RESPONSE SPECTRA ON STRATIFIED SOIL
By Ismael Herrera and Emilio RosenbluethO

Abstract

Paper concerns the probability distribution of spectral responses of
viscously damped single-degree systems resting on stratified viscoelastic
soil, The soil is assumed to rest on a viscoelastic homogeneous half space
of rock. Motion arriving at the rock-soil interface is idealized as a stg~
tionary Gaussian process. The transfer function for the soil formation is
treated independently for each vibration frequency of interest, in order to
allow for dependence of viscoelastic parameters on the wave frequency; this
is accomplished through use of a matrix formulation. Certain additional ap-
proximate results are included.
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a,b,c = constants in power spectral density

8,.by = respectively, amplitude of cosine and of sine tems in the dis-
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transmission matrix corresponding to the pth soil stratum
spectral pseudovelocity

velocity of P or 5 waves

displacement

X=Xy 0r x - X3

depth measured from rock surface

depth measured from top of pyth stratum
viscoelastic parameter of soil (a function of w)
reduction factor to take account of damping
Dirac's delta function

unit strain or angular change

percentage of critical damping

Pnzn

elastic (shear) modulus of ground

w( + i)~ V/2y1

parameter defining steady-state ground motion
mass per unit volume

stress

time

autocorrelation function

basic solution of a dynamic system

circular frequency

undamped natural circular frequency

Simple structure:s linear system with one degree of freedom
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Introduction

The steady-state one-dimensional vibrations of stratified soi%, ideal-
ized as viscoelastic, and the deterministic response of undamped simple
structures resting on the soil have received attention fe:g. Refs. 1-4),

This is true also of structural responses to a wave arriving at tye base of
the soil formation as a single pulse(5). On the other hand, studies have
been made of the distribution of spectral responses to ground motion applied
directly to the base of a simple structure and idealized as white noise(6) or
as a stationary Gaussian process(7-10). The present paper strives to estab-
lish an approximate solution for the probability distributiom of spectral re-
sponses on soft ground when the disturbamge arriving at the rock surface from
below is idealized as a stationary Gaussian process. The work is kept within
the framework of one-dimensional wave transmission and linear behavior of
both the soil and the simple structure.

In the present study advantage will be taken of the fact that a station-
ary Gaussian process filtered through a linear system gives rise to a motion
which is itself a stationary Gaussian process. This type of random motion
has received considerable attention; hence, the assumption will be adopted
that the motion arriving at the rock surface from below belongs to this kind
of process. Accordingly, a brief discussion is presented of the probability
distribution of spectral responses to Gaussian processes, beginning with the
case of a white-noise disturbance.

Distribution of Respomses to Gaussian Processes

Consider a viscously damped linear system with a single degree of free-
dom whose base is subjected to the accelerogram ¥,(t). If the system starts
from rest we may write

q(t) = 2% %)

where q is a structural response (such as absolute acceleratiom or displace-
ment relative to the ground, *q is the system's basic solution, weighting
function, or transfer function for response q (that is, ¥q(t) =.q(t) when

= d(t) and d is Dirac’s delta function), and a¥f signi?ies §gp @ (7)
Pt - ¥) dt. Since *q(t) = 0 for t € 0, the lower limit of integration may
be replaced with zero. Response spectra are plots of Q = max |q(t)| as func-
tions of natural period or frequency and it is our aim to calculate the
pfobability distributions of various types of spectral ordinates Q. In par-
ticular, *“ﬁy = exp(-ht) sin wyt, where y = x - x5, x = absolute displacement
of the system, h = fay, f = percentage of critic:Y damping, and wy and wy =
respectively, undamped and damped natural circular frequencies.

The “response®
r= (@2 + G + uyp2] /2 3

is of special interest. The time derivative at r2/2 is the energy fed to the

system per unit time and unit mass, relative to the ene it d fed
were its mass rigidly fixed to the ground. rgy would be fe
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First let be white Gaussian noise of uniform intensity per unit time
in the intexrval 0 < t € s where s is the earthquake duration, and %, = 0 out=
side this interval. In other words, ¥; is a stationary Gaussian process de=-
fined by ﬂ{(t,t'f) =a2 (L) if 0<t -1¢ t €5 and ﬁ(t.t"f) =0ift € v or
t >s, a is a constant, and ¢ is the autocorrelation function E[#5(t) Rp(t -
7). Let R = R(h) = max r(h, t). Subject to the condition 27r/a)0 << s the fol-
lowing points have been proved(6).

1. E[R(O)] is proportional to ast/2,

2. E[R(h)] = B(hs) E{R(Oi; B can be computed from an infinite series or
obtained from available graphs(6) or, with a maximum error of about 4 per=-
cent, from the expression

| - g~2hs Y2
B = |~—T52— [0.424 + ln(zhs + 1.78)]

6) or_from p = (1 + 0.60s)0-45(11), The relation B= [1 - exp(-zhs)] 1/2
(2hs)'1/2 has also been proposed(10,12) but it does not furnish the ratio of
expectations of R(h) to R(0) but the limit of the ratio of these responses
when they are both associated with the same probability of being exceeded and
that probability tends to zero.

e

3. The distribution of R/E[R}depends solely on hs.

The quantities wR, R, and R/w may be called, respectively, pseudoaccel-
eration, pseudovelocity, and pseudodisplacement., It is easily seen that
these quantities are never smaller than max|¥|, max|y|, and mex|y|.

Now consider an earthquzke accelerogram fo(t) of duration s and let
62(w) denote the accelerogram's power spectral density:

62( = 2L |F(w)| 2
Here F(w) is the Fourier transform of X,:
® s s s
F = §_ %o(t) e 0 gt = ) dp) 7 ae

It was assumed in Ref. 6 that, for any responmse, E[Q(S‘.ax))]/E[Q(O.ab)] could be
taken equal to B(hs) as obtained for a white-noise disturbance of some equiva-
lent duration and that the probability distribution of Q/E[Q]would be the
same for actual ezrthquakes as for white motions. It has been shown that
these approximations are valid provided the ground motion is nearly Gaussian,
its duration considerably exceeds the structure's natural period, this period
is much larger than the correlation time of the ground motion, and G2(w) is
sufficiently smooth(9). (Near 217/0.70 = 0, for example, the approximation
breaks down if q stands for ¥; indeed, Pl = O so that, if §# 0, this ap-
proximation predicts £ = O and hence ¥, = 0 at ay = .)

A method has also been ceveloped to pay due consideration to the shape

of the power spectrum when the latter is not sufficiently smogth a:,nd it is
desired to calculate E[R(f,«)s the assumption that the distribution of R/E[R]
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is the same as for white noise still holds provided the other conditions
quoted above are met, so that it suffices to calculate E (Bl The approach can
be genmeralized to responses other than R t.>y combining the reasonings in Refs,
7 and 9, and will be presented here in this more general version.

Clearly, for any ground motion of duration s, E[!&o(t)] = 0, since x,(0) =
%.(s) = 0. A Gaussian process of infinite duration is concei‘.rable, such that
’i[?s power spectral density be the same as for the earthquake in question.
For this new motion let g(ty,t5) = E[¥5(ty) S!O(tz)] denote the accelerogram's
autocorrelation function. &ow consider the case when the Gaussian motion is
stationary, that is, #(t,t=7) = g(r) depends only on 7 for all t. For the
new motion,

62w = fo #) &I dx 3)
(see Refs. 7 and 1315 for example). A&lso, |
0
E[e2@y)] = §_ [Fq@|? P@ & @

where Fg is the Fourier transform of the basic solution for respomse q:

- ® -iut
Fq = §_ ¥q(t) e dt (5)

Evaluation of E[Q(a)o)]. when 92¥ stands for a stationary motion of infi-
nite duration, is meaningless, as for such motions this expectation is infi-
nite. In the case of an actual earthquake, if § # O and if s greatly exceeds
both the structure's natural period and the ground motion's correlation time,
then for most values of t > O we shall find the distribution of q almost
identical with that of the response to a stationary Gaussian process of infi-
nite duration. If Y regard E[Q]as a function of ag it will be nearly pro-
portional to (E[q2D}/2. Hence Tajimi's method, which evaluates E[Q]from

ElQo)] _TE[Rwp] 7%/2
E[Q@)] ‘[s‘g ) dm]

If Q(uyy)) stands for the system's maximum absolute acceleration, velocity, or
displacement, Q@o) represents the maximum ground acceleration, and so on.
The method probably gives good results when § is not excessively small but
cannot be used when § = 0, since in that czse E[qz(ub)] = 0.

The following argument leads to a method for calculating E[Q(wo)] that
does not break down when § tends to zero. Under the conditions described
above, the probability distribution of q, without absorbing barriers, tends
to become Gaussian with zero mean and therefore to be defined by a single
parameter, which is a function of the ground motion. Consequently the dis-
tribution of q'normalized in terms of this parameter will be independent of
the grci nd motion, the same will be true of the distribution of Q, and since
(E[q2DY/2 as well as E[Q]will be proportional to that parameter we may use
tl:xe Tresponses to a particular set of random motions -- to white noise in par-
ticular == as basis of comparison and write
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where 3[55] is the expected value of Q as response to a white disturbance
for which Gl = a.

For design purposes the response q = ¥ is of special interest. It is
easily shown(7,10) that

- 1 - 2ifaymg
P = T g2 + 2iteyiag

1 + 43202/m092
A - wPlg®)? + 4&%@/002

Also(6), save for very large wy > 1D, E[V] is practically equal to E[R],
where Vug = | X(t)| may be called a spectral pseudovelocity and E[Rg(ap)]=
1.174 a(ms)1/2, Hence, again save for very large %. E[V(wo) will be given
by Eq. 6 with Fo = Fy and E[Q, ()] /a = 1.174(ms)1/< times a reduction fac-
tor, P, that degends on a(:g{s 8)." Notice that when §— O the bracketed quan-
tity in Eq. 6 tends to Glw).

|Fr@ |2 = )

The above derivations are not limited to simple structures. Eq. 6 for
example, is valid when g denotes the response in any generalized coordinate
of a linear multidegree system. Further, xg may be a column vector repre-
senting the set of static displacements induced im the system by the multi-
degree-of-freedom base motion, in which case a basic solution ¥ becomes a
square matrix which premultiplies %( in the integrand of Eq. 1, and the
Fourier transform of ¥ is also a square matrix.

Distxibution of Besponses on Soft Ground

Consider a horizontally homogeneous, stratified, viscoelastic soil rest-
ing on a semispace of homogeneous viscoelastic rock (Fig. 1). Assume that
an ascending horizontal wave® arrives at the rock surface and is such that
as t approaches zero the wave accelerations for negative t approach d(t);
this wave will produce an acceleration ¥j(t) at the ground surface. Now let
the arriving wagex give a random motion at the interface, with power spec-
tral density Gy*(w). In the case of interest Go = G/2. It is known that
filtering a random motion through a linear system transform the power spec-
tral density of the incoming motiom into

612G = |F |2 6P ®
where Fj (o) is the Fourier transform of the transfer function, and that if

the incoming process was Gaussian so will the outgoing motion. Consequently
the ground motiom in the case which interest us will be Gaussian and may be

% We shall not distinguish between P and S waves, as they are transmit-
ted according to equatioms that are formally identical.

[-49



obtained by setting Fy(w) equal to the Fourier trensfom of the ¥ function
for ¥ in Eq. 8. Com ining this result with Eq. 6 we may write

© 1 =
§_ |Fg | 2]F ] 2 6,2 o E[ g ()
o |Fq@|“1Fy c [ | ©

/2

ElQ1 )] =
[ 1 “X)] §2D|Fq(“9|2 o

The earthquake duration to use in calculating E[Qa]is that of the incoming
motion at the rock surface. The numerator inside the brackets of Eq. 9 may
be interpreted as the product of |F |2 and the filtered spectgal density,
612, or as the product of a mew tramsfer functionm, |Fgle |F1]2 = |[FF1| =
which combines filtering from the interface to the ground surface and from
this to the structural response in question.

The problem of determining the effects of soft soil on response spectra
reduces therefore to that of valuating IFl(aﬂl . This could be done by com=
puting the transfer function and finding its Fourier transform. But we shall
find it more convenient to calculate the Fourier transform directly as a re-
sult of a study of steady-state harmonic oscillations, especially since the
soil's viscoelastic parameters must ordinarily be regarded as functions of w.

Equivalence of the responses under a Dirac-delta excitation and in
steady state may be shown as follows. Consider two linear systems in series,
which are defined by the relations

2 () = 2 M (10)
q) = {H, (11)

where x, is the motion imposed at the base of the first system, x; the dis-
placement at the base of the second one, and q the response of the second
system. First let %, = d(t). From Eq. 10, %} = ¥;(t) and from 11, ¢ =

¥y q+ Secondly consider the disturbance ¥ = Wq(t). Eq. 10 yields %y =

¥ 2 1+ but in view of the possibility of setting the lower limit of integra-
tion equal to zero in the convolution, this is the same as W1*¢ . Thus, the
response of system 2 to a unit acceleration pulse applied at the base of sys-
tem 1 is the same as the accelerogram of 1 as response to the disturbance de-
fined by the transfer function of 2. (This reciprocal relation can be ex-

tended to the case when Xge X}, and q are column vectoxs and the ¥'s are
square matriees.)

The amplitude of the acceleration response of an undamped simple system
with natural cireular frequency w to a ground motion is equal to w times the
Fourier transform of the motion's accelerogram, since the transfer function
for acceleration is them w sin wt. If the system rests on soft ground, the
amplitude of its acceleration response to an ascending wave that arrives at
the rock surface with an accelerogram 3(t) will be w|Fj|. The amplitude of
its acceleratloq response to the same wave, were the system to rest on rock
and were the soil absent, would be 2v. (The factor 2 stems from the reflec-
t;on gf the pulse at a free surface.) The ratio of amplitudes is the magni-
fication factor for an undamped simple system's response to a unit pulse:
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B = [Fy{/2 12)

Equation 12 exactly supplies the magnification factors for undamped re-
sidual spectral ordinates of the ground motion resulting from the arrival of
waves of arbitrary shape, since these spectra coincide with the Fourier spec-
tra. Residual spectra provide a lower bound to the response spectra, since
the latter represent maximum numerical values of responses, which are at
least equal to the amplitudes of residual vibrations. In general, peaks in
both types of spectrum nearly coincide(l6); this is due to the fact that ex-
ceptionally high responses are almost always associated with contribution of
the entire ground motion and, in conservative systems, they are therefore
bound to occur near the end of the earthquake or after its cessation.

Multiplying the magnification factor for residual spectra by the un-
damped response spectral ordinates for the free surface of rock may be ex-
pected to give a good approximation to the corresponding ordinates om soft
ground. It is certainly acceptable for motions of short duration, compared
with the structure's natural period, since the maximum response occurs then
after the ground motion has ceased. It also tends to become acceptable if
the ground motion approaches a stationary stochastic process. For transient
disturbances the approximation will always overestimate spectral ordinates on
soft ground in the neighborhood of those values of w for which the computed
magnification factor is a maximum, since the residual spectrum gives full
magnification to all successive reflections while the maximum response may
occur at a finite time, giving smaller magnification. The same cannot be
stated about ordinates that correspond to values of w outside these bands.

Magnification factors for § = 0, as computed from the ratio of E[Q]to
E[Qo]obtained from Eqs. 9 and 6, coincide with those for residual spectra,

Calculation of Magnification Factoxs

With reference to Fig. 1, the equilibrium equation that governs one-di-
mensional motion of the ground is

%cza,pgg (13)

where the stress g(t) is some functional of the strain £(t) = 8x/8z, and p is
the density. If € is of the form &= Z exp(iwt), with ¥ independent of t,
and if the stress-strain relation is linear then ¢ = ¢ exp(iwt) where ¢ =

(1 + ig)p¥. Here p and « are real functions of w and independent of t.

Under these conditions, for steady-state hammonic disturbance Eq. 13 re-

duces to
2
(1+m)g-z-§+%§1=0

at each of the homogeneous layers, where x = X exp(iwt) and v2 = p/p (a real
function of w).

With the notation and sign convention of Fig. 1, motion in the nth layer
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has for solution the expression
X, (z,t) = @, cos My + by sin 7y

-1/2 y -1 is measured downward from the
where 1, = V Y=ol + ia) Vot 2g is

top ofn‘t]he lgye;, and the square root is taken such that the real part of Yy
be positive. The functions of w, Vp. and ap characterize the material in
the homogeneous layer in question.

Continuity of displacement and stress at interfaces requires that
8p+] = 8y €OS Xy + by sin Xy
busy ¢ ky(a, sin Ay + by cos Ap)

where A, = V H, /2
- v 1+ ian )
“n Pn+1Vn+l 1 + dag+]

and H, = thickness of gth layer. The ground surface must be stress free.
Hen ce, bl = 0,

The above solution applies to ¥ as well as to x; hence, the waves and
responses will be treated as though their displacements were the accelera-
tions mentioned in the previous section. Thus, at the rock surface the in=
coming wave, which is the real part of (1/2)(aN + by/1) expGiwt), is stipu-
lated as sin wt, that is, as the real part of =i exp(iwt). Therefore,

aN - j_bN = - 2 (14)
Now define the matrix

cos Ay sin Ay

T =

n
“ky sin 2y ky cos A,
s0 that
ay 8

= TN-I TN"‘2 eoo Tl
By 1

With the additional definition

1 1
E’ é = TN-I TN-2 oo Tl
2 0

we obtain

aN
by| ™18

because by = 0. Therefore Eq. 14 .xeduces to a1(§1- if) = - 21, or ay =
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2/\§2 + i?ll. The steady-state ground-surface motion is the real part of ay
exp(ft), whose amplitude is the Fourier amplitude spectrum, 2/|&; + i),
and the magnification factor sought, according to Eq. 12, is

Bl = et
€+ igal (15)

When the soil's internal damping is neglected, Ay and k, become real
and Eq. 15 may be interpreted in the following way. Vector ¥ is found by
taking the unit vectoxr along an arbitrary €y direction, rotating it through
an angle A}, amplifying (or comtracting) it, in proportion to ky in the di-
rection éz. perpendicular to §1. rotating the resulting vector through am
angle A,, and so on, N-1 times (Fig. 2). The magnification factor B equals
the reciprocal of the vector's amplitude at the end of the process. This
interpretation leads to Takahasi's(2) graphical solution.

In the case of a single undamped homogeneous layer Eq. 15 may be writ-
ten in the well-known form

Bl = (kl2 5in@ A + cos? A1)~1/2
where ky = (pyvy/pov,) and Xy = oy /vy.

Agglication

The methods described im this paper are applied to the example in Fig.
3. The power spectral density for the motion on rock, were the soil absent,
might be assumed given by the expression

9, 21 + 4hZ2/c2)
G20 = 2 <
Gy =T 02/c2)¢ + (2buyc)e 16y

which has been proposed by Tajimi(7) on the basis of work by Kanai(4). The
constants in this expression have been taken as a2z S00/s, b2 = 0.205, and
¢2 = 242 sec™2 which are representative for earthquakes on hard ground im

the west cosst of the U.5.(10), with s = 20 sec. However, according to Eq.
6, when §= 0 E[Q(w)] is proportional to 6(») and, if Eq. 16 is taken to give
the square of a quantity proportional to the expected acceleration of spec~
trum on rock, it fails to satisfy the obvious requirement that wlE Q(uﬂ]re—
wain finite as w tends to zero. Consequently Lq. 16 will be replaced with

20 = (2abuy/c) 2

which is consistent with the expression for expected acceleration spectra
proposed in Ref. 17, (It should not be construed from the above remarks
that Eq. 17 more closely xepresents the power spectral demsity of actual,
earthquake motions on firm ground than does Eq. 16. The opposite is the
case. But the approximations involved in Eq. 6 lead to the necessity of
using a fictitious spectral density thet will give the correct expected ac-
celeration spectra for zero damping.)

{—53
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With these data, E[V@(ab, Oﬂ,ﬁ E[ Vo (o, O)l,and E[Vo(ao. €], § - G.05,
were czlculzted through numerical integration using Egs. 6 anc¢ 7; here Vg is
a spectral pseudovelocity in the sense that wpVg = max|#(t)]. _Results are
shown in Fig. 4. It is seen that E[vg (. 0) = E[Vg(ao._f)]except for
relatively small values of 2m/uyp.

Next the theory on multiple wave reflection was used to compute B(w).
The product Bluy) E{Vg'ay, 0)] = E[V] (. Oﬂ is shown in Fig. ?. _Also shown
are the curves for g E[V] (., 0)] and EVi(ey. § ), the latter o'itained from Eq.
9. Comperison of these two curves evaluates the assumption that the reduc-
tion factor 3(for responses to white noise) applies to the motion at the
ground surface. It is seen that the assumption holds for relatively long
natural periods but is untenable in the rest of the expected spectrum, es-
pecially in intervals of pronounced curvature.

Loncluding Eemarks

The assumption that earthquakes are stationary Gaussian processes is
fruitful in that it permits establishing methods based on the premise that
expected response spectra (spectra of maximum numerical value of responses)
are proportional to the square root of the expected squared response at any
given instant. Tie idealization precludes direct calculation of expected re-
sponse spectrs, as these are infinite for stationary random processes of in-
finite duration. The central portion of the present work makes use of this
preaise and supplements it with known approximate results for the distribu-
tion of spectral responses to stationary wiite noise of finite duration.

Other approximate treatments are also considered, such as tihe assumption
that wmagnification factors for residual spectra should be applicable to re-
sponse spectra; this particular assumption is of interest because of its sim-
plicity, as the magnification factors are easily found from the Fourier
trensforim of the soil's transfer function, and they apply rigorously to the
residual spectra of arbitrary ground motions. It is concluded that the ap-
proximation is not altogether sstisfzctory throughout the range of interest
in spectra. It is found that effects of the structure's damping cre particu-
larly pronounced near the locally dominant periods of the ground.

The most drastic asswaptions made in this study concern the one-dimen-
sional nature of the ground motion and the linear behavior of the soil. The
first assunption is to a large extent justified by Snell's law when the soil
is st;atified nearly parzllel to the ground surface. Under these conditions
3= anc Z-vave rotion are, respectively, nearly parallel and normal to the
surface. Unevenness of this surface and of interfazces as well as small hori-
zontzl heterogeneity of strata can probebly be taken into account, approxi-
netely, tiroujh an increase in the soil's equivalent internal damping by
sorie incressing function of the wave frequency.

The assumption of linear behavior is acceptable up to a certain earth-
quake intensity. This ujper limit is a function of local conditionms. It is
quite high for most cohesive soils but almost zero for noncohesive ones, ex-
cgp? wlien tiaey are effectively confined by cohesive materials. Owing to this
limitation the linear theory of multiple wave-reflection has received little
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credit in extensive areas of the world while it is of much use for the de-
sign of buildings on soft lacustrine clay and other cohesive fommations.
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SIMPLE SYSTEM
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ERRATA

RESPONSE SPECTRA ON STRATIFIED SOIL
BY I, HERRERA AND E, ROSENBLUETH

PAGE 46 Line 3 from botgom "The tlme derivative
(delete "at") r</

nnoc-.n

PAGE 56 Reference 17; add: (Unpublished Menuscript,
Instituto de Ingenieria, UNAM, Mexico, D. F., 1965)



RESPONSE S

?ZCTRA ON STRATIFIED SOIL

BY I. HZRRERA AND E, ROSENBLUETH

QUESTION BY:

R=PLY BY:

J.A, FISCHER = U,S.A,

Could you compare the results of your work and previous
equations for ground motion amplification developed by
Dr. Kanai?

&, ROSENBLUETH

Kanai's work concerns disturbances tnat consist of a
single pulse or deterministically specified trains of
sinusoidal waves. His solutions for a single pulse
supply precisely the transfer functions used in the
present work when the soil properties are idealized in
accordance with Sezawa's assumption (in which the per—
centage of internal damping is proportional to the
frequency of vibration). The main differences between
this paper and Kanai's work are:

1. We deal with random rather than deterministically
specified disturbances.

2., The soil behaviour can be idealized with complete
generality within the limitations of linesar visco-
elasticity, Thus, in our treatment internal damp—
ing and wave velocity can be any real functions of
frequency., In fact, the example presented differs
substantially from Sezawa's model.

3. ZHanei's studies have been developed for undamped
systems nave a single degree of freedom that rests
on tue free surface of the ground. The scheme
described in the present paper, on tne other hand,
is applicable to any linear system, even if it is
here developed in detail for systems having one
degree of freedom; as far as tne writers know this
is tne first time tnat damping of the structure is
included in studies of tnis type of problem.





