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SUMMARY: 
A Masonry Building Cluster (MBC) is made from an assemblage of buildings and thus has a non-unitary origin: 
however, under certain conditions, Structural Units (SUs) can be identified and analysed independently. 
Starting from a deterministic simplified procedure developed by the authors, a fully probabilistic method of 
analysis of a SU has been developed, which treats as uncertain all relevant variables, such as: general data, 
geometry, construction details, materials. 
This allows to perform fully probabilistic Monte-Carlo-based analyses that allow to compute the failure 
probability of the MBC. The subsequent sensitivity analyses allow in turn to identify the effect of the different 
variables on the global response. The latter step proved to be very useful to single out the structural elements 
worth of a deeper investigation, thus reducing the uncertainty of the assessment outcome. 
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1. INTRODUCTION 
 
Starting from a deterministic model developed by Monti and Vailati (2009), further developments 
resulted in a fully probabilistic procedure to assess Masonry Building Clusters (MBC). Such model 
follows the seismic Italian code (NTC-08) that prescribes to assess these buildings by means of 
nonlinear analyses. Furthermore, in the case of infinitely rigid floors, the following simplifications are 
allowed: 

 the analysis can be performed floor by floor; 
 rocking effects on masonry walls are neglected; 
 torsional effects are neglected. 

 
By following such indications, the deterministic procedure was implemented into an easy-to-use 
spreadsheet that allows to perform the assessment in a straightforward way. 
The probabilistic procedure is an extension of the above procedure, which includes all uncertainties 
that may affect the seismic structural response. It permits to focus the diagnostics - and eventually to 
design strengthening measures - on those elements whose influence is more significant on the overall 
structural response. 
In the next section, the relevant steps of the simplified procedure are summarized; the probabilistic 
procedure, composed by a deterministic analysis method and a stochastic input, is described in more 
detail in section 3. 
Figure 1.1 shows a schematic view of both the deterministic and the probabilistic procedure for 
evaluating the deterministic and stochastic response, respectively. 
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Figure 1.1. – Scheme of the deterministic (left) and of the probabilistic assessment procedure (right).  
 
 
2. DETERMINISTIC PROCEDURE: SIMPLIFIED NONLINEAR ANALYSIS 
 
The deterministic procedure can be briefly summarized in the following steps: 

 definition of a constitutive bilinear law for each masonry wall in terms of three parameters 
(“yield” strength, “yield” and ultimate displacements); 

 derivation of a constitutive law for each floor, by summing each wall contribution, when rigid 
floor condition is assumed; 

 derivation of an equivalent bilinear constitutive law for each floor; 
 computation of the dynamic response by means of a simplified modal analysis; 
 computation of the interstory drift;  
 comparison between capacity and demand for each interstory; if the ratio of the two is larger 

than one for all interstories, the SU is verified, otherwise it is not. 
 
A detailed description of the simplified procedure can be found in (Monti and Vailati, 2009), while the 
extension to the case of flexible floors is discussed in (Vailati and Monti, 2011). 
 
 
3. SOURCE OF UNCERTAINTIES: IDENTIFICATION OF VARIABLES AND THEIR 
MODELLING 
 
A classification of the variables by type of uncertainty is shown in Table 3.1. 
 
Table 3.1. Uncertainty nature of variables 
Categories of variables Associated parameter Uncertainty 

Geometry Dimensions Epistemic 

Materials Strength, modulus  Intrinsic, epistemic 

Construction details Connections Epistemic 

 
Having defined the uncertainty nature of each variable, a corresponding appropriate distribution model 
is assigned. 
It is worth noticing that the type of model has an influence on the probability distribution of the output 
variables. Therefore, the most appropriate distributions should be identified by characterizing the 



study parameters through statistical identification methods applied to the collected data and to the 
output control parameters. 
The 2-test has been used in this study, which allows to ascertain if the observed frequencies of a 
measured event significantly differ from the theoretical frequencies provided by the considered 
probability distributions models. 
If 2 = 0, the observed frequencies exactly coincide with the theoretical ones. Instead, if 2 > 0, the 
values of the frequencies differ from each other; as the estimator assumes high values, the greater the 
difference between observed and theoretical frequencies.  
The relational scheme proposed in Figure 3.1 allows to associate the most suitable probability 
distribution to the characteristics of the collected data. 
 

 
 

Figure 3.1. Relational scheme between probability distributions and characteristics of collected data 
 
A better knowledge level for each variable can be attained by reducing its epistemic uncertainties. The 
activities of data acquisition and subsequent probabilistic description are based on Bayes inference, as 
follows. By denoting the null hypothesis and the observed empirical data with "X" and "D", 
respectively, the Bayes' theorem can be stated as follows: 
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The null hypothesis will have to be formulated before the observation D.  
In Bayes' rule, as widely known: 

– P(X) is the prior probability; 
– P(D|X) is the likelihood function on which the statistical inference is based; 
– P(D) is the marginal likelihood or "model evidence", i.e. the likelihood of observing D, 

without any prior information; 
– P(X|D) is the posterior probability, given D has been observed. 

 
The scale factor P(D|E)/P(E) can be considered as a measure of the effect that the observation of D has 
on the confidence level of the researcher in the null hypothesis. The latter is in turn represented by the 
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prior probability P(X); if it is unlikely that D is observed, unless X is not really true, the scale factor 
will be high. Consequently, the posterior probability (confidence) combines the prior beliefs of the 
researcher with those deriving from the observation of the empirical data. 
In summary, the Bayesian approach aims at providing an increasingly reliable model by enhancing the 
information collected on the variables described as random. 
  
 
4. RISK ANALYSIS 
 
After having assigned the appropriate models to the selected random variables, the analysis can be 
performed using Monte Carlo simulation, according to the following steps: 

– development of a parametric model, y = f (x1, x2, ...xq); 
– assignment of the probability distributions to the uncertain variables (E, G, fm, 0, ...); 
– generation of random numbers (xi1, xi2, ..., xin) for the n variables according to the distributions 

assigned to the previous step; 
– evaluation of the output model and results storage as yi; 
– analysis of results (bar charts, summarizing statistics, confidence intervals).  

 
 
5. SENSITIVITY ANALYSIS  
 
Once the simulations on the input stochastic variables are performed, their effect on the overall 
response is evaluated. To this purpose, the distributions of both input and output data have to be used 
for some calculation steps, summarized in the following: 

1. calculation of median and standard deviation of the input samples (Mei,1, t,1);  
2. determination of a subset for each input collecting the only iterations which achieve a given 

objective; 
3. calculation of median for each subset (Mei,3); 
4. comparison, for each input, between the difference of the median values computed at the steps 

1 and 3 and the standard deviation at step 1. 
 
If: 

1
1 3 2

t ,
t e ei, i,

M M


     (5.1) 

 
the input significantly affects the response. The steps 1-through 4 are repeated for each study variable. 
At the end of the iterations, a value to each input parameter included in a subset is assigned; such 
value represents the variation produced on the control parameter when the input variable increases of 
+. As an example, the following conditions can be assumed: 

–  is the control variable, which is the ratio between the displacement capacity and the demand 
one of the inter-storey k; = 0.6 when the mean values are assigned to all the variables; 

–  is one of the examined input variables, which is the shear strength of masonry; the given 
strength distribution has standard deviation and median equal to 0.05 MPa and 0.28 MPa, 
respectively; 

– the variation of  over  is equal to 0.03 
 
This means that if  = Me +, then  = 0.63, i.e. if the input variable is increased by a standard 
deviation, the control parameter has a variation equal to the index provided by the sensitivity analyses. 
In the considered case,  weighs on the variable  by 5% every time it has a variation of +. 
Obviously, each variable can positively or negatively affect the analysis outcome of which the control 
parameter is an estimator. Therefore, it is also possible that a + variation yields to a negative 
variation of the control parameter. 
 
 



6. RELIABILITY OF SEISMIC RESPONSE: SOME EXAMPLE CASES OF SUs 
 
The reliability analysis presented in the previous paragraphs is now applied on three example cases of 
SUs to show the powerful and usefulness of reliability analysis of MBC. 
The chosen cases are representative of a larger number of SUs, which were randomly generated by 
changing the parameters influencing the dynamic response. In this way, three buildings classes were 
identified, defined by: period, percentage of shear and flexural collapse, ratio between resistant and 
total area. Figure 6.1 depicts the geometric configuration of the SUs considered for performing the 
sensitivity analyses. All the random variables considered in such analyses are listed in Table 6.1. 
Conversely, the seismic hazard parameters, reported in Table 6.2, are assumed to be deterministic; 
other fixed parameters are the number of floors, respectively equal to 4, 3 and 2, and the number of 
walls, equal to 10 for the first two, 16 for the last one. 
 

2

2,51,54

5

2,51,54

2,5 1,5

2,5 1,5
5

2

0,42
1,

5
2

2,52

2.
5

1
1.

9

2
1,

5
2

2

5
4

5.5

5.5
2

1,
5

1,
5

22,5 2

 
 

Figure 6.1. Example cases: at the left the SU with two floors, at the right the SUs with 3 and 4 floors and the 
same plan. X direction is horizontal, Y direction is vertical.  

 
Table 6.1. Global and local uncertainties, distribution models, statistical quantities 

Category Variables Distribution type Correlation Min Max Mean σ

General data 

du,v (%) 

Uniform no 

0.003 0.005 0.004 0.057
du,f (%) 0.005 0.007 0.006 0.057 
α 0.35 0.65 0.5 0.086 
Gk (kN/m2) 3 5 4 0.578 
Qk (kN/m2) 1 2 1.5 0.289 

Materials 

fm (kN/m2) 

Normal 

no 1000 1800 1400 300
τ (kN/m2) 0.025·fm 35
E (kN/m2) 700·fm 980000
G (kN/m2) 0.4·E 392000
γ (kN/m3) uniform no 17 21 19 1.154

Geometry 

L (%) 

Uniform no 

-5% +5% 0 2.88
t (%) -20% +20% 0.4-0.5 11.54 
H (%) -10% +10% 0 5.77 
T 0.75 1 0.875 0.072 
G 0.5 0.75 0.625 0.072 

Structural details  discrete no 0 1 0.5 0.5

 
The variables in Table 6.1 have the following meaning: 
du,v ultimate diagonal shear displacement; 
du,f ultimate flexural displacement; 
 factor on modulus E to estimate damage effects; 
Gk, Qk dead and live load; 
fm,  compressive and shear strength of masonry; 
E, G longitudinal and transverse elastic modulus; 
 weight of masonry; 
L, t percentage error on measure of length and wall thickness, assigned as mean value; 
H percentage error on measure of interstory height assigned like mean value; 
T null point moment at the last floor; 
G null point moment at the generic floor; 
 binary variable equal to 0 when web walls is connected to its flange, otherwise 1. 



The Factor  modifies the ductility, strength and stiffness of the walls. The effectiveness of the 
web/flange connection was studied in a recent work (Vailati and Monti, 2010) and the ensuing 
equations were implemented in the procedure. 
 
Table 6.2. Fixed parameters 

Category Variables Value 

Seismic hazard 

ag 1.357 
F0 2.48 

T*
C 0.27 

 
Table 6.3 contains the three different parameters (i.e., percentage of shear and flexural collapse, 
period, resistant/total area ratio) considered for identifying three groups of SUs, and allows to rapidly 
estimate which variables have more influence on the structural response, depending on their class.  
 
Table 6.3. Statistical quantities of PDF for period, % failure, areas ratio: in parenthesis the values for = 1 

SU Dir 
Flexure 
failure 

(%) 

Shear 
failure 

(%) 

Period 
(s) 

Areas ratio 
(%) 

Min Max Mean Std. dev. Min Max Mean Std. dev. 

1 
X 

43.8 (23) 56.2 (77) 
0.21(0.16) 0.83 (0.57) 0.37 (0.28) 0.067 (0.047) 5.57 (5.55) 11.48 (11.26) 8.16 (8.16) 1.13 (1.13)

Y 0.16 (0.13) 0.83 (0.46) 0.28 (0.23) 0.047 (0.038) 7.34 (7.31) 15.19 (14.84) 10.75 (10.75) 1.49 (1.43)

2 
X 

29.53 (7.25) 70.25 (92.75) 
0.27 (0.23) 0.97 (0.77) 0.48 (0.39) 0.083 (0.066) 7.02 (6.96) 18.74 (18.52) 12.00 (11.96) 2.25 (2.23)

Y 0.34 (0.29) 1.21 (0.96) 0.59 (0.50) 0.101 (0.084) 5.46 (5.42) 14.47 (14.41) 9.33 (9.33) 1.75 (1.74)

3 
X 

16.23 (1.15) 83.77 (98.85) 
0.39 (0.34) 1.30 (1.18) 0.69 (0.56) 0.124 (0.100) 9.61 (9.37) 22.30 (22.20) 15.00 (15.00) 2.50 (2.50)

Y 0.46 (0.42) 1.60 (1.46) 0.84 (0.70) 0.150 (0.124) 7.48 (7.28) 17.38 (17.27) 11.66 (11.67) 1.94 (1.94)

 
It is immediately observed that the web/flange connection modifies the structural behaviour by 
changing the stiffness. It is noted that this parameter can be understood also as an effect induced by a 
strengthening measure that aims at re-connecting wall corners. 
In general, the procedure allows to evaluate any variable affecting the structural behaviour, both in 
terms of PDF and its statistical quantities (see table 6.3). Acceleration and displacement demands on 
each floor, or the capacity of a generic wall, as well as the modal response of the structure, are only a 
few of many parameters whose variability can be evaluated. In this case, according to Italian code 
NTC-08, the performance of a SU is assessed by means of the Capacity/Demand displacement ratio, 
hereafter called C/D ratio. Analysis results for the chosen parameters are given in Table 6.4. 
 
Table 6.4. Collapse probability for each SU and floor: in parenthesis the values for = 1 

SU Dir

Floor 

PT 1 2 3 

 Pr (%) C/D  Pr (%) C/D  Pr (%) C/D  Pr (%) C/D 

1 
X 1.18 (1.74) 38.0 (8.5) 1.17 (1.74) 1.648 (3.16) 20.6 (0.5) 1.145 (3.2)

 
Y 2.67 (3.72) 0.7 (0.1) 2.68 (3.72) 3.22 (5.67) 0.2 (0.0) 3.22 (5.69)

2 
X 1.60 (2.13) 3.2 (0.7) 1.57 (2.10) 1.87 (1.874) 0.5 (0.5) 1.81 (2.67) 3.85 (5.22) 0.0 (0.0) 4.02 (5.28) 

 
Y 0.93 (1.07) 65 (43.3) 0.95 (1.06) 1.56 (1.949) 2.8 (0.2) 1.61 (1.95) 3.138 (3.3) 0.0 (0.0) 3.13 (3.39) 

3 
X 1.51 (1.74) 5.0 (1.2) 1.55 (1.76) 1.61 (1.987) 3.1 (0.2) 1.64 (2.02) 1.83 (2.24) 1.5 (0.1) 1.85 (2.27) 2.46 (3.32) 1.3(0.0) 2.78 (3.1)

Y 0.90 (1.03) 69.5 (49.7) 0.92 (1.04) 1.37 (1.69) 10.6 (1.4) 1.41 (1.75) 1.37 (1.62) 12.3 (4.1) 1.42 (1.67) 2.72 (3.85) 0.2 (0.0) 2.47 (3.92)

 
The variables in Table 6.4 have the following meaning: 
 mean value of PDF; 
Pr (%) failure probability; 
C/D Capacity and Demand displacement ratio. The values given in Table 6.4 are obtained when all 
 input variables assume the mean value. 
 



The results show that the larger failure probability is found at the ground floor, especially in the taller 
buildings; at the top floors the probability decreases, until the last where the probability is almost zero.  
We can observe another important effect given by web/flange connection (= 1): in all cases the 
failure probability decreases, much more when the percentage of flexural failure is smaller (compare 
the results given in Table 6.4).   
Assumably, this behaviour can depend on the fact that, in most walls, the failure mode changes from 
diagonal shear to flexural. This change increases the local strength and ductility, by increasing the 
interstory ultimate drift. Globally, the structure increases its displacement capacity, with an increment 
of the C/D ratio. This behaviour is more pronounced in the first SU and partially in the second. At the 
same time, the C/D ratio is inversely proportional to the failure probability, thus its decrease 
corresponds to an increase of C/D.  
The next table and figures show the results of the sensitivity analyses. To simplify the presentation of 
results, only those of SU 1 and 3 are given. Note that the cells of column “variables” contains 
two variables when the web/flange connection produces a failure mode change.  
 
Table 6.5. SU 1: Influence of input variables on global control parameter C/D: in parenthesis the values for = 1 

Floor Direction Variables Category Mean σ  Δ C/D 

PT 

X 

Fm Materials 1400 300 0.248 (0.372)

du,v / α General data 0.4 0.057 0.197 (0.304)

 / du,v  General data 0.5 0.086 0.173 (0.253)

Y 

Fm Materials 1400 300 0.582 (0.793)

α  General data 0.5 0.086 0.464 (0.650)

du,v General data 0.4 0.057 0.389 (0.540)

1° 

X 

Fm Materials 1400 300 0.558 (0.687)

α  General data 0.5 0.086 0.279 (0.553)

 / du,v  Materials 35 - 0.168 (0.459)

Y 

Fm Materials 1400 300 0.705 (1.205)

α  General data 0.5 0.086 0.557 (0.991)

du,v General data 0.4 0.057 0.467 (0.823)
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Figure 6.2. SU 1: scatter graphs of most influential variables on C/D ratio in X direction for each plane, by 

starting from first floor on the top line. Section I on the left (= 0) and section T on the right (= 1). 



Table 6.6. SU 3: Influence of input variables on global control parameter C/D: in parenthesis the values for = 1 
Floor Direction Variables Category Mean σ  Δ C/D 

1° 

X 

du,v General data 0.4 0.057 0.220 (0.252)

Fm Materials 1400 300 0.162 (0.187)

α  General data 0.5 0.086 0.133 (0.162)

Y 

du,v General data 0.4 0.057 0.620 (0.590)

Fm Materials 1400 300 0.460 (0.400)

α  General data 0.5 0.086 0.380 (0.350)

2° 

X 

du,v General data 0.4 0.057 0.232 (0.287)

Fm Materials 1400 300 0.175 (0.234)

α  General data 0.5 0.086 0.142 (0.187)

Y 

du,v General data 0.4 0.057 0.198 (0.242)

Fm Materials 1400 300 0.149 (0.183)

α  General data 0.5 0.086 0.122 (0.148)

3° 

X 

du,v General data 0.4 0.057 0.264 (0.326)

Fm Materials 1400 300 0.199 (0.266)

tickness 4/3 floor Geometry 0.4 0.057 0.164 (0.216)

Y 

du,v General data 0.4 0.057 0.199 (0.235)

Fm Materials 1400 300 0.149 (0.176)

tickness 4/3 floor Geometry 0.4 0.057 0.125 (0.157)

4° 

X 

Fm Materials 1400 300 0.514 (0.578)

tickness 4/3 floor / du,v Geometry 0.4 0.057 0.363 (0.479)

du,v  / tickness 4/3 floor General data 0.4 0.057 0.217 (0.458)

Y 

tickness 4,3 floor / Fm Geometry 0.4 0.057 0.521 (0.609)

du,v / thickness 4,3 floor General data 0.4 0.057 0.493 (0.559)

Fm / α Materials 1400 300 0.273 (0.417)
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Figure 6.3. SU 1: scatter graphs of most influential variables on C/D ratio in X direction for first and fourth 

plane, by starting from first floor on the top line. Section I on the left (= 0) and section T on the right (= 1). 
 
 
 



The four sectors of scatter graphs contain more details about the failure probability, in particular: 
 the first left at the top gives the probability that the C/D ratio is larger than 1 when the 

sampled variable is smaller than the mean value; 
 the first right at the top gives the probability that the C/D ratio is larger than 1 when the 

sampled variable is larger than the mean value; 
 the first left at the bottom gives the probability that the C/D ratio is smaller than 1 when the 

sampled variable is smaller than the mean value; 
 the first right at the bottom gives the probability that the C/D ratio is smaller than 1 when the 

sampled variable is larger than the mean value. 
 
The results show that the main variables influencing the structural response are: 

 duv ultimate diagonal shear displacement; 
 fm compressive strength of masonry; 
   factor on modulus E to estimate damage effects; 

 
In a few cases, we observe also other variables, but with less frequence, like  or t. 
We observe that the variables T and G, respectively null point moment at the last floor and null point 
moment at the generic floor, have a marginal influence on the local and global response. This means 
that the variability of end constraints of wall have a secondary importance. 
 
 
7. CONCLUSIONS 
 
A fully probabilistic procedure has been presented for the seismic assessment of Masonry Building 
Clusters, which allows to compute their failure probability through a simplified nonlinear analysis, 
easily implemented into a worksheet. The method allows a straightforward identification of the 
structural elements most affecting the structural vulnerability, thus optimizing both diagnosis activities 
and strengthening measures. 
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