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SUMMARY: 
 

A justification of the ubiquitous Gutenberg-Richter (GR) law on physical grounds has been sought with 
partial success. On the other hand, during compression tests on concrete or rock specimens, the statistical 
analysis of acoustic emission (AE) signals emerging from growing microcraks constitutes an effective damage 
assessment criterion. It has been observed that these signals amplitudes are distributed according to the GR law 
and characterized through its b-value, which decreases systematically with damage growth. Using the Discrete 
Element Method (DEM), relations between AE signals magnitude and energy release in each localized rupture 
were analyzed. The results are compatible with the GR energy-magnitude relation, as well as with most proposed 
probability distributions of magnitudes. These results suggest that some features of the probability distribution of 
earthquake magnitudes may be correlated with the evolution of the damage process for the source under 
consideration and that these features may be assessed using numerical models. 
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1. INTRODUCTION 
 

A justification of the ubiquitous Gutenberg-Richter (GR) law on physical grounds has been sought 
in Seismology with partial success. On the other hand, during laboratory compression tests on concrete 
or rock specimens, the statistical analysis of acoustic emission (AE) signals emerging from growing 
microcracks has recently shown that the signals amplitudes are distributed according to the GR law 
and characterized through its b-value, which decreases systematically with damage growth. The 
authors review available field and laboratory evidence on the subjects, before presenting numerical 
simulations of the latter, obtained by means of the Discrete Element Method (DEM). These results 
suggest that some features of the probability distribution of earthquake magnitudes may be correlated 
with the evolution of the damage process for the source under consideration and that these features 
may be assessed using numerical models. 
 
 
2. MAGNITUDE - FREQUENCY RELATION 

The well-known GR expression for the relative frequency of seismic events larger than 
magnitude MS suggested by Gutenberg and Richter (1954), has proved to be applicable in a surprising 
variety of geological and geographical locations: 

  Log10 N ( MS ) = a – b MS      (2.1) 

The linear relation (2.1) presents a generally satisfactory fit to available global data, both for 
clearly identifiable seismogenic sources as well as for difused seismicity regions. From equation (2.1) 
it follows that the probability of occurrence of an event of magnitude equal or larger than MS is given 
by: 
 
  Prob [MS ≥ m] = exp (-β m )      (2.2) 



  
β = b ln 10        (2.3) 

 
Thus, the GR frequency relation implies an exponential distribution of seismic magnitudes. In 

real situations, an upper limit is often imposed, defining the largest earthquake mmax that is considered 
possible due to a specific seismogenic source. To account for the associated uncertainty in mmax , a 
probability distribution may be adopted, rather than a determined value. Similarly, a lower bound mmin 
may also be specified, which is in this case associated to the smallest event of engineering interest. In 
the presence of bounds, the relation between the yearly number N of seismic events larger than m 
results: 

N(m)= νmin { exp[– β (m – mmin)] – exp[– β (mmax – mmin)] /  
 

[ 1 – exp[– β (mmax – mmin)]]}      (2.4) 
 
In which β is also defined by equation (2.3) and νmin denotes the number of events larger than 

mmin per year. In order to improve the fit of the magnitude-frequency relation to observed data, other 
models were suggested in the literature: 

 
Log  N ( MS ) = a + b MS – c MS

2      (2.5) 

Log  N ( MS ) = a - b MS + Log ( c -  MS )    (2.6) 

Log  N ( Log MS ) = a + b Log MS – c (Log MS )
2    (2.7) 

 In equation (2.5) it is assumed that MS is characterized by a log-normal probability 
distribution. Esteva (1976) argues that G-R equation (2.1) does not satisfactorily fit data that contain 
magnitudes above MS= 7, proposing for such cases a double exponential function. A revision of 
statistical methods to estimate the b-coefficient in GR law as well as its associated uncertainty is due 
to Marzocchi and Sandri (2003).  

 

 
Figura 2.1. Typical recurrence relations, not-cumulative (above) and cumulative (below). 

From left to right: Gutenberg-Richter model, maximum magnitude model and characteristic 
earthquake model (Bommer and Stafford, 2008). 

 



A single function, based on the hypothesis that the GR law is valid for low and for high 
magnitudes, but with different parameters in both regions, with a smooth transition defined by the 
logistic function f(MS), has been recently employed by Riera (2009):  

Log N ( MS ) = [(a1 – b1 MS)  f(MS) + [(a2 – b2 MS) [1-f(MS)]  (2.8) 

  f(MS) =  exp[-(MS - MC)/s] /{ 1+ exp[-(MS - MC)/s] }   (2.9) 

In addition to the doubly truncated GR law given by equation (2.4), which is assumed 
applicable to small magnitude events, its combination with the so-called Characteristic Earthquake 
model, has also been suggested for cases in which a fault generates large earthquakes at intervals that 
are shorter than predictions based on the observation of small events. (Schwartz and Coppersmith, 
1984; Youngs and Coppersmith, 1985; Wesnousky, 1994). Note that in the group of models reviewed 
by Bommer & Stafford (2008), the models described by equations (2.5) to (2.9) are not mentioned. 

 
3. BASIC RELATIONS BETWEEN MAGNITUDE MEASURES AND FAULT PROPERTIES 

According to the Elastic Dislocation Theory, seismic events are due to shear failures, the 
seimic moment Mo being defined as (Abe, 1975): 

  Mo = µ D A        (3.1) 

In eq. (3.1) D denotes the mean displacement on the failure plane. Moreover, eq.(3.2) relates 
the seismic moment to the rupture área A and the average stress drop ∆τ:  

 Mo = C A3/2 ∆τ        (3.2) 

The numerical coefficient C depends on the shape of the rupture surface, on the distribuition 
of applied stresses and on the degree of anisotropy of the medium. Typically, C varies between 0.6 and 
0.75, its actual value being different for each seismic event. In the static approach, the parameters that 
decribe the fault mechanism are its length L and width B, the shear modulus of the material µ and the 
seismic moment Mo , which are related by simple expressions. The mean stress E(τ) is needed to assess 
the change in strain energy ∆W caused by a seismic event. A fraction of this energy ∆W, known in 
Seismology as seismic efficiency, is irradiated in the form of seismic waves. The irradiated energy may 
also be quantified in terms of the mean stress drop ∆τ. 

Basic relations between these parameters were given by Kanamori and Anderson (1975). The 
Moment Magnitude scale Mw was proposed by Hanks and Kanamori (1979) and defined as: 

 Mw = ⅔ log10 Mo – 10.7       (3.3)  

 In which Mo is expressed in dyne×cm (10-7 Nm). Expression (3.3) has been adopted by the 
USGS for large US earthquakes since 2002. Expressing A and ∆τ metric units and substituting eq.(3.2) 
into (3.3), it follows that: 

  Mw = log10 A + ⅔ log10 ∆τ – 6,147     (3.4) 

 While it is obvious that ∆τ cannot exceed the shear (or frictional) strengths of rock, no similar 
physical restriction can normally be imposed on the rupture area A. Otherwise it would be easy to 
establish the upper bound Mmax indicated in Fig. (2.1). However, this is not the case in laboratory 
specimens, as will be discussed in Section 5.  



4. JUSTIFICATION OF FREQUENCY RELATIONS ON PHYSICAL GROUNDS 

Numerous attempts have been made, with limited success, to explain on physical principles 
the satisfactory fit of GR or similar relations to observed seismic data. The subject still constitutes a 
promising area of research. Scholz (1968) attempted to relate the process of microfracturing in rocks 
observed in laboratory specimens with the frequency distribution of earthquakes. Bak and Tang 
(1989), following a theoretical approach, interpret the Gutenberg and Richter relation as a 
manifestation of self-organized criticality – (SOC), which has its fundaments in the Theory of 
Fractals. The approach was extended by Ito and Matsuzaki (1990), who develop a model to explain 
some seemingly fractal properties of seismic events, such as the potential distribution function of the 
size of earthquakes.  

Carpinteri et al (2009) examined recently, employing accousting emission (AE) techniques, 
the applicability of GR relation in the ruptures process of concrete samples in laboratory tests in which 
they detected an evolution of the value of the b-coefficient from 1.5 to 1, as the system passes from the 
critical pre-failure state to final collapse.  

This decrease of the b-coefficient, also observed in laboratory samples by Scholz (1968, 
2002), does not reproduce the increase in earthquake frequency vs. magnitude relations for entire 
regions, in which for lower magnitudes the slope b1 in eq. (2.9) is always smaller than b2. In fact , 
Scholz (2002) argues that from the size distribution of subfaults it follows that b1= ⅔ , while b2= 1, 
values that present a surprising universality. On the other hand, the coefficient b= ⅔ that would 
satisfactorily fit data for small earthquakes, say with MS < 3, occurred along a single fault, would be 
likely to underestimate the magnitude of a large earthquake from the same seismogenic source. 

 

Figure 4.1. Fit of eqs. 2.9 to data from various sources in 70600km2 low seismicity area in a stable 
continental region (SCR), in which MC = 4.7 and s = 0.2,,  b1= 0.2603 and b2 = 1.0227. 

 

Figure 4.1 shows a typical example of data for various sources in a 70600km2 low 
seismicity area in a stable continental region (SCR), in which MC = 4.7, s = 0.2,,  b1= 0.2603 and b2 = 
1.0227. As is often the case, the slope b in the high magnitudes region is close to 1, although the slope 
in the low magnitude region is about a third of the theoretical value b1= ⅔ previously indicated. 
Almost invariably, seismic data leads to curves characterized by increasing negative slopes as the 
magnitude increases. 

 



5. NUMERICAL AND EXPERIMENTAL RESULTS RELATED TO ACCOUSTIC EMISSION 
 

In the following, illustrative experimental results as well as numerical simulations of 
laboratory tests aimed at the determination of the b value on small scale rock or concrete samples are 
described in detail. Updated information on the fundaments and performance of the lattice formulation 
of the Discrete Element Method (DEM) proposed by Riera (1984), which was employed in the 
numerical analyses reported below, may be found in Kosteski et al (2011). The study will focus on 
Accoustic Emmission (AE) tests reported by Carpinteri et al (2009). The first test consists of a 
160×160×500mm concrete prism subjected to uniaxial compression. The laboratory specimen was 
modeled by means of a 27×27×86 DEM cubic modules array, with the boundary conditions shown in 
Figure 5.3b. The parameters adopted in the DEM model are: Young´s modulus of the material E=9.0 
GPa, mass density ρ=2500Kg/m2, mean value of the material toughness µ(Gf)=560N/m and the linear 

elastic limit strain εp=2.4×10−4. The random nature of the material is taken into account by defining 
the material toughness as a random field with a coefficient of variation CV= 0.5. The value of the 
concrete modulus E=9GPa was adopted on account of the fact that the test sample was subjected 
during 48 hours to a uniform compression load of 1300 kN, then unloaded. During the ensuing test the 
damaged specimen was reloaded up to its final collapse, while monitored by AE sensors. Figure 5.3b 
shows the location of the AE sensor, at which accelerations in the direction normal to the specimen 
surface were computed employing the DEM.  

The second example consists of a three point bending test. The concrete specimen dimensions 
were (80×150×700mm) with a 30mm pre-fissure length in the middle. The AE sensor was mounted as 
indicated by the gray box in Fig. 5.4b. Material properties were E=35GPa, ρ=2500Kg/m2, mean value 

of the specific fracture energy – material toughness – µ(Gf)=130N/m and linear elastic limit strain 

εp=6.4×10−5. Additional details concerning the experiments are given by Carpinteri et al (2009, 
2009b). Again, the non-homogeneous nature of concrete is taken into account in the numerical 
simulations by assuming that toughness is a 3D random field with CV= 0.25. The applied 
displacement rates on DEM models, solved by explicit numerical integration in the time domain, were 
reduced until no inertial effects could be detected in the output. 

Figure 5.1 shows the load vs. time diagrams measured in the experiments and determined 
herein by numerical simulation. The peak loads and the areas under the curves are similar in both 
examples, except for the loss of linearity of the experimental curve for uniaxial compression near the 
peak load, which suggests that perceptible damage occurred before the peak, effect that is not 
observed in the numerical analysis. The load vs. time diagrams of both controlled displacement tests 
are quite different: in the compression test an explosive collapse occurs, while in the three point 
bending test a softening branch after the peak load is reached can be seen. Figure 5.2 shows the 
normalized energy balance in both tests determined by numerical simulation. In the uniaxial 
compression test, 95% of the external work is available in the form of elastic energy when the final 
collapse occurs, resulting in an explosive failure. On the other hand, in the three point bending test the 
external work is smoothly dissipated during the entire process and the available potential energy at the 
end of the test is not sufficient to produce an explosive collapse. Note that Emax=Ue+Uk+Ud at t* . In 
both examples, due to the slow rate of loading, the kinetic energy remains low throughout most of the 
test, although when collapse occurs under uniaxial compression, there is a sudden shift of elastic 
energy to kinetic energy. The final rupture configurations observed in the experimental setup and 
predicted numerically can be seen for the uniaxial compression test in Figure 5.3 and for the Three 
Point Bend test in Figure 5.4. 



 

Figure 5.1. Load vs. time functions: experimental (full lines) and numerical (dashed 
lines): (a) Uniaxial compression test, (b) The three point bending test. 

    

Figure 5.2. Energy balance vs time (Ue= elastic energy, Uk= kinetic energy, Ud= 
dissipated energy): (a) Uniaxial compression (Emax=4888Nm), (b) Three point bending 
(Emax=0.65Nm).  

 

Figure 5.3. (a) Final rupture configuration of concrete specimen subjected to uniaxial 
compression (Carpinteri et al, 2009) and (b) collapse configuration predicted by DEM 
after peak load is reached. The white rectangle indicates the position of the sensor. 
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Figure 5.4: (a) Experimental rupture configuration of specimen subjected to Three Point 
Bending (Carpinteri et al, 2009a) (b) Numerical rupture configuration according to DEM 

(only damaged bars are plotted). The small gray rectangle indicates the position of the 
sensor. 

A summary of the numerical results concerning Acoustic Emission (AE) for both tests is 
presented next. AE signals in the numerical simulations are defined as the accelerations normal to the 
surface at points on the specimen where sensors were placed during the experiments. Figure 5.5 shows 
the occurrence of individual AE events as vertical bars on the time axis. The height of each bar is 
propotional to the intensity of the event registered on the sample surface. The figure also shows the 
total load vs. time curves. Histograms of the number of AE events and the evolution with time of the 
accumulated number of events are shown in Figure 5.6 for the uniaxial compression and for the three 
points bending tests. Finally Figure 5.7 shows the relations between the number of AE events and their 
magnitudes in logarithmic scale. Straight lines were fitted to the simulated data within selected time 
intervals, as indicated in the graphs. The magnitude scale was normalized. All the signals utilized for 
the b-values calculation in the numerical simulation had higher amplitudes than the fixed threshold 
Athres. For this reason, only few events were identified in the simulation (about 200 in each example). 
By decreasing even further the displacement rate and adoting a lower threshold, it would be possible 
to identify more AE peaks, but the increase in computational time of the analysis was judged 
unnecessary. The values of b computed in both examples are compatible with the values determined 
experimentally by Carpinteri et al (2009, 2009b). In addition, the numerical simulations reproduced 
the tendency observed in laboratory experiments, which show that b decreases towards values around 
unity as the degree of damage increases. Note that in the uniaxial compression test the b value was 
observed to decrease from 1.69 to  1.19, while according to DEM predictions it decreases from 1.47 to 
1.16. In the laboratory bending test, b decreases from 1.49  to 1.11, while the numerical simulation 
predicts a decrease from 1.10 to 1.03. 

Finally Figure 5.8 presents plots of the logarithm of the number of events larger than given 
amplitudes vs. the logarithms of the amplitudes for DEM simulations of the compression test (left 
plot) and of the three points bending test (right plot). Notice that the shape of these curves are similar 
to the typical curve for seismic data shown in Fig. 4.1, which according to Scholz (2002), from the 
size distribution of subfaults, may be expected to present slopes given by b1= ⅔ and b2= 1. While 
similar values are usually found in actual seismic records for specific faults or seismic regions, they 
differ from some of the laboratory or numerical simulation results for small samples discussed herein. 
For instance, equations (2.9) fitted to the data in Fig. 5.8, lead to b1= 0.64 and b2= 2.40 for the 
compression test and to b1= 0.24 and b2= 1.16 for the bending test. 



 

Figure 5.5. The full line curves indicate the total load in DEM models, while the bars show 
the amplitudes of AE events. Both axis were normalized to the maximum value. (a) uniaxial 

compression test, (b) Three points bending test. 

 

Figure 5.6. Histograms of the number of AE events and evolution with time of the 
accumulated number of AE events (thick line) and load evolution (thin line) for: 

 (a) uniaxial compression test, (b) Three points bending test. 
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Figures 5.7. Determination of  b - coefficients for simulated response in (a) uniaxial 
compression test and (b) three point bending test. The time intervals intervals used in 

the computation of b values are indicated between brackets. 
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Figure 5.8: Logarithm of the number of events with amplitudes larger than A vs. logarithm 
of A for DEM simulations of compression (left) and of three points bending (right). The b 
values in the high magnitudes regions are b2= 2.40 (compression) and b2= 1.16 (bending).  

 

6. CONCLUSIONS 
 

The decrease of the slope b observed both in laboratory experiments on small samples, as 
well as in numerical simulations of these tests, which was interpreted as due to increasing damage in 
the medium, seems to contradict the usual shapes of seismic frequency vs. magnitude curves, shown 
by Figs. 2.1 (below) or 4.1, in which the slope b typically decreases as the magnitude increases. The 
latter, however, are plots of the collected data for the available time of observation, while the former 
refer to successive periods of observation. This is clearly illustrated by Figure 5.8, which presents 
results of the simulations of both the compression and bending tests reported herein, which are also 
characterized by slopes (b values) that decrease with magnitude. 

 
A direct consequence of the previous observations would be that if seismic records for 

events at a given fault or well defined seismic region were separated in bins, say 500 years long, fits of 
the GR relation (2.1) to the separated data should present b values that decrease with time, that is, 
higher values for the older bins. Although this may be a generally valid rule, the differences for the 
final b values observed in the numerical simulations for large magnitudes suggest that b2= 1 may not 
constitute the limiting slope in every case.  

 
Another difficulty in comparisons of actual seismic data with laboratory or numerical 

simulation results is related to the manner in which foreshocks and aftershocks are considered in the 
elaboration of seismic catalogues. Note that in laboratory or numerical simulations, every AE event is 
counted, without any attempt to identify clusters of events. It has been noticed, moreover, that AE 
signals of large magnitude events do actually mask the simultaneous occurrence of smaller events 
(originated at different sources) triggered by the former.  
 

These results suggest that some features of the probability distributions of earthquake 
magnitudes may be correlated with the evolution of the damage process for the source under 
consideration and that these features may be assessed using numerical models currently under 
development. 
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