NONLINEAR VIBRATIONS OF BUILDING STRUCTURES

BY NORTHIRA ANDOY’

PREFACE

‘The dynamical force-displacement relation of a building is
complicated in its dependency on the number of repetition of the
displacement as well as on the magnitude of displacement and
velocity. Hence, there are many difficulties in the prediction of
the effective rigidity and the damping of a building structure in a
state of violent motions due to a strong motion earthquake. In
spite of the development of the response spectrum techniques, one
of difficulties seems to be in this respect in introducing a
substantial design basis from the studies based upon them.

A building structure producing a large deflaction beyond its
elastic limit is generally recognized as a hysteretic system. Though
the dynamical properties of restoring force of a building structure
is complicated and have many varieties, some typical hysteretic forms
of the force-~displacement relation may be assumed. The response
computing techniques for the nonlinear systems must be developed,
for which the fundamental theoretical basis will be desirable,

In this paper, studies on vibrating systems with some typical
forms of the hysteretic force-displacement relations are presented.
In Chap. I, thecry of stationary vibrations of hysteretic single
degree of freedom systems is treated. In Chap. II, solutions of
transient vibrations of the hysteretic bilinear single degree of
freedom systems are shown. In Chap. III, a method to discriminate
the stability of the stationary vibrations of hysteretic single
degree of freedom systems is given. The discriminant of the
stability are explicitly obtained about the systems treated in the
previocus chapters. In Chap. IV, the transient vibrations of
hysteretic bilinear two degrees of freedom system are solved.

CHAPTER I
FORCED STATIONARY VIBRATIONRS OF
HYSTERETIC SINGLE DEGREE OF FREEDOM SYSTEMS

1.1 Equation of motion

Let the force-displacement relation for the forced stationary
vibrations of a single degree of freedom structure be as shown in
Fig. 1. The eguation of motion for a vibration excited by a
~ stationary harmonic force is, for non-negative velocity,

2 .
(1.1) w2+ £(y,a) = -P cos(ptes)
dt .
"where £ is the phase angle between the force and the displacement.
The spring stiffness for a small displacement is

Vi) e = [2%;_?_)_] from which w = E

y=0,a=0,
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is the natural circular frequency of the small amplitude vibration.
Applying new variabdbles

a
(1.3 §=§,T=pt.,\=;§-,n=%,
Eq.{1.1) can be transformed into the following dimensionless form:

.o

(1.4) % + -;- wE) = - L cos(T+8)

)?
where
f(y.2) f(aﬁla)
(1.5 ¢<5>— £ s,

In Eq.{1.4) and throughout this paper, dots over a quantity refer
to differentiations with respect to the variable ¢. The notation n
is a measure of amplitude, the unit of which is the statical
displacement of an elastic system having the spring stiffness ¢,
prcoduced by an external force P.

Provided that a harmonic type stationary vibration occurs; for
which the initial and the terminal conditions of one half cycle

during which the velocity tskes non-negative values can be written
as follows:

(1.6) T = 0 5
(1.7) T=7": &

"lv:g‘.»'-"o;
1, €= 0.

]

The equation of motion (1.4) satisfying conditiomns (1.6) can
be replaced by the following equivalent integral equations:

E = -cosT + 2 (8inT=TcosT)sind - Teinlcosd

2nA
% f “Re?y - 4{5T )} sin(z-7)07

£ = sinT+ {’l’sin‘rsin# (sin‘Z+Tcoa'Z)cos#}

2n AZ
f [RE(T ) - #{5(T )} ] con(z-T a7 .

In order that the above equations satisfy the terminal conditions
(1.7}, we must have

sing = - 2 ["[Px) -4 (50} sin7 a7,
cosf = % j;n [/\25('[) - ﬁ{g(‘t)}] cosTd7l.

(1.8)

1.2 Hysteretic system with quadratic force~displacement relation
For the following force~displacement relation:
(1.9) f£(y) = c(y-%pyz)
méintained throughout the interval corresponding to the non-
négative velocity, the dimensionless restoring force (1.5) becomes
1 2 2
(1.10) (&) = 5 pa(l~%") +41-%a"E.
For a small amplitude vibration, the displacement may be assumed as

Binusoidal form § = ~cos?. Inserting this in Eq.(1.10) and
Sarrying out the integration in Eqs.{1.8), we have

{1.11) Eiﬂé ——pa, cosf | [y o222 2,
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From the above relations, the equations of the response and the
phase angle curves will easily be derived.

The equation of the response curve becomes a quadratic equation of
(A7), and its discriminant vanishes at the resonant state. Hence,
we have the resonance amplitude and the resonance phase angle,
respectively, as follows:

. [27 2B = T
(ﬁa)Res,- ég_ c ﬁRes.' 2°

The response and the phase angle curves are calculated and
shown in Fig. 5. 1In the figure, ¢/2B8P is the ratio of the maximum
value of f(y) to the exciting force amplitude P. The response
curves are somewhat similar to those of so-called softening spring
type nonlinear systems.

When the amplitude increases largely, the wave form diverges
from the sinusoidal one, and the exact solution should be obtained
by numerical integration of the equation of motion. The wave forms
of the stationary vibrations are calculated, from which the
response and the phase angle curves are obtained as shown in Fig. 6.
The full lines in the figure are the results, and the dotted lines
are given by Egs.(1.11). The latter curves show good approximation,
but the exact wave forms differ considerably from the sinusoidal
one, especially for low frequency excitation.

1.3 Hysteretic bilinear system

AHysteretic bilinear restcring force shown in Fig. 2 can be
written as follows:
-a ¢y ¢ -(a-2e): £(y,a)

c(y+a~e),
(1.12) -(a~2e) ¢y < a: f(y,a) = ce = fo
- - Al
where e is the elastic limit displacement, and £ dis the ultimate
strength of the system. From Eqs.(1.12), the dimensionless
restoring force defined by Eq.(1l.5) becomes
2f f
1S E < -(1-52)s H(E) = el -5,

(1.13) 2f £
~(1-gD) <E L HUD)

2
=

For the amplitude larger than e, the system behaves as a
nonlinear system. For an interval of a harmonic type stationary
vibration, for which the initial and the terminal conditions (1.6)
and (1.7) have been given, let the transition time of the
stationary motion from the elastic part of the restoring force to
the nonlinear pant be
It is evident that & is some positive value not larger than the
unity. Inserting Eqs.(1.13) into Eq.(1.4) and using the conditions
of continuity of displacement and velocity at the time T = o7, we
obtain the following relations:

iz 1 C(d,)\) .
(115 3P 7 2 {Az(a,h)mZ(d,A)}‘}

~1 A(xX,A)

B, AT

g = tan
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L = -—-J (l'd) 3 } -1’(1 )T~ s:.ndﬁ}il-gé— (l+coso("r) gggé

A(GLAY = (l~“)ﬂ(COSQW—COSj()+51ndﬂ(1+costr)-A(1+c05dﬂ751n%¥,

where

B(x,A) = (1-u)7fsinmr.(1+c05d7r)(1+coso§\z)
-A {( 1'“)I+Sind7r}51n¥ + 2/\2( l+cos%\7-r') .

CLot,A) = (L+cosaT) (1-cos™E) - ZAsind’)Tsin%\E

+}?(l—cosdﬂ3(l+cos%¥5-

In case of the elastic resonance A = 1, taking the limit A=l in
the above formulas, we obtain the corresponding formulas which take
the place of Egs.(1.15). Since Fgs.(1.15) are formulated as to
contain the variables g and n separated and explicitly given by the
second and the third eguations, numerical calculations are
facilitated.

The response and the phase angle curves for constant amplitude
external forces are calculated by Eqs.(1.15) and shown in Fig. 7. The
response curve for the exditing force P <.f has a resonance point.
The resonance phase angle is nearly equal to 7'1'/2. After some
lengthy computations, we know a fact that the slope of any response
curve varies continuously when the frequency is varied passing
through the transition points from elastic to nonlinear range.

Since the effect of sinusoidal ground motion
(1.16) ¥, = a,sinpt

can be considered as equivalent_to the effect of exciting
force having enamplitude P = mp a,> using the ratio

% a 1 fo 1
(1.17) v = - from Egs.(1.3) we have n = — -3 < —3
¢ YA V/\

Substituting these relations into Egs.{1.15), we obtain the response
to the ground motion. The response and the phase angle curves for
the ground motion are shown in Fig. 8. The resonance phase angle
is somewhat larger than 77/2. The slope of the response curve
varies continuously through the transition points from the elastic
to the nonlinear range.

CRAPTER II
TRANSIENT VIBRATIONS OF HYSTERETIC
BILINEAR SINGLE DEGREE OF FREEDOM.SYSTEMS

2.1 Equation of motion

For the hysteretic bilinear restoring force shown in Fig. &,
the course A-C~B represents an interval of non-negative velocity.
At the end of this interyal B, the velocity turns its sign, and the
next interval represented by the dotted lines in the figure is an
interval of no positive velocity. The motion during the latter
interval can be inverted into an interval which is similar to the
former one by inverting the sign of the excitation as well as the
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signe of the abscissa and the ordinate of the restoring force
diagram. So that it is sufficient to consider an interval
represented by the course A-C-<B of the figure, and we will call
this interval as one half wave of the transient vibration.

For the above mentioned half wave, the restoring force f(y) in
the equation of the motion excited by a ground motion Yo

2
ay, .
2

d2
(2.1) =m ——% + f(y) = -m
dt dt
can be written as follows:

&% £ ¥ < ey £(y)

cY,
120{3' + (#- 1)evzp}.

In Eqs.(2.2),‘7f2 is a constant giving the ratio of the slope of the
restoring force diagramin the nonlinear range to that in the elastic
one. Defining the dime?sionless displacement and restoring force

fly)  f(e®)
(2.3) @=L, 2 = Lo 225
and using the notations T, A in Eqs.(1.3), the equation of motion
(2.1) can be transformed into the following form:

(2.2)

eﬁ% £ ¥ £(y)

A

2
. a7y
@b 7+ = - 2 (n—2)
A Xt dt
where 20m) 072
< < : = 7,
(2.5) { =72 2 1
%7 2@ =v¥{7e G-vy)

In Eq.(2.4), the right hand side is the ratio of the inertia force
acting on a rigid mass m to the ultimate_strength of the system fo
divided by the square of period ratio A .

2.2 Transient motions

Transient vibrations excited by the sinuscidal ground motion
(1.16) are shown in Fig. 9 and Fig. 10, in which V is the ratio
defined by Eq.{1.17). The transient waves of the system with the
constant ¥~ = O,are shown in Pig. 9, and those of the system with
the constant 72 = 0.2 are shown in Fig. 10.

The transient waves shown in Fig. 9 has a tendency to converge
to a harmonic type stationary vibration 'monotonically' and very
rapidly. The solutions shown in the figure attain aimost stationary
states at their end of the transient waves. It is geen in the
figure that there may be a temdency in a transient motion to yield
a large amount of displacement after a number of repetition of
vibrational waves, due to a creeping of the displacement towards
one direction. This tendency becomes more remarkable for greater
frequency and larger amplitude of the ground motion.

The transient waves shown in Fig. 10 are somewhat different

from those of the system above mentioned. There are some
fluctuations in the waves, due to the fact that there exists always
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some restoring action on the vibrating mass to coincide with the
center of the restoring force O shown in Fig. 4. The phenomena of
the creeping of the displacement are not s¢ remarkable as in the
system above mentioned. The transient motion does not converge to
the stationary state 'monotonically'. But the transient vibrations
have still a tendency to converge to the corresponding harmonic
type stationary state.

CHAPTER III
STABILITY C¥ FORCED STATIONARY VIBRATIONS QF
HYSTERETIC SINGLE DEGREE OF FREEDOM SYSTEMS

3.1 Discriminant of stability

A method to discriminate the stability of harmonic type
stationary vibrations are shown in this chapter, in regard to the
systems with the restoring force f(y,a) which is determined by the
magnitude of the restoring force ~f(a,a) = f(a,a) at both the
extremities of the half cycle, and does not depend directly on the
value of the displacement.

The dimensionless restoring force for the stationary state
have been defined by Eq.(1.5). The restoring force for an interval
of an unstationary motion with non-negative velocity which will be
produced by imposing an infinitesimal variation on a stationary
state, can be expressed by f(y,a+da ), provided that the origin of
the displacement y is appropriatelyochosen. The relation between
the restoring force for the stationary state f(y,a) and that for
the disturbed motion f(y,a+4a ) is shown in Fig. 1. Let the
displacement of the disturbedomotion be y+4y, and applying the same
notation as in Eqs.{(1.3), then the restoring force f(y+4y,a+sa )

X . . o
for this motion can be transformed into

(3.1) 4(5+a8) = 4(B)+ ¢ (5)a8-2ELa2dnp  wnere

‘rpy - EB) 2 f(y.a) _ A I
4 (%) = dg ‘a(x) ca’Ag‘-ax’Ago-- *
a

a

Iet the variation of the restoring force Af_ be given at the
initial state of the one half cycle. The cgrresponding variation
Aao is not a real variation, but that corresponds to the real
variation in the restoring force Af as shown in Fig. 1. The signs
cf Aao and AY are opposite, becaus® an increment in the amplitude
means®a decredse in the initial displacement, and vice versa.

For an interval during which the velocity takes non-negative
values, and ihitial and terminal velocities are zero, the initial
conditions for any unstationary motion as a disturbed state of the
stationary vibration can be represented dy

A -t *
(3.2) T =0: E= -1+4E , £=0, £ = ;hm(o,
'here‘Aﬁs is an infinitesimel variation of the phase angle.
By Eq.(3.1) and the equation of stationary vibration (1.4),

the equation of motion 6f the disturbed state occuring in an
interval of non-negative velocity can be transformed into

1050



Nonlinear Vibrations of Building Structures

NS S o1 : 2f(y,a)
(3.3 &+ 5 4 (Bu = "5 BTG, u = 4E-E6, £(T) - =Ll

Now, let a particular solution of the differential eguation
{3.3) be qugo, and the fundamental solutions of Hill's equation

[ ]
-—5¢(’r;)u=o
satisfying the following initial conditions:
7 = 0: ul=0,ﬁl=l‘;u2=l,fx2=0

be u, and u,. Then the general solution of Eq.(3.3) is gziven by
linedr combination of this particular solution u  and the funda-
mental solutions u,, u,. Determining the arbltgary conscants in
the general solutidn by the initial conditions (3.2), we find

(3.4) = AE - §Aﬂf = [u, +{l-u (0\}11 -4 (O)ul]AE -gLuy 48
where .. .. -
w=E =% Q(li co‘sé
n

is the acceleration of the stationary vibration at the initial
state of one half cycle corresponding to the interval of non-
negative velocity.

At the time 7T =7, the acceleration of the disturbed motion
becomes dZ
-+ —5(4%)__
d,za T=TC
Hence, setting the time T = 71+ AT 19 when the velocity becomes zero,
we may write

4
(3.5) 348 _ = @7y

We considered up to now an interval of motion in which the velocity
takes non-negative values and the initial and the terminal
velocities are zero. The next interval corrésponding to no positiver
values of the velocity can be inverted into an interval which is
similar to the first one by inverting the sign of the exciting
force as well as the signs of the abscissa and the ordinate of the
restoring force diagram. In this sense, during ‘the next interval,
the sign of velocity can be treated as non-negative. The variation
of the phase angle at the imitial state of the next interval in the
above mentioned sense is

(3.6) 4, = AT +A8
Representing,the variation of the displacement at the
time T = T by AZl, from Eq (3.5) and Eq.(3.6) we have
ulr) = 45, 400 = F2aE), _ - af = aad,
Combining these formulas with Eq.(3.4), we obtain

(5gy [T 048 [0 () +{1-u (0} 5, 00)-3, (0)8 ‘”)]A?;'o,
3.7 .
4% = - qu (M) 48+ [uocvr)+{1..u°(o>}ua(m-ao(o)ulcn] 4%,

The variation of displacement at the end of one half cycle is
given by '
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(3.8)  dai= adf

The magnitude of the restoring force at the end of one half cycle

of the disturbed motion will become f{a+da!,a+da ). Considering a

stationary vibration producing an amplitude a+Aa°, in which the same

magnitude of the maximum restoring force as that of the terminal

state of the disturbed motion will be attained, we may put
f(a+Aai,a+Aao) = f(a+Aal,a+Aal).

Differentiating this formula, we have

af(aa,a)A Bf(a,a) ra = {af(a,a)+3f(a,a) A=
¥y l Da o 3y 2a 1
where the meaning of the derivatives are
9f(a,a) _ [Sf(yLa) of(a,a) _ af(y,a)
3y B a3y y=a, sa = y=a.
If we apply the following notations:
Aa
(3.9) Agi = -

to the above relation, we obt)ain

§ ' 2fla,a ' af(a,a
(3.10) -4 (Va3 - -2EEaad L Ly L 2laad ig
Since the value of 45, in Eq.(3.9) can be considered to be the
variation of the displAcement at the initial state of the next half
cycle following that under consideration, da, and Az';’l should have
the opposite signs as shown in the equation.

Since the displacement in the expression of the restoring
force is always measured from the origin of the coordinate axis,
the relation between the variations of the amplitude Aa ’ Aal and
the variations of the restoring force amplitude Af Af ®are

Af = f(asda,asda)-f(a,a) = {af;a;a) 81‘(&,&)}

or
(.11) o= -2 - (') 2f(a.a)] 4y,

in which the suffixes 0, 1 are omltted for brevity. In this
formula, the variation of the restoring force 4¢ and the variation
of the restoring force amplitude Af should have the opposite signs.

Insert:.ng Eq.{3.10) and Eq.(3.11) into Eqs.(3.7), we have
(7r)+{1-u (o)}u (1)~ (0) &, (71)
N ap

a ¢ (1) + of(a,a) a)} o

il

[}

83148, + 2,540,
Ozﬁ' (La (7[)Al‘

¢ (1)[ () +{1-u (03} u,em)-8 (0)u, (1) ] - REL222)

coa
= AY
of(a.a) o
g+ =

(3.12) JAﬁl

"

s a 14.60 + aaaAﬁo.
Eqs.(3.12) show that the following linear relation hold
between the variations of the phase angle and the restoring force

at the initial state of j~th half cycle and the variations of
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the corresponding quantities at the initial state of the following
(j+1)-th half cycle:
28, Ma a Agf A,d
+1 11 12
(3.13) Shind = [4] ,3=0,1,2, ....

f the series (3 13) does not dlveroe when J tends to infinity,
the unstationary motion under consideration contimues in the
neighborhood of the corresponding stationary vibration, i.e. the
stationary vibration is stable, and vice versa.

In case of the matrix [AJ has two different eigenvalues;bl and

[}] can be transformed into a diagonal matrix
]

L L ]
g, py 0 ||ady 4, 1 1] ag,
' = '/ Where P
45,1 O fp| |45 80y PP (4840
this series does not d*verge, the serles {3.13) does not diverge
and vice versa. Hence, the conditions of stability of the
stationary state are

(3.14) V&ll <1, lﬂ?l < 1.
If the characteristic polynomial of [A] takes a double rootw, [A]
can be transformed into a triangular matrlx

) -1
g‘J +1 t /LL * Aﬁ'? where Aﬁf? = : ° A"j .
Hence, the condition of stability should be
(3.15) |@] < 1.

3.2 Application to hysteretic system with guadratic force-
displacement relation

If we assume Ba as a small quantity in a small amplitude
vibration, and neglecting the powers of ga above the first, we have
the following result in regard to the system treated in Sec. 1. 2,
Chap. I. +E

P2 = -(ljﬁa)(c0535+-i sin-— = -(17Ba)e' A
Hence, we have the relation

2] = 1p2< L |
from which we can conclude that the stationary vibration is always
stable at least for the small amplitude, and moreover, any

unstationary motion in the neighborhood of the statiomary vibration
always converge to the stationary state.

3.3 Application to hysteretic bilinear systems

For the restoring force of the hysteretic bilinear system in a
stationary motion, the relation between the restoring force and the
displacement shown in Fig: 3 can be written as follows:

-a<y< -(a-2e): f(y,a) {y+ (1-12)(a-e)},
(a—2e) <y < as £f(y,a) {? y + (1-7 )é}

For the system with the above mentioned restoring force, the

"
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following result will be derived:
2

2
147" 1~7 AT
{3.16) f’“’l,z = =(=5—+ S5 cos —-)cosd

2 2 .
{ 22 2 13° QT 2,
(-——1’: ) (l—cosg%l:)?- (]'+2 + =5—cos=x ) sin"8,

+

where 2 1 -52 1_3'2 AT 7(1-0 27[}
%L‘b}-?a—cosg%: ( *2 + 55— cos =3 )coa{ﬂ- s

2 1. 1-0)7C
sing/%: = (—-——-1*'; +—-—lgzcosg/%[-)sin{e-r( A } .
In Eq.{3.16), ol is the quantity defined by Eq.(1.14). It will
easily be verified that regardless of 25 2 being real or imaginary,
there always holds the following relation!
%F‘l,zi s L

¥From the above result, we can conclude that the stationary
vibrations are always stable. Furthermore, at least in the
neighborhood of a stationary state, any unstationary motion has a
tendency to converge to the corresponding stationary vibrationm,
excepting the special case |/ 2[ = 1. The relation between
the values of d and |f, | aré’€alculated by using Eq.(3.16),
and shown in Fig. 11. ~'"In the figure, /Ll > take real values in
the range of of in which two values of | )T exist, and the values
of M. become imaginary in the remaining'range of 0. It is
also” Beenin case of A { 1 that one of |/, 2| takes the maximum
value unity for some value of & in the real range.

Inserting ”0'2 = 0 into Eq.(3.16), we have the relations

‘,u.l = -cosg%r—, /Lz = wl
which should be the discriminant of stability for the system with
the restoring force shown in Fig. 2. It is to be noted that the
second relation represents the fact that the state of motion is
indeterminate in regard to the absolute amount of the displacement,
since there is no center of restoring force in the system. Using
the results of calculation of stationary vibration, the value of/-l'1
is compnted and shown in Fig. 12.

The discriminant of stability (3.14) or (3.15) is a measure of
convergency of a disturbed motion to original stationary state. The
transient vibration may be regarded as a disturbed state of the
stationary motion. From this point of view, the Properties of the
transient waves of the bilinear systems can be explained
numerically, based upon the theory of stability above mentioned.

. CHAPTER IV
TRANSIENT VIBRATIONS OF HYSTERETIC
BILINEAR TWO DEGREES OF FREEDOM SYSTEM

4.1 BEquation of wotion

For an interval of the motion of a two storied structure
during which the restoring force for the first story traces the
course A-C~B shown in Fig. 13, which corresponds to non-negative
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values of the relative velocity of the first story, the equations of
the motion excited by a ground motion v, can be written as follows:

2
d Y1 : dayo
| B2 T Y - ) s ey =2,
; at
(4.1)
2 2 2
d oY d Yo (5.3 d Yo
m, == + m, —= + £ (y 2 em —
2 2 T2 e 2 2

It is suffiéient to consider only the above mentioned interval of
motion, and we will call this interval of the motion as one half
wave of the transient vibration. The interval corresponding to the
no positive relative velocity of the first story can be inverted
into an interval which is similar to the above mentioned half wave.

For the hysteretic bilinear restoring forces shown in Fig. 13,
introducing the following dimensionless quantities:

e
(4.2) vzs-—; T=1t, A —2; p =% s =1, 2,
B

and the dimensionless restoring forces:

£ (y > f_(e)
(4.3) Z(?S) = 8 8 _ 5 S°S

ce  ce_
. s's s’s
theequations of motion {4.1) can be transformed into
o~ . 2
. a7y
1
B o+ 5 AU - —-zm)_-——-—l (m) —2),
1 AZ m ey 2 2 1 2
A A dat
1. 2 1701 :
(&.4) ﬁ >
°y 1 1 dy
. ‘e °
ol * T+ S X)) = - =y, —57),
2 A ASE dt
- 2 2 02

where f 10 f are the ultimate strength of the respective stories,
and the restoring force terms are given by

(l2s] 2 27) =7,
(4.5) 7, 2 1: Z(’?s) =13 s = 1, 2,
75 & -1 A7) = -1.

-

4.2 Transient motions

From the solutions of the equations of motion (4.4), the
transient motions can be computed. The transient waves of a system
with the constants m, = m,, c1 = c = f excited
hy the sinusoidal ground motion (15 16)areshown in Fig. 1%, in
which the notations A = A V = ao/es are used.

The wave forms of the relative displacement of the first story
are gquantitatively similar to that of the single degree of freedom
oystem studied in Chap. II. As previously mentioned, there may be
a tendency of creeping of the relative displacement of the first
story tocwards ome direction, which becomes more remarkable for
greater frequency and larger amplitude of the ground motion. There
rarely occurs the tendency of creeping of relative displacement in
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the second story.

The effective damping in the first story is considered to
reveal its remarkable effect in the response of the second story.
However, the hysteresis damping is essentially differs from a
viscous type damping in its effect on the wave forms, which are
very complicated in the second story even in case in which there
cccurs an almost elastic vibration in this story.

Due to the effective damping above mentioned, there is a
tendency to converge to a stationary state in a transient wave.
Most transient waves shown in the figure almost attain the
stationary state at their end of wave sequences. However, it is to
be noted that the stationary state to which the transient wave
converges is not always a harmonic type vibration. In fact, the
transient waves for ¥ = 1, 2; A = 1.2 converge to the non-harmonic
type stationary states, while the remaining waves converge to the
harmonic type stationary vibrations. In the non~harmonic type
stationary state, there appear alternatively two kinds of half
cycles with different amount of the total displacement and the time
of duration. The tendency of the creeping of the relative
displacement tends to vanish in a sequence of the transient waves
with the lapse of sufficient time, if the stationary state is the
harmonic type. However, for a transient motion for which the
non~-harmonic type stationary vibration corresponds, the converged
stationary state itself should have a tendency of creeping, due to
the differences in the total displacements of successive halfl
cycles.
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NOMENCLATURE
a = stationary amplitude
¢ = linear spring stiffness

e = elastic limit deformation

]

f(y,a) restoring force, function of y and a
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£(y) = restoring force, function of y
i‘o = ultimate strength ‘
m = mass
ca X .
n = 3, dimensionless amplitude
p = circular frequency of excitation
P = amplitude of external force
t = time
y = lateral displacement of story
Yo = ground motion
n = %, dimensionless lateral displacement of story
A = -‘%, period ratio
%o
vV =
£ = E-, dimemsionless lateral displacement of story

T = pt

2@ = %%-)—, dimensionless restoring force
v(E) = ﬁ%;-a-l. dimensionless restoring force

w = E, natural circular frequency of linear system
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Transient waves of hys‘!;emtic bilinear systems
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~f freedom system
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