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SUMMARY::

A justification of the ubiquitous Gutenberg-RichtR) law on physical grounds has been sought with
partial success. On the other hand, during comipresests on concrete or rock specimens, the stafis
analysis of acoustic emissioAH) signals emerging from growing microcraks congtisuan effective damage
assessment criterion. It has been observed ths¢ gignals amplitudes are distributed accordinfpedR law
and characterized through thsvalue, which decreases systematically with dangrgeith. Using the Discrete
Element Method DEM), relations betweeAE signals magnitude and energy release in eachizedafupture
were analyzed. The results are compatible withtGRe=nergy-magnitude relation, as well as with moeppsed
probability distributions of magnitudes. These tesssuggest that some features of the probabiigiyidution of
earthquake magnitudes may be correlated with thd@ugen of the damage process for the source under
consideration and that these features may be askessg numerical models.
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1. INTRODUCTION

A justification of the ubiquitous Gutenberg-Rich{&R) law on physical grounds has been sought
in Seismology with partial success. On the othedhduring laboratory compression tests on concrete
or rock specimens, the statistical analysis of aiolemission AE) signals emerging from growing
microcracks has recently shown that the signalslitrdps are distributed according to t6& law
and characterized through ibsvalue, which decreases systematically with damggevth. The
authors review available field and laboratory ewmitke on the subjects, before presenting numerical
simulations of the latter, obtained by means of Bligcrete Element MethodEM). These results
suggest that some features of the probability ibigion of earthquake magnitudes may be correlated
with the evolution of the damage process for thers® under consideration and that these features
may be assessed using numerical models.

2. MAGNITUDE - FREQUENCY RELATION

The well-known GR expression for the relative frequency of seismiengs larger than
magnitudeMs suggested by Gutenberg and Richter (1954), haegrim be applicable in a surprising
variety of geological and geographical locations:

LogioN(Ms) =a—b Ms (2.1

The linear relation (2.1) presents a generallys&attory fit to available global data, both for
clearly identifiable seismogenic sources as wefbagslifused seismicity regions. From equation 2.1
it follows that the probability of occurrence of ament of magnitude equal or larger thdgis given

by:

Prob Ms>m] = exp (# m) (2.2)



A=bln 10 (2.3)

Thus, theGR frequency relation implies an exponential disttit of seismic magnitudes. In
real situations, an upper limit is often imposeefjng the largest earthquak®,. that is considered
possible due to a specific seismogenic source.cEoumt for the associated uncertaintynipa.y , a
probability distribution may be adopted, rathemtlaadetermined value. Similarly, a lower boumgl,
may also be specified, which is in this case assedito the smallest event of engineering intetest.
the presence of bounds, the relation between thdyyaumberN of seismic events larger than
results:

N(m)= Vmin{ exr:[—ﬁ (m - rmnin)] - eXF[—ﬁ (mmax_ mnin)] /
[ 1—exg—p (Mnax— Mhin)]1} (2.4)

In which £ is also defined by equation (2.3) angl denotes the number of events larger than
Mmin PEr year. In order to improve the fit of the magde-frequency relation to observed data, other
models were suggested in the literature:

Log N(Ms)=a+b Ms—c M (2.5)
Log N(Ms)=a-bMs+Log(c- M) (2.6)
Log N(Log Ms) =a+b Log Ms—c (Log M )? (2.7)

In equation (2.5) it is assumed thits is characterized by a log-normal probability
distribution. Esteva (1976) argues ti@R equation (2.1) does not satisfactorily fit datattbontain
magnitudes aboviMs= 7, proposing for such cases a double exponefuiaition. A revision of
statistical methods to estimate threoefficient in GR law as well as its associatedeutainty is due
to Marzocchi and Sandri (2003).
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Figura 2.1. Typical recurrence relations, not-cuativé (above) and cumulative (below).
From left to right Gutenberg-Richter model, maximum magnitude madel characteristic
earthquake model (Bommer and Stafford, 2008).



A single function, based on the hypothesis that@felaw is valid forlow and for high
magnitudes, but with different parameters in batgions,with a smooth transition defined by the
logistic functionf(Ms), has been recently employed by Riera (2009):

Log N(Ms) = [(a — b1 Ms) f(Mg) + [(az — b, Mg) [1-f(M9)] (2.8)
f(Mg) = exfd-(Ms - Mc)/s] { 1+ exf-(Ms - Mc)/s] } (2.9)

In addition to the doubly truncate@R law given by equation (2.4), which is assumed
applicable to small magnitude events, its combimatiith the so-calle€Characteristic Earthquake
model, has also been suggested for cases in wHamlitagenerates large earthquakes at intervats tha
are shorter than predictions based on the observafi small events. (Schwartz and Coppersmith,
1984; Youngs and Coppersmith, 1985; Wesnousky, 198zte that in the group of models reviewed
by Bommer & Stafford (2008), the models describg@tpuations (2.5) to (2.9) are not mentioned.

3. BASIC RELATIONSBETWEEN MAGNITUDE MEASURES AND FAULT PROPERTIES

According to the Elastic Dislocation Theory, seismivents are due to shear failures, the
seimic momenM, being defined as (Abe, 1975):

M,=uxD A (3.1)

In eqg. (3.1)D denotes the mean displacement on the failure pMoezover, eq.(3.2) relates
the seismic moment to the rupture &eand the average stress drop

M, =C A* Az (3.2)

The numerical coefficient depends on the shape of the rupture surface, odigtréuition
of applied stresses and on the degree of anisotbiine medium. TypicallyC varies between 0.6 and
0.75, its actual value being different for eaclsset event. In the static approach, the paraméteats
decribe the fault mechanism are its lenigthind widthB, the shear modulus of the mategiahnd the
seismic momenil, , which are related by simple expressions. The rsg@s<£(z) is needed to assess
the change in strain energyV caused by a seismic event. A fraction of this epetdy, known in
Seismology aseismic efficiencys irradiated in the form of seismic waves. Thadiated energy may
also be quantified in terms of the mean stress drop

Basic relations between these parameters were giwdétanamori and Anderson (1975). The
Moment Magnitude scalgl,, was proposed by Hanks and Kanamaori (1979) and eldfas:

My = % logio Mo — 10.7 (3.3)

In which M, is expressed in dynexcm (10im). Expression (3.3) has been adopted by the
USGS for large US earthquakes since 2002. ExprgssamdAt metric units and substituting eq.(3.2)
into (3.3), it follows that:

My, = IOgloA + % IOgloA‘[— 6,147 (34)

While it is obvious thair cannot exceed the shear (or frictional) strengtheck, no similar
physical restriction can normally be imposed on riingture area. Otherwise it would be easy to
establish the upper bourd,.. indicated in Fig. (2.1). However, this is not tba&se in laboratory
specimens, as will be discussed in Section 5.



4. JUSTIFICATION OF FREQUENCY RELATIONSON PHYSICAL GROUNDS

Numerous attempts have been made, with limitedems;do explain on physical principles
the satisfactory fit ofGR or similar relations to observed seismic data. Stigiect still constitutes a
promising area of research. Scholz (1968) attemutedlate the process of microfracturing in rocks
observed in laboratory specimens with the frequetlisyribution of earthquakes. Bak and Tang
(1989), following a theoretical approach, interprite Gutenberg and Richter relation as a
manifestation ofself-organized criticality— (SOC), which has its fundaments in the Theory of
Fractals. The approach was extended by Ito andudaks (1990), who develop a model to explain
some seemingly fractal properties of seismic eyenish as the potential distribution function af th
size of earthquakes.

Carpinteriet al (2009) examined recently, employing accousting simis AE) techniques,
the applicability oiGRrelation in the ruptures process of concrete sasripl&aboratory tests in which
they detected an evolution of the value of the &Hacient from 1.5 to 1, as the system passes timnm
critical pre-failure state to final collapse.

This decrease of the b-coefficient, also observedaboratory samples by Scholz (1968,
2002), does not reproduce theereasein earthquake frequency vs. magnitude relationsefttire
regions, in which for lower magnitudes the sldpén eq. (2.9) is always smaller thégn In fact ,
Scholz (2002) argues that from the size distributd subfaults it follows thab,= %5 , while b= 1,
values that present a surprising universality. @& other hand, the coefficiebt % that would

satisfactorily fit data for small earthquakes, sath Mg < 3, occurred along a single fault, would be
Iikely to underestimate the mannitiide nf a larodhemiake from the same sricmnnenic source.
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Figure 4.1. Fit of egs. 2.9 to data from variousrees in 70600kfow seismicity area in a stable
continental region (SCR), in whidic = 4.7 ands = 0.2, b;= 0.2603 andb, = 1.0227.

Figure 4.1 shows a typical example of data for auasi sources in a 70600know
seismicity area in a stable continental region (5@RwhichM¢ = 4.7,s =0.2, b;= 0.2603 and, =
1.0227. As is often the case, the slbpa the high magnitudes region is close to 1, alfiothe slope
in the low magnitude region is about a third of theoretical valudy= %; previously indicated.
Almost invariably, seismic data leads to curvesrati@rized byincreasingnegative slopes as the
magnitude increases.



5. NUMERICAL AND EXPERIMENTAL RESULTSRELATED TO ACCOUSTIC EMISSION

In the following, illustrative experimental resultss well as numerical simulations of
laboratory tests aimed at the determination ofitalue on small scale rock or concrete samples are
described in detail. Updated information on thedaments and performance of the lattice formulation
of the Discrete Element Method (DEM) proposed bgrRi(1984), which was employed in the
numerical analyses reported below, may be foundasteskiet al (2011). The study will focus on
Accoustic Emmission (AE) tests reported by Carping al (2009). The first test consists of a
160x160x500mm concrete prism subjected to unisceahpression. The laboratory specimen was
modeled by means of a 27x27x86 DEM cubic modulesyawith the boundary conditions shown in
Figure 5.3b. The parameters adopted in the DEM iren@e Young's modulus of the materi&t9.0
GPa, mass densipgr2500Kg/m2, mean value of the material toughn€&)=560N/m and the linear
elastic limit straingp:2.4><104. The random nature of the material is taken imtwoant by defining
the material toughness as a random field with dfictent of variationCV= 0.5. The value of the
concrete modulugE=9GPa was adopted on account of the fact that ttestemple was subjected
during 48 hours to a uniform compression load dfQLBN, then unloaded. During the ensuing test the
damaged specimen was reloaded up to its final msdlawhile monitored bfE sensors. Figure 5.3b
shows the location of thAE sensor, at which accelerations in the directiormab to the specimen
surface were computed employing the DEM.

The second example consists of a three point bgridst. The concrete specimen dimensions
were (80x150x700mm) with a 30mm pre-fissure lenigtthe middle. The AE sensor was mounted as
indicated by the gray box in Fig. 5.44aterial properties were=35GP3a p=2500Kg/m2, mean value
of the specific fracture energy — material touglsneg(G;)=130N/m and linear elastic limit strain
sp:6.4><105. Additional details concerning the experiments gieen by Carpinteriet al (2009,
2009b). Again, the non-homogeneous nature of ctmaee taken into account in the numerical
simulations by assuming that toughness is a 3D amndield with CV= 0.25. The applied
displacement rates on DEM models, solved by expiiegmerical integration in the time domain, were
reduced until no inertial effects could be detedtetthe output.

Figure 5.1 shows the load vs. time diagrams medsuar¢he experiments and determined
herein by numerical simulation. The peak loads tin@dareas under the curves are similar in both
examples, except for the loss of linearity of tipezimental curve for uniaxial compression near the
peak load, which suggests that perceptible damagered before the peak, effect that is not
observed in the numerical analysi$e load vs. time diagrams of both controlled dispment tests
are quite different: in the compression test anlasipe collapse occurs, while in the three point
bending test a softening branch after the peak Isagached can be seen. Figure 5.2 shows the
normalized energy balance in both tests determibgdnumerical simulation. In the uniaxial
compression test, 95% of the external work is a®d in the form of elastic energy when the final
collapse occurs, resulting in an explosive fail@a.the other hand, in the three point bendingttest
external work is smoothly dissipated during thererggrocess and the available potential energlyeat t
end of the test is not sufficient to produce anl@sipe collapse. Note th#d,,=U.+U+Uq4 att*. In
both examples, due to the slow rate of loadingkthetic energy remains low throughout most of the
test, although when collapse occurs under uniaaahpression, there is a sudden shift of elastic
energy to kinetic energy. The final rupture confajions observed in the experimental setup and
predicted numerically can be seen for the unias@ahpression test in Figure 5.3 and for the Three
Point Bend test in Figure 5.4.
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Figure 5.1. Load vs. time functions: experimentall (lines) and numerical (dashed
lines): (a) Uniaxial compression test, (b) The ¢hpeint bending test.
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Figure 5.2. Energy balance vs timbg£ elastic energyU,= kinetic energy,Us=

dissipated energy): (a) Uniaxial compressi&h.(~4888Nm), (b) Three point bending
(Emax=0.65Nm).

(a) | by N_ -~ 6,=8,6,=0

Figure 5.3. (a) Final rupture configuration of coete specimen subjected to uniaxial
compression (Carpinteet al,2009) and (b) collapse configuration predicted BMD
after peak load is reached. The white rectanglieates the position of the sensor.



(a) (b)

Figure 5.4: (a) Experimental rupture configuratadrspecimen subjected to Three Point
Bending (Carpinterét al, 2009a) (b) Numerical rupture configuration acdéogdo DEM
(only damaged bars are plotted). The small gratangge indicates the position of the
sensor.

A summary of the numerical results concerning Aticusmission AE) for both tests is
presented nexAE signals in the numerical simulations are definedh® accelerations normal to the
surface at points on the specimen where sensoesspleced during the experiments. Figure 5.5 shows
the occurrence of individuaAE events as vertical bars on the time axis. Thehtedfy each bar is
propotional to the intensity of the event registeom the sample surface. The figure also shows the
total load vs. time curves. Histograms of the nunddeéAE events and the evolution with time of the
accumulated number of events are shown in Figurdéds.the uniaxial compression and for the three
points bending tests. Finally Figure 5.7 showsrdiations between the numberAf events and their
magnitudes in logarithmic scale. Straight linesevfitted to the simulated data within selected time
intervals, as indicated in the graphs. The mageitexhle was normalized. All the signals utilized fo
the b-values calculation in the numerical simulation égher amplitudes than the fixed threshold
Anres FOr this reason, only few events were identifiethe simulation (about 200 in each example).
By decreasing even further the displacement ratieaaloting a lower threshold, it would be possible
to identify more AE peaks, but the increase in computational time hef analysis was judged
unnecessary. The valuesttomputed in both examples are compatible withviidaes determined
experimentally by Carpinteet al (2009, 2009b). In addition, the numerical simaas reproduced
the tendency observed in laboratory experimentgiwshow thab decreases towards values around
unity as the degree of damage increases. Notdrtltae uniaxial compression test thevalue was
observed to decrease from 1.69 to 1.19, whilerdoog to DEM predictions it decreases from 1.47 to
1.16. In the laboratory bending tebtdecreases from 1.49 to 1.11, while the numestallation
predicts a decrease from 1.10 to 1.03.

Finally Figure 5.8 presents plots of the logaritbfihe number of events larger than given
amplitudes vs. the logarithms of the amplitudes D&M simulations of the compression test (left
plot) and of the three points bending test (rigbt)p Notice that the shape of these curves ardaim
to the typical curve for seismic data shown in Hid., which according t&cholz (2002), from the
size distribution of subfaults, may be expectegtesent slopes given y= % andb,= 1. While
similar values are usually found in actual seismeicords for specific faults or seismic regionsythe
differ from some of the laboratory or numerical slation results for small samples discussed herein.
For instance, equations (2.9) fitted to the datdim 5.8, lead td;= 0.64 andb,= 2.40 for the
compression test and lbg= 0.24 andb,= 1.16 for the bending test.



mlhuul\\\\\ml‘ ‘ ‘ Ll 0 l‘ ‘ ‘
025 05 075 1 0 025 05 O

titmax t/tmax

o

75 1

Figure 5.5. The full line curves indicate the tdtald in DEM models, while the bars show
the amplitudes ofAE events. Both axis were normalized to the maximaiue. (a) uniaxial
compression test, (b) Three points bending test.
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Figure 5.6. Histograms of the numberAdE events and evolution with time of the
accumulated number &E events (thick line) and load evolution (thin lirfe}:
(a) uniaxial compression test, (b) Three pointsdigg test.
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6. CONCLUSIONS

The decrease of the slopeobserved both in laboratory experiments on snaafiges, as
well as in numerical simulations of these testsictviwas interpreted as due to increasing damage in
the medium, seems to contradict the usual shapssigric frequency vs. magnitude curves, shown
by Figs. 2.1 (below) or 4.1, in which the sldpgypically decreases as the magnitude increases. The
latter, however, are plots of tivellected datdor the available time of observation, while tloenfier
refer to successivperiods of observationThis is clearly illustrated by Figure 5.8, whiphesents
results of the simulations of both the compressind bending tests reported herein, which are also
characterized by slopek ¥alues) that decrease with magnitude.

A direct consequence of the previous observatioosldvbe that if seismic records for
events at a given fault or well defined seismidoegvere separated in bins, say 500 years lorgofit
the GR relation (2.1) to the separated dateould presentb values that decrease with time, that is,
higher values for the older bins. Although this nimya generally valid rule, the differences for the
final b values observed in the numerical simulations &ogeé magnitudes suggest that 1 may not
constitute the limiting slope in every case.

Another difficulty in comparisons of actual seisndata with laboratory or numerical
simulation results is related to the manner in Whareshocks and aftershocks are considered in the
elaboration of seismic catalogues. Note that imdatory or numerical simulations, evel event is
counted, without any attempt to identify clustefsegents. It has been noticed, moreover, &t
signals of large magnitude events do actually nihsksimultaneous occurrence of smaller events
(originated at different sources) triggered byfitmener.

These results suggest that some features of thealpitity distributions of earthquake
magnitudes may be correlated with the evolutiontrid damage process for the source under
consideration and that these features may be askasing numerical models currently under
development.
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