.2;T) are directly calculated from (10),(13),
(14) :’Eg.%);, ‘::li:’lngb((gﬁ)).uslgngufar points of Green's function consist of 1p;o].es
{5.,} and branch points{Sc}. ¢ and ¢, msy be analytic except {Sp} so that the
poles only occur at zeros of the denominator, and the branch p:l.nts r;ai'l s
occur only in arguments of G, @y, Then, §(5,5;T) can be expressed as Lo .

i : B
3(c.;0)=ER e GE 0 - am s §, e G{I(E,F;i)gf; (35)
here, Cp is a cut which is taken so as to avoid a branch pointSp .
guos’of§9(§)+ s¥; d:(€)y A, &s)are not poles of G&.S;s) 5 because ¢ ’fﬁ ¢,
become dependent each other in this case, then, poles agree to zeros o s) 5

infini ints of argument of &,
i.66 i igen-value series{S,} . As to branch polnts ol
:xlg Pyy it z: :.sgumed that they are of the lst order and finite numbers and
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s“gﬁ-(&;;s)#w are valid. Under these conditions, the second term in (35)

vanishes. Then, (35) is reduced to following expression.

88,3 0) =L R{€ 6,259} (36)

Further, it is assumed here that all eigen-values are simple, il.e.
g‘g Ac(S,) = A'c (Su}%0
Then, {36} yields to
3»(5,;;1):%’,-63"1}?(?,'435;/) (37)

where, R(%,¢;5,) is residue of G(£.5:5) ats=5y. .
Considering existence of conjugate sets of eigen-values, following expres-—
sion is finally obtained forg,('g,g 5T

8(e.530) =35 e lim(s- 5065, 5:5)= 2 LRl IR IRE.Sis T IR ES 1] (38)

where,

R G5 5)= NES S T{§(5)+S, T di(§ A (2.5)4¢ (5v)]
= I{&.5Wg5 )

_ | Wae (@) War () Wie(d) Wie(d) / L
H;'SV)”(I Bl G0 b ) $:8) GO 5 )36+ 50: ()} A (3.5

x 42(5.))
= W,u(CP.) Mu(Cf’z) - W, (@) qu(¢z) Td:
1.5 (C(S"); 35y PADlse | ¢ a0 s‘.)/[fﬁ(‘)”" se(Of
X Aw(8, 509 ALCSY] » ve. (39)

Similarly, following expressions are valid for g:(£it)and §(£.52;7).

F & =2Z [R{eIRIR G50} - I{TYT{R (5 50)1] (40)
where,

Ri(E:80) = T: (SR

Il(Sv)-""CCSV)/AECQ) s I28)=1/A7(50) vee (41)

8eg.22;) = 27 (REeS>HR{M (225 st R{R (@55 50)- T{rf I{R}H
~ HeSTHR{TY IR+ MG A s0RIR(ES5503])

where, . ®. see (42)
rl — > b -
[(g.a55,)= 7:5;’;/< (5.3;5s,) (43)

¢ ;
If generallyAcg(sy)=o (j=oam,), AT yx0, are valid, S, is Gn+1)th order
pole ofdc(s) . In this case, the following expression is replaced to the cor-
responding one. - M)
v 7 n -
#Gsis=25 5 m T [R{eSTRIG-5 G @85 50k,
- Tieoty G- G g g s3] (44)

After all, using (30)~(44), general solution in any linear branch of the
substructure is cbtained as a real convolution type function which consist
of four complm; modified orthogonal eigen-function expansion series. There-
fore solution in the full domain can be obtained by the successive proce-
dure, connecting solutions in adjacent linear branches,
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Numerical Exmles: In this section, various nondimensional earthqu ike re-
sponses'of s;mple structural system are calculated for several combinations
of nond:.mens:ronal parameters. It is assumed here that the structural syst;em
has no_rotat:c?nal terms and any dampings and that the upper mainstructure
has uniform distribution functions and the lower substructure has elasto-
plastic.chargcteristics without translational inertia. Concerning %o ground
e).ccita'pn.on, it is assumed that the structural system is subjected o0 non-
d:mens:Lonal.quadratic half wave i.e. one rectangular acceleraticn nulse of
duration which agrees to the fundamental period of the system. Nondimen-
sional fundamental differential system is written as follows.

=38 - L= f(=dM(T/4+T, T) (45)
Wi =122 =0 , pWa)=|3E| Xzl =0 (26)

OTs pWi0=|a1/05(= 0, W2 ()= |3U/o¥l,= £ 67 UPPer sign _ .5, (47
where o= hPA. _ ; _ e lower sign
[ ——°Ca_) 'C"—‘T FAOT:—.—U':T(?(T) (48)
(w;tan =)p)
General solutionsfor each linear brahch are expressed as follows.
For branch withJCp40 i.e.(45) and (46).

v Pl .
n= 'é, _%’Jv_vjs'_) (L) [fx)% sin wv'c]-f‘;,'nﬁe(g){(m(g),nﬁ)cos WwT

where, '*"&JL.,("‘L(g),nS"v)sin wvt} {49)
fm ﬂ(g)%:f ,)7}34%5{#52' cos w,(1~-8)} | fwvt T wotan wy=JGp (50)

For branch withJGr=0i.e. (45) and (47).

= [ Frre ]+ m@h (L) T+ L {61, ) cos et
2 + 25, (U, nR) SN, ThEAY (51)

S0 o
where, A7=B.{4-4(-5~ %—%Z:i% f,ﬁ(g)cosa)vt} (52)
7hU8IST, $nPuE)y={V7 covw, (1-8) For v22 , {wi={Cv-07} (53)

A% is calculated using following boundary homogenizing function. (see Ap-
pendix II)

= 32 T -1

T=5808 5 §=5£20-0 (54)
and associated initial condition.

— — 3

g = 782028 (55)

General solution (49) in the linear branch/(r%0 has the normalized orthogo-
nal eigen-function expansion part only; on the other hand, general solution
(51) in the linear branchXg=0 has the normalized orthogonal eigen-func-
tion expansion part and the boundary homogenizing function part.

Other responses, for example, shear-strain, nondimensional instanta-
neous lateral force, velocity and shear-strain velocity responses in any
linear branch are easily obtained by differentiation of the general solu-
tions (49) or (51) with respect to ¥ ,T . Whole earthquake responses are
obtained by connecting solutions of successive linear branches {1} of which
odd numbered branches {2m-1% m=1,2,--- indicate elastic system and even
numbered branches { 2m} m=1,2,--- indicate system with perfectly plastic
substructure. Transition from odd branch to even tranch is determined ty
the following condition and nondimensional transition time Tam is determin-
ed as root of the transcendental eguation.
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{3 Tame-t | _
i—g‘%ﬁ“?or- Xollam-i|= £ Bz at Tzm o (56) ‘
and transition from even branch to odd tranch is determined by the condi-
tion,

) —

520 ot T (57
Co-crdinate systems are chosen for the set of branches fomel, 2m} m=1,2,-.
On the other hand, the time co-ordinate is chosen for each linear branch
{i} i=1,2,--- ., Between these adjacent co-ordinate systems, there exist fol-

lowing relations.
Ram-1 = N20m-n-1— { [ 2001 la, Tam-1 )7"("'")"]0, fzcn-:)?

_ i 2m - - - — p3m-
= Tatmen -t ~{ ol {00 = M NN = Vot~ 25 (58)

where the superscript indicates system number and the subscript

indicates the adopted co-ordinate system. And Aﬁ""‘" is a guantity of plas-
#ic deformation of substructure in 2(m~1) branch. Therefore, transforming
to original co-ordinate system, the following relations are obtained.

For cdd branches:

S Gty W et Y A AN (59)
For even tranches: - et ‘

== Tt A= Tt )y By = Tkt A (60)
For any branches: L

T=T=T+Z T, (Ti=0) (61)

where, 4p is the permanent set of the substructure.

Using the above procedure, several earthquake responses which seem to
be important in view of earthquake engineering, that is, the nondimensional
displacement{, the shear-strain9d?/32% , nondimensional elasto-plastic be-
baviour of substructure, (374¢g),to (7), , the nondimerisional overturning mo-
ment 7, and the distribution of the maximum absolute shear-strain [97/2%]max
are calculated for following comtinations of nondimensional parameters. ’

(1) Xr=5  50.25 (5) %r=10 c20.25
(2) Xp=5 = 0,50 (6) 2g =20 2}0.50
3) Xp=5  c=1.00 (7) )p=10  ¢=1.00
(4) xp=5  cEl.50 (8) >z=10  c#1.50

Physical significance of these parameters are as follows.

=b§7= %h : ratio of spring constant of substructure to
o equivalent spring constant of mainstructure, (62)
=< _hA
Cop= B = 7{’;% : ratio of static base shear force to yleld
Y force of substructure, (63)

Concerning to choice of nondimensional parameters of

e ¢ ground excitation, non-
df}nensimal_period T is determined as a functioniyonly, and the nondir::en-
s:Lo?al anphta‘zde of rectangular pulse can be arbitrarily chosen tecause of
validity of similitude for fixed combination of (){r ’ cT) . Therefore, in
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this calculation, ol is chosen equal to 10 conventionally.

Results of the numerical calculation are shown in Fi 2 ;
C € . Flgs., 4 ~ 10, ir
which the nondimensional time is multiplied by 20/7 (g) si as to be czgv
ient for comparison. ) e

Applications of Nondimensional Responses to Aseismic Desi G

¥ = - i ¢ General z -
cations of the rondimensional responses cbtained ty the a%rclve :.nal;iicaiph
method are briefly considered, There are eleven independent physical quanii-

ties and four independent distribution funetions concerning t
original structural system, that is, rning to any branch pof

{i_r_; &o(l’:,so); £A°; Dz_o; Deos Kz 5 Kr; (IMyieldl, [Qyielal ); Mz 3 Ma ; Er s Ep}
1%x); dicxr; Teny ; dexor} (64)
On the-other hand, any branch of nondimensional structural system has eight
independent parameters and four independent distribution functions, that is,

1% 8 X ; ¥ (Br; Br); M35 Mg €13 €p}
12(8); dilE); aw); del(®)y vee (65)

These parameters and distribution functions are theoretically independent
each other, however, there will be seversl conditions between these parame-
ters in the engineering sense. Consequently, as the first step, for appro-
priate combinations of these parameters,earthquake responses due to the most
dangerous nondimensional ground excitation, of which scale is arbitrarily
chosen, are numerically calculated. On the other hand, ultimate deformations
and strains should te determined theoretically and experimentally. Then,

selecting safety factors in an adquate standard, allowzble deformations and
allowable strains are determined.

For the upper mainstructure:

2% = L ar
For the 1 ag)qglo:.- tA" ’a‘E)ulf. oo (66)
or e lower substruciure:
27 =1 (22 ' =Ly =d_r '
(ag O,GIIOI-U._— ALR(JE o, ult ) (7)0,a”aw. h (3‘)0,0”0“1. h /11_7(5)01“-”:

. e s (67)
In the next step, selecting rigorous condition of destructive seismic waves

depending mainly to ground conditions and type of structural system, for in=-
stance, constant ground acceleration Ca , constant ground velocity(y , oth-
erwise constant ground displacement C« , magnification factors As of nondi-
mensional responses can be determined as functions of original physical
guantities and selected condition of seismic waves. Thus, the following
tiree equations are obtained.

PX

: ! (i
(g% allow,= -—A’—s(g—g)ﬂ’#’ﬂhs& wax. ° (5? o,a.llow.— 2} (%f-) , response max.

(7)o,a”°w.= -les(’Uo response max, ves (68)

where As is comprehensive symbol representingA,, Ao orAcs

Therefore, three quantities of original physical quantities can be determin-
ed by above equations, and others are to be arbitrarily chosen from another

requirements. For the structural design of the upper elastic mainstruc‘}:ure,

it would be useful to calculate equivalent lateral force coefficient distri-
bution % | %’%I max  Woich is adaptable directly to the present convention-
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al design method. But, for application, it is necessary to multiply this
coefficient by &,/2,h and to gain ecuivalent 1ateral force distrihution as

follows.
wiz )—7\551 af’ag man, x g lsg_lm. (69)

= sh/an
Discussions of the Results: In the rmumerical calculations, expansion se-
ries in the solution are considered up to the first four terms. Convergen-
cy of series and the accordance of responses on hoth sides of each connec-
tion are considersbly good, as shown as Table 1.

Generally, in elasto-plastic domain, there are two parameters)Cy,, Cr
corresponding to structural system, which influence the characteristics of.
nondimensional earthquake responses to a rectangular acceleration pulse
with resonant period to fundamental vibration of the structural system.
When Cy is not larger than 0.25, the structural system behave only in elas-
tic domazin and then, there exists only one parameter )J(p. In this elastic
domain, responses show the so-called resonance phenomena. The nondimension-
al displacement %7 decreases as JCr increases, but the nondimensional relaw
tive displacement of the upper mainstructure #7-(7),, nondimensional over-
turning moment Ims,shear-strain 247/3¢ are in agreement irrespective of Xr
in fell domazin (0,00}, In this case the maximum ahsolute shear-strain
19V2%  max has linear distribution and the value at § = O is nearly 40 as
nondimensional quantity. In comparison to corresponding static base shear-
strain i.e.

X

3

— heaC,_

max. static, O %

o =10 (70)

this dynamic base shear-strain due to one pulse reaches four times as large
as the static one. This means that the dypamic base shear force is four
times of corresponding static one under the condition of constant ground
acceleration and these are determined independently onG, Ky, i.e.

Qdymznn‘c,o= 4 hf AoCa=4 Q:fnf:‘c, ] (71)

However, if conditions of constant ground velocity or constant ground dis-
placement are taken, these relations reduce to following expressions re-
spectively,

Qdyrmmc,o 17'\1 PAR.G T(KT)CV > Qdymumr., &. Toer)Co (72)

* Qstatic, 0= Qynamico 3 FVPAI b/ i) 2 Cv/Ca
QS"’"’:‘C;O % Qdymm‘c,o ; %‘(PAD/&O)'[?Z/’EC’(T) % Cd/ca- s (73)

These mean that the dynamic base shear force would be smaller than the
so-called static one in the structural system with a comparably long peri-
od.

and

When Cr increases larger than 0,25, the structural system behaves
elasto-plastically. It is shown in Figs. 4 ~ 10 and Tables 2~.3 that char-
acteristies of the nondimensional earthquake responses are chiefly influ-
enced by parameter Cr which gives the base shear=-strain of the upper main-

-structure in the plastic domain, i.e.

(31/3%),= By = A/ce=10/cr (74)
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and represents transferability to plastic domain. Strictly speaking, re-
sponses are influenced by )(ras well asCyp, however, parameter(, has deci~
sive influence on elasto-plastic behaviours of responses in an appropriate
range of parameter J(r. Successive series of ratios of nondimensional tran-
sition time to standard one{Ti/Tstmdard}which represents allocation of elas~
to-plastic domains are determined by almost {p alone. Concerning to nondi-
nensional displacement 7 , the translational element as a rigid body domi-
nates in the plastic domain, and nondimensional maximum absolute displace-
ment || maxand plastic deformations of the substructure £A2™and dp increase
as JCr decreases and (r increases up to a certain value which lies between
1.00 and 1.50. |/7imax, however, rather decreases gradually as Cr is larger
than this value. And, it is seemed that !}/ m.,and Ap 3in this range of para-
meter (p,are rapidly increase and then tend to almost stabilized value as

Cr increases from 0,25, and this would be the nondimensional ground dise

placement, _
(Y/h) =T/ (75)

when Ct tends to infinity. Shear-strain 27,/3% is mainly controlled by Cr
and scarcely influenced by Xras shown in Figs. 6 ~7, The maximum absolute
shear-strain |[27/9g|max considerably decreases as Cg increases, especially,
in the lower part of the upper mainstructure. And it increases uniformly

a little as )Cr increases because of occurence of higher modes due to an ab-
rupt changes of the system. Distribution of the maximum absolute shear-
strain looks like a straight line when €;£0.25 almost independently on Ap.
As Cp increases, it becomes a convex curve similar to quadratic curve with
the peak located at 0¢¥<1l, and as(p increases more, it uniformly decreases
and approaches rather a rectangular distribution. When C, tends to infinity,
it should tend to the zerc line as shown in Fig. 10. is to the nondimension-
al overturning moment m ,, same discussions as shear-strain can be made.

These facts show that energy dissipation due to elasto-plastic loop of
the substructure, limitation .of transmition of the shear-strain due to
yielding of the substructure--plastic flow of soil or yielding of the stiff-
ness member of the substructure--and non-synchronized property due to non=-
linearity of the structural system restrain remarkably development of earth-
quake responses of the upper mainstructure, although abrupt changes of the
system bring out higher modes in the elasto-plastic domain.

Conclusions: The problem treated in this paper is mathematically reduced
to a complex non-orthogonal eigen-value problem in which eigen-values and
eigen-functions are complex numbers and nonlinear modified orthogonality is
valid in general., General solution of the problem is obtained in terms of
complex eigen-function expansion series and in special case, a btoundary
homogenizing function is introduced to improve the convergency of the gener-
al solution in the neighbourhood of the boundary.

Nondimensional earthquake responses of the structural system with the
elasto-plastic substructure are calculated by a successive procedure using
the above general solution for appropriate combinations of nondimensional
parameters. And it is found out that earthquake responses of the upper main-
structure are remarkably restrained by elasto-plastic characteristics of the
substructure in comparison with those of the purely elastic system. This
fact would be more notable as the number of seismic pulses increases because
of resonance in the elastic system. For the elasto-plastic system, however,
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the number of seismic pulses is not so important since earthquake responses
of the upper mainstructure are remarkably decreased when one pulse comes to

end.

Applications of nondimensional responses are considered. The maximum
absolute shear-strain distritutions shown in Fig.l0 and nondimensional plas=-
tic deformations of the substructure shown in Fig.8 and Table 2 would te
most useful. For instance, the equivalent lateral force coefficient distri-
bution obtained by differentiation of the maximum absolute shear-strain dis-
tribution corvesponds to the value of ¢y as follows. When cqis not larger
than 0,25, this is uniform distribution. As c, increases from 0.25 this is
transfered to a straight line changing sign at the peak of the maximum ab-
solute shear-strain distribution. If cg increases further, distribution re-
mains only on the upper part of the mainstructure, for example, for c;l. 50,
this is a rectangular distribution on the upper one third of the mainstruc-
ture and its value is about 20 in the nondimensional value, When c,tends to
infinity, this would tend to zero. Therefore, for some valuesof )¢, an
equivalent lateral force distributioniw(x) can be obtained by dividing the
equivalent lateral force coefficient distribution asbove obtained by the
following magnification factor determined from the given condition of seis-

mic waves.
2

~ _10 %~ ___ 207h L X = 20Th
Aa= AsCa * A"‘,/m, o TK)Cv Ad GTC2)Cu - (%)

Using this equivalent lateral force distribution, following procedure
of aseismic design may be considered, At the first step, corresponding to
conditions of the substructure, Keand Qyiely are mainly determined by dead
and live loads of the structural system. At the second step, assuwming ap-
propriateq,, and selecting condition of seismic waves, the magnification
factor is determined. At the third step, calculating the value of cy, the
equivalent lateral force distribution is obtained, And then, members of the
mainstructure can be designed using the present conventional design crite-
ria. Where, S,should be determined so that G,=S,~R is near the previously
assumed one. Concerning to the plastic deformation of the substructure, it
is checked by a given allowable displacement.
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" Quartarly of Applied
Nomenclature

Y ; lateral displacement in fixed co-ordinate.

X 3 axlial co-ordinate,

Y=Y-Y 3 lateral displacement in moving co-ordinate.

t ; time,

Y ; ground motion.

&

For the upper mainstructure:

gravitational acceleration.

s

h 3 height.
S 3 demnsity.
Acx)= A, @, A); distribution function of areas.
P -P.ch)-fgﬁ(z)xz s P@); distribution function of axial force.
Stx)=S, 30, 5@); distribution function of shear rigidity.
G () = S Po)= G Jim, 095 distribution function cf equivalent shear rigidity.
D:x)=Dydity), Ilz); distribution function of internal damping.
D=Dy, Ly dew; distribution function of external damping.
For the lower substructure:
Ka 3 rotational spring constant.

Ke translational spring constant.,

“e

m
>

rotational viscous damping coefficient.

3

translational viscous damping coefficient.
Mg ; rotational inertia,
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Me 5 translational inertia.
Myiaas yield force of rotational spring.
C%*u5 yield force of translational spring.
For the others:
M, 3 overturning moment.
T ; period of equivalent seismic wave.
Ca ; maximum acceleration of equivalent seismic wave.
Cy 3 maximm velocity of equivalent seismic wave,
C, ; maximum displacement of equivalent seismic wave,
Ay 3 safety factor of the upper mainstructure.
Az safety factor of rotational spring of the lower substructure.
Air; safety factor of translational spring of the lower substructure.
Mg 3 magnification factor of nondimensional responses for constant
acceleration.
Ay 3 magnification factor of nondimensional responses for constant
velocity.
A4 magnification factor of nondimensional responses for constant
displacement.
Figure Captions
Fig. 1 Convergency of Non-orthogonal Eigen-function Expansions (4¥0).
Fig. 2 Convergency of Orthogonal Eigen-function Expansions I (A4=0).
Fige 3 Convergency of Orthogonal Eigen-function Expansions II (/4=0).

- Fige 4 Nondimensional Displacement 4 for J,=5 & various values of c,.
Fig. 5 Nondimensicnal Displacement % for)G;=10 & various values of Cre
Flg. 6 Shear-strain 9%/ for)(y=5 & various values of c,.

Fig. 7 Shear-strain?7/¢ for)(y=10 & various values of Cre
Fig. 8 Elasto—plastic Behaviour of Substructure.
Fig. 9 Nondimensional Overturning ﬁbment.
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Fig. 10 Comparison of Maximum Absolute S

hear-strain ionid
for various values of )(y & Coe Distribution [344k]

X
notes:

Number of curves in Figs,

1~ 3 corresponds to upper 1 £
summation. P r 1wt A of

Nondimensional F.ransition times without star, with one star and
with two stars in Figs. 4~ 9 correspond to ¢y * 0.50, G = 1.00
and c.p = 1,50 respectively, T

Table 1 Nondimensional Responses on Both Sides of Nondimensional Transi-
tion Tinme,

Table 2 Nondimensional Plastic Deformations of Substructure.
Table 3 Nondimensional Maximum Absolute Values of Responses.

Appendix I: Linear Modified Orthogonal Differential System: Modified or-

thogonal relations (27) and can te reduced to linear relations with

respect to i1 or j, under certain conditions. For example, assuming,
FE®=di (%)= bl¥), aE)=dels)=5) (a.1)
Mrii + Mp¥e~€r=0 , Myli+mq¥e—€r=0 (a.2)

modified normalised orthogonality (28) yields to

f»ﬁm53-3=fo'6ﬂf%se % A&+ MR )Mo P)= T (2.3)

In this case, the differential system in the transformed space is reduced
to following system.

L= g o d 14+ sl 4=
Wi =[fo'bf§)fd$§. | & i—df +(w§ua~}fg)[a'§—l,]q5=0 (2.4)
L.

—ldgll
W = (b - [£]} + (e X111 1p =0

yWi =U01b(§){j‘.‘§.-,.§(_§_}’}d§+w2/aklg?(l]¢=a ] (s)
yWa .—.[b(o)ﬂf‘?/c— ,24;'{:} +wiugl,]p=0
Replacing parameter S by w using the following relation,
w2=— 3_2.1'_&’:3 (aoé)

Ts+1 L
i the conditions
above system can be easily obtained from (6) and (7) under
of (a.1) and (a.2). In this system, there exist real and positive eigen-
value series{w?} and the corresponding real eigen-function series{ ¢,} »
as understanding from relation (22).

Here, the more explicit and concrete inverse transformations of
Green's f{;.nctions arixio be considered, by assuming symmetricity o:t-Green's
function G(§.2;s) . This assumption means that there exist no rotational
terms under the conditionb’(§)%0 , ctherwiseb(§)=0 under existence of rota-
tional terms. In this case, following expressions can be easily obtained.

Gri (5,51 =Gy(E,155), G5, 8)=G(§,955) (2.7)
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[Mg,a;5)=0
Therefore, it is important to express the inverse transformationg(€.£;<)
because G;(%,S) i=1,2 can be obtained by considering (a.7). This is ottain-
ed directly from (38) and (39), however, it will be more convenient to use
the following expression of eigen-function,

SE=- zw.,tl‘;'?wa—aJ\,)[fo'G—(g,;;w)E({) BeHdS +Hr G5, 1:)(F0),

+ 5
= 20, lim (0-w)[GES ;) R(S)] A1 G (5. 03 ) (R, ]
— JiSE+2Svtde s _ Y
= e lns-sleE5i90R6) vee (a.8)

Using symmetricity of Green's function, the secohd formla of (38) vields
to following expression.

R(§,§;S)= sl_:;rnS*VIS-Sy)C-}-(%'_,;; S)= Is) %08 SOV(§) (a.9)

Operating linear cperator[ ,%(&)Jto (a.9) and using (a.8), following ex-
pression can be obtained for the original system (6), (7).

[%(;),ﬁ(g)]imni%  I(so=L(salgser1)
=~ 2 = - = (2.10)
T T YVEeI- (e tiwf)? VDlwd &

Then, 3(£,$;t) is finally formulated as follows, from the first equation of
(38), using normalized linear modified orthogonal eigen~function.

2(E.35;7) =133 ])pret [FE.5: D] gt [F(E.5 5Dl peo

_ 2 letfowl. 5 -
=2.78ast 2 CsmReBlr e 9} € Ve LI flE)
_Terliuy v

2 inh{=D@?
+§,m € z C Sinh __Q(Z“’__)z.njav(f) nfu(5) o (2.11)

Appendix II; Convergency of General Solution and Boundary Homogenizing
Function: Under condition of convergency of the infinite eigen-function ex-
pansion series (30) and its continuity, one-to-one correspondence between
the transformed function and the inverse transformed function is velid.
This problem can be reduced to investigate the validity of eigen-function
expansion of a given function. In general, nonlinear modified orthogonal
eigen-function expansion of any function F)which is real and continuous
and which has a continuous derivative, is obtained from (30) by substitut-
ing following relations into this.

F(zy=0 , m@)=o , mep)=Fg) at =0 (a.12)

When linear modified orthogonality is valid, this can be reduced to follow-
ing expression, ]

~ [LFE. A (5] =

F(§>=§. ﬁ,@)—%—g—ﬁ SQ(E)-—Z,[F(EJ,"'S’»(?H"TV{?) (a.13)

This expansion formula agrees to the expansion treated in bibliography 4)
and 5), in which the convergency of such infinite eigen-function expansion
series has been proved in the closed interval[ 0, 17 .

However, the convergency in the neighbourhood of toundaries O or 1,

is likely to be poor in certain problems, especially in the case where
Mp=0, t4,=0, and there exist non-homogeneous terms of boundary condition.
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In other words, convergency of sclutions which concern to non-homogeneous
terns of boundary conditions, becomes poor in case where the substructure
has not inertla, For exampla, in case where the aystem has uniforam distri-
bution functions and has not rotational terms nor any damping, the eigen-
function expansions of F®=1 are calculated and shown in Figs. 1~3, It ie
easily verified that for the validity of the general solution such as (30),
follgwing expressions should be valid.

Sl LRI nRl5) = Aul®) + Byfs)=1
ANSI=E () 9148 15 =F LR NS, Blrm /i Z AR E)

;i_:kuA,(o)=a Jim Ba)=1 for EF=o (2.14)
limAamy=1 fimBagp=o for 0G<dL (2.15)
Jim Ax(e) +Ba(p)=1 for oLxsid (2.16)

Validity of (a.l4) and ‘(a.15) are necessary for the solution corresponding
to non-homogeneous terms of boundary. So long as/{.does not vanish, these
are valid. If 4(rtends to zero, however, the second equation of (a.l4) is
not valid as shown in Fig. 3. i.e.

Jim By(or= /‘4'»..;‘0 MIBy (o) = undefined value (a.17)

A

In these case, the ge?ieral solution such as (30) is not adaptable, because
the solution corresponding to non-homogeneous terms of boundary condition
does not converge in this boundary.

In the sense of earthquake engineering, it is most important to study
stress and strain responses in the neighbourhood of the boundary. For thia
purpose, boumdary homogenizing function can be introduced to improve the
convergency of the solution in the neighbourhood of the bhoundary, in above
mentioned special case, This function may be chosen arbitrarily so as to
eliminate non- homogenecus terms of boundary, instead of using Gi(£.t) e~
presented by infinite series which does not converge at houndary.

PWil71=f. o W, [81=Fc (a.18)
These functions are easily determined in the transformed space in separable
type with respect to ¥ and 5 . - '
T=R4®5 324 OR; =9 (2.19)
J
where, §; can be chosen conventionally in terms of polynomials. _
Using these boundary homogemizing functions, and transforming )z to 77 by
R=n-7 > $=¢-9¢ €a.20)
the fundamental differential system concerning to 7 or & with homogenecus
boundary conditions is obtained, and of which general solution is converg-
ent in the fully closed interval. Inversely transforming, after all, the

general solution’> ¢ which consists of an eigen-function expansion part
and a boundary homogenizing fupction part is obtained.

N=7+7% (a.21)
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