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SUMMARY: 
Modelling seismic wave propagation in unbounded media requires sophisticated numerical methods. The 
Boundary Element method (BEM) is very effective since it accounts implicitly for the radiation conditions at 
infinity. The fast multipole BEM (FM-BEM) used herein strongly reduces the computational complexity and the 
memory requirement typical of the classical BEM formulation. This work proposes to couple the FM-BEM and 
the FEM to take advantage of the versatility of the FEM to model complex geometries and non-linearities and of 
the exact account for infinite domains, mobile boundaries or unknown boundaries offered by the boundary 
integral approach. The main idea is to separate one or more bounded subdomains containing complex structures 
or strong heterogeneities (solved by the FEM) from the complementary semi-infinite viscoelastic space of 
propagation (solved by the FM-BEM) through a non-overlapping domain decomposition. Two strategies 
(sequential and simultaneous coupling) have been implemented and their performances compared on simple 
examples. 
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1. INTRODUCTION 
 
The coupling of the finite element method (FEM) with the boundary element method (BEM) takes 
advantage of the versatility of the FEM to model complex geometries and non-linearities and the exact 
account for infinite domains, mobile boundaries or unknown boundaries offered by the boundary 
integral approach. Usually, this coupling is realized through conventional approaches or in the 
framework of the domain decomposition methods. The main idea is to separate the one or more 
bounded regions containing the vibrating complex structure, any steady source or complex-shaped 
receiver from the complementary semi-infinite space of propagation. The bounded subdomains are 
modelled by the FEM, whereas the half-space where they are embedded is solved within the BEM, 
whose formulation allows the exact physical radiation of the waves in the surrounding soil. 
 
In the present work, interest is focused on wave propagation problems in semi-infinite domains. The 
fast multipole BEM (FM-BEM) is considered since it strongly reduces the computational complexity 
and the memory requirement typical of the classical BEM formulation. The media are supposed to 
have linear viscoelastic behavior. Non-linearities are not considered here, although their treatment may 
be considered as a natural extension of this work. Various applications of the FEM/BEM coupling 
may be considered in the field of seismic wave propagation, vibrations in urban environment and 
dynamic soil-structure interaction (SSI). 
 
After this introductory Section, the paper is organised as follows. In Section 2, the domain 
decomposition and the resulting interface problem are defined. In Section 3, the main features of the 
fast-multipole boundary element method (FMBEM) are briefly recalled. Section 4 and 5 are then 
devoted to the iterative and the simultaneous coupling respectively. 
 



2. DOMAIN DECOMPOSITION AND INTERFACE PROBLEM 
 
2.1 Interface problem statement 
 
Let  denote a region of space occupied by a three-dimensional isotropic homogeneous (visco)elastic 
solid with boundary  , as depicted in Fig.2.1(left). Body forces and boundary conditions are 

assumed time-harmonic with circular frequency , the implicit factor e-it being systematically omitted 

in the following. As the domain  may feature complex geometrical details, heterogeneous or 
anisotropic materials (all of these features being here assumed to be confined in a bounded region) a 
solution of the wave propagation problem by pure FM-BEM is not feasible for many applications. 
 

Therefore, a spatial decomposition of  into a bounded subdomain F (which embraces the above 

mentioned "irregularities") and into its unbounded complement B (which allows the wave radiation 
and dispersion at infinity) is introduced, as shown in Fig.2.1 (right). Allowing more flexibility, the 

finite element method is used to discretize the problem in F, while the boundary element method is 

used for the subdomain B. Possible piecewise homogeneous regions in B are treated via an internal 

BE-BE coupling (Chaillat, 2009). The two subdomains B,F are supposed to be non-overlapping. 

The portion of boundary shared by the subdomains is the interface FB    (notation ij 

indicates the portion of surface of the subdomain i adjacent to j and having the normal n oriented 

from i to j). 
 
Continuity of the displacement field and equilibrium of the traction field across the common interface 

 must be enforced through appropriate transmission conditions. In this work, transmission conditions 
are enforced in a strong sense. Strong coupling conditions require conforming connection of the 
interface meshes, i.e. that (i) there is a one-to-one correspondence between degrees of freedom on the 
interface (i.e. meshes coincide) and that (ii) the traces of interpolation functions on the shared faces are 
the same. In this case, continuity and equilibrium conditions are directly imposed on the interface 
nodes. The system of local equations governing the elastodynamic problem restricted to each 

subdomain s (s=B,Fi) reads (neglecting body forces): 
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where s is the mass density of the domain s and Ds is the fourth-order tensor expressing the 
constitutive behavior. In elasticity, Ds would be the fourth-order elasticity tensor, whereas in visco-
elasticity it would be the relaxation tensor. The boundary conditions of Dirichlet or Neumann type 
read:  
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Figure 2.1. Spatial domain decomposition for FEM/BEM coupling: original time-harmonic problem 
defined in the semi-infinite domain (left) and decomposition in the two non-overlapping 

subdomains B, discretized by BEM, and F, discretized by FEM (right). 
 
Considering the unit normal n as pointing outward from each s, the transmission conditions on each 
general il read: 
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2.2 Discretization of the subdomains 
 
The surface of B is discretized with three-noded triangular boundary elements, and the FE volumes 
F are discretized with four-noded isoparametric linear tetrahedral elements. The set of three-noded 
triangular faces of the tetrahedra lying on the interface  constitutes the discretization of the 
corresponding BEM surface. Consequently, each part of the BEM mesh intersecting the interface  
and the trace of the FEM three-dimensional mesh on  are the same by construction. Moreover, they 
are associated with the same interpolation functions, namely piecewise linear interpolation of 
displacements. As the interpolation on the interface is conforming, perfect bonding conditions are 
expressed in strong form on the nodal values. The two subdomains cannot be solved independently, 
and the original problem is recovered by the transmission conditions on the interfaces.  
 
 
3. FAST MULTIPOLE BOUNDARY ELEMENT METHOD 
 
3.1 Boundary element method  
 
The subdomain B is solved with the boundary element method (BEM) accelerated by the fast 
multipole method. In the BEM, only the boundary B  of B, defined as BFBB    is 

discretized. For a Neumann problem, the traction DoFs are known on B and unknown on the interface 
BF, whereas displacement DoFs are unknown on the whole B . For Bx , the boundary integral 
equation (BIE) reads:  
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where );,( yxk
iU  and );,( yxk

iT  are the visco-elastodynamic fundamental solution. After the 

boundary element discretization of B , the following linear system of equations rises:  

 

0 BBBB TGUH  (3.5) 
 



where HB and GB are fully populated, non-symmetric integral operators, and UB, TB gather all the 
displacement and traction degrees of freedom.  
 
 
3.2 Fast multipole method 
 
In the field of physics (Maxwell or Laplace equations), recent advances in boundary element methods 
lead to a very important decrease of the computational cost. Instead of point to point interaction as in 
classical boundary element methods, the fast multipole method (Darve, 2000, Greengard et al., 1998, 
Fujiwara, 2000) considers interactions between groups of points (cells centered on a multipole, 
Fig. 3.1) and hence avoids multiple computations of nearly identical terms corresponding to very close 
points. 
 
It is possible to apply this method at a single scale or even at various scales through a multilevel 
approach. The size of each cell around its multipole depends on the distance to the other cells: the 
larger the distance between cells, the larger the cells (Fig. 3.1). The computations of the singular 
integrals are then performed through this approach. They are split in an integral on the surface around 
the singularity and another integral on the complementary distant surface. The first one is estimated 
using classical regularization techniques, whereas the latter is computed with a fast multipole 
algorithm (Greengard et al., 1998). The advantage for the computational cost is very significant since 
it depends on N² for classical methods and on N or NlogN for the fast multipole method (Bonnet et al., 
2009, Chaillat et al., 2008). Furthermore, the computational cost is reduced for both the memory 
storage and the calculation time. This method allows the analysis of very large problems involving 
millions of unknowns on a single-processor PC (to compare to several tens of thousands previously). 
Current researches also investigate a fast multipole method well-adapted to the Helmholtz equation 
and even to elastodynamics (Fujiwara, 2000, Chaillat et al., 2008, 2009). The fast multipole method 
then allows the computation of very large models considering a larger number of heterogeneities, a 
more realistic geometrical representation of geological structures (especially in 3D) as well as higher 
frequency values (detailed modelling of short wavelengths amplification). 
 

 
 

Figure 3.1. Comparison of the principles of the standard BEM (left) and the Fast Multipole BEM (right). 
 
 
4. ITERATIVE FEM/FMBEM COUPLING 
 
4.1 Proposed algorithm 
 
To solve the coupled problem we use a single relaxation sequential Dirichlet-Neumann algorithm. 
This is a modified version of the algorithm proposed by Lin for linear elastostatics (Lin,1996) and 
consists in an interface relaxation algorithm.  
 
First, the FM-BEM is used to pre-compute the scattered displacement field )(xu

SB  induced on the 

boundary BFB    of B  (where  BB ) by the incident wave. The corresponding 
solution in terms of total field is obtained by adding the incident wave field to the scattered solution, 

i.e. )()()( xuxuxu
IS BBB  . Then, after invoking continuity conditions, the restriction 

Bu  of Bu  to 

the interface BF is relaxed and employed as initial guess for the iterative algorithm. At this point, the 
solution of the global problem involves the alternating resolution of a local Dirichlet problem in the 
FE subdomain and of a local Neumann problem in the BE subdomain until convergence of the 



displacement field on  is reached. At a given iteration n, the former implies the resolution of the 

FEM system for Fu , followed by the computation of total interface tractions 
nF ,t . The scattered 

traction field,   nFnFnF IS ,,, ttt , is then applied to the BE-interface BF after invoking continuity 

  nFnB
S ,, tt . 

 
4.2 Example of far field excitation: scattering by a semi-spherical canyon 
 
To assess the iterative algorithm for far field excitations sources, the canonical problem of the 
scattering of a vertically incident P-wave on unit amplitude has been considered. The medium is 
assumed to be constituted by a single material, characterized by normalized values of the shear 
modulus =2, Poisson's ratio =0.25 and density =2. To assess the accuracy of the solution, the 
surface displacements field computed on the coupled problem with the sequential iterative algorithm 
has been compared to the corresponding solution computed by using only the FM-BEM method. 
 
Results obtained with this iterative coupling approach are quite satisfactory, as shown in Fig. 4.1, 
where the absolute vertical displacement on the positive x-axis is reported for two values of damping 
ratio =0 (top), 0.05 (bottom) at normalized frequencies P =0.25 (a,c) and P =0.5 (b,d). However, 
the range of the relaxation parameter to obtain convergence has been established for each treated 
problem, and no empirical parametric studies have been conducted to extrapolate global range of 
validity. 
 

 
 

Figure 4.1. Scattering of a vertically incident P-wave by a semi-spherical canyon at normalized frequency: 
surface displacements |uy| and |uz| for two values of damping ratio =0 (top) and 0.05 (bottom) 

at normalized frequencies P=0.25 (left) and P =0.5 (right). 



 
4.3 Refinement of the iterative algorithm 
 
The iterative interface relaxation algorithms proposed above have two main drawbacks. The first is 
that the convergence depends on the chosen value of the relaxation parameter . The second consists 
in the fact that each global iteration a priori requires NFMBEM internal GMRES iterations for the fast 
solution of the BE global system, i.e. Nglob x NFMBEM iterations are needed for a complete computation. 
This disadvantage can be reduced by setting at each new global iterate the GMRES initial guess to the 
solution of the previous iterate. This modification is simple to implement and has a strong influence on 
the acceleration of the convergence process. This is shown for a simple example test in Fig. 4.2 where 
the dotted line indicates the convergence acceleration induced by this refinement of the algorithm.  
 
 

 
 

Figure 4.2. Number of iterations of GMRES solver when setting the Initial Guess (I.G.) to zero uI.G.,it=0 or 
to the solution at the previous iteration uI.G.,it=uit-1. Results in (a) and (b) refer to the scattering 

of a vertically incident P-wave by a semi-spherical canyon test. 
 
 
5. SIMULTANEOUS FEM/FMBEM COUPLING 
 
5.1 Proposed algorithm 
 
The second strategy that we present for coupling the FEM and the FMBEM is a simultaneous 
approach based on solving a global system of equations combined with the transmission conditions 
across the common interface. In particular, we apply a modified version of the approach proposed in 
(Frangi,2006) based on an implicit condensation for the FEM degrees of freedom. The global system 
is then solved by generalized minimal residual (GMRES). 
 
After separation of internal and interface degrees of freedom, the FEM displacement-based linear 
system reads: 
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For a surface loading, the BEM linear system can be written: 
 

0 BBBB TGUH  (5.7) 
 
where separation of unknowns leads to  
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In the simultaneous approach, the FEM system is solved implicitly in the FMBEM system. The 
displacements on the FE-BE interface  are chosen as primary unknowns, and continuity across the 
interface  is guaranteed by the strong condition. The Algorithm is detailed hereafter.  
 

 
 
 
5.2 Validation and examples 
 
The simultaneous FEM/FMBEM algorithm has been tested on various 3-D examples, which have been 
chosen deliberately simple to allow a direct comparison with pure FMBEM results. As depicted in Fig. 
5.1, we first consider a time-harmonic surface loading at normalized frequency ηP=kPRF/2π=1, where 
RF is the radius of the FEM subdomain. The plane BE-free surface  BB  has been truncated 
at a distance RB=4RF. For simplicity, radius RF has been chosen of unit length, thus resulting in RB=4. 
The circular portion of surface ∂T on which time-harmonic tractions are imposed has radius 0.2 and it 
is located at a distance Rt=2 from the axis origin. Fig. 5.2 shows the contour plot of the vertical and 
horizontal displacements in the x-y plane. The little circular solid line centered in the origin is the soft 
basin, whereas the dotted line is the trace of the interface  on the plane free surface. A comparison 
between the coupled approach and pure FM-BEM computations is also proposed in Fig. 5.3. As shown 
in the figure, the computed vertical and horizontal displacements are very close. 

 



 

Figure 5.1. Time-harmonic load on a homogeneous half-space containing 
a soft superficial basin: geometry, domain decomposition and notation. 

 

 
 

 
Figure 5.2. Time-harmonic load on a homogeneous half-space containing a soft superficial basin. 

Contour of the real vertical (a) and horizontal (b) displacements (=0, P=0.75). 
 

 
Figure 5.3. Time-harmonic load on a homogeneous half-space containing a soft superficial basin: real vertical uz 

and horizontal ux displacements along the x-axis at normalized frequency ηP = 0.75. The wavevelocity 
in the soil worth cS(soil) = 2 cS(basin). Damping factors are βsoil = 0.05 and βbasin = 0.1. 

 



 
5.3 Accuracy and sensitivity 
 
A mesh density study has shown that the numerical results (obtained by using the rule of thumb with 
10 points per S-wavelength in the FEM subdomain) are affected by numerical dispersion (Semblat and 
Brioist, 2000). Using finer FE meshes allows to improve accuracy but at the price of higher 
computational costs because of over-refinement in stiffer regions (its is aggravated by the assumption 
of matching grids at the FE-BE interface). A summary of the sensitivity study for various FE mesh 
refinements is proposed in Fig. 5.5. 
 
The influence of the FE mass matrix formulation on numerical dispersion is also strong. As shown in 
Fig. 5.4, the comparison with pure FM-BEM computations is better for the lumped FE mass matrix. 
The results of the sensitivity study for various FE mesh refinements as well as different FE mass 
matrix formulations is proposed in Fig. 5.5. 
 

 
 
Figure 5.4. Influence of the definition of the FEM mass matrix on simultaneous FEM/FMBEM coupling results 

for a given test problem. Results show how attenuation strongly reduce the influence of the mass definition 
(bottom), so clear in the purely elastic case (top). 

 
 
6. CONCLUSIONS 
 
In this paper, a coupling between the finite element method and the fast-multipole boundary element 
method is proposed to solve 3D timeharmonic linear elastic problems over unbounded domains. A 
sequential interface relaxation method (IRM) is first considered. The method is based on a domain 
decomposition in several disjoint, non-overlapping subdomains. A bounded subdomain is modelled by 
the finite element method, whereas the half-space where it is embedded is solved by the boundary 



element method. At each iteration of the algorithm, a smoothing procedure is applied on the boundary 
conditions transmitted between the subdomains in order to guarantee and speed up the convergence. 
This simple algorithm gives interesting results but also deserves further investigations in the near 
future (e.g. modelling of dynamic soil-structure interaction). 
 

 
 

Figure 5.5. Time-harmonic load on homogeneous half-space containing a soft inclusion at normalized 
frequency ηP=1: comparison between two different formulations for the FEM mass matrix. 

The GMRES accuracy is here set to =10−2 (coupling) and =10−3 (FMBEM). 
 
 
In a next step, a simultaneous approach to couple the finite element method and the fast multipole 
boundary element method has been proposed to model three-dimensional viscoelastodynamics 
problems in unbounded domains. The algorithm is based on the fast solution of the BEM global 
system of equations and by an implicit condensation of the FEM internal degrees of freedom 
performed at each global GMRES iteration. This approach has been applied on examples having very 
simple shapes in order to allow an easy comparison with the reference results obtained from pure FM-
BEM computations. This algorithm has proved to be stable after the introduction of various forms of 
heterogeneities, including strong material contrast at the FE/BE interface. Several issues may be 
considered in the near future to improve the efficiency and interest of the coupling method: non-
conforming coupling, material non-linear behaviour, poro-elastodynamics, etc. 
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