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SUMMARY: 

Estimation of losses in a structure due to future earthquakes is essential to reduce potential losses and assist re-

covery. A new stochastic simulation based approach for the estimation of seismic loss probability function is 

proposed with the adoption of stochastic ground motion models coupled with nonlinear stochastic dynamic 

models. This proposed approach allows for a more comprehensive characterization of the probability distribu-

tion of the loss including the tail parts due to combinations of scenarios which can lead to extreme and cata-

strophic consequences. Those combinations of scenarios do not need to be pre-specified but are automatically 

included during the proposed simulation process. Another contribution of the proposed approach is that it allows 

for the simultaneous consideration of multiple types of losses and the evaluation of the exceedance probability 

of these losses at different combinations of thresholds. Seismic loss probability function estimation problem 

essentially becomes a reliability estimation problem with multiple performance objectives at different threshold 

combinations. The effectiveness and efficiency of the proposed method are shown by an illustrative example 

involving a multi-storey inelastic building.   
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1. INTRODUCTION 

 

Performance-based engineering aims to quantify the performance of systems based on quantifiable 

and probabilistic performance objectives. Performance objectives are statements of acceptable per-

formance of the system, defined by the performance quantities of interest attached to certain specified 

thresholds. The quantity of interest can take the form of conventional system response parameters 

(e.g., stress, deflection, drift) or their derivatives (e.g., dollar losses, downtime). Probabilistic perfor-

mance objectives need to take into consideration any uncertainty that may arise because of the uncer-

tainty in the future excitations, the imperfection or lack of accurate information in the modeling of 

physical problem, or a combination of these.  

 

Moehle and Deierlein (2004) presented a framework for probabilistic seismic assessment of structures 

that involves four fundamental steps: hazard analysis, response analysis, damage assessment, and loss 

evaluation. First, the seismic hazard is characterized by adopting intensity measures that correspond to 

a specific annual rate of return. These intensity measures are then used to scale a suite of ground mo-

tion recordings in order to capture ground motion uncertainty. Using the generated ground motions, 

dynamic analyses are carried out to obtain the conditional distribution of structural response quanti-

ties. The structural response quantities are next linked to damage measures that describe the condition 

of the structure and its components. Finally, given a probabilistic description of damage, the process 

culminates with the calculations of exceedance (failure) probabilities of decision variables (direct dol-

lar loss, casualties etc.) that can be used to make risk related decisions. Over the last few years, several 

studies have demonstrated the implementation of this framework (e.g., Ramirez, 2010, Aslani and 

Miranda, 2005, Mitrani-Reiser, 2007, Yang et al., 2009). However, since only a small suite of scaled, 

ground motion recordings is used to compute the structural response quantities, the more complete 

probabilistic information (especially the tail parts) of the response indices or performances of the 

structure is not obtained. The past application of the methodology focuses on the high probability re-



gions of each individual loss quantity (which may be sufficient for estimating the first and second-

order statistics such as mean and standard deviation), and falls short of accurately considering lower 

probability regions that characterize rarer events which can lead to significant consequences and prob-

abilistic dependence among multiple loss quantities.  

 

Here the proposed method performs stochastic simulation based reliability analysis where failure is 

defined as unsatisfactory performance of the system with multiple performance objectives expressed 

in terms of different types of losses. Reliability analysis by stochastic simulation based techniques has 

been proved to be very efficient and reliable in problems involving high stochastic dimension of inter-

est, complex dynamic systems and rarer events (Schuëller and Pradlwarter, 2007). In the literature, a 

few stochastic simulation based techniques that are applicable to solving the problem of interest can 

be found, such as importance sampling (Au and Beck, 2003a), subset simulation (Au and Beck, 2001, 

Au and Beck, 2003b), auxiliary domain method (Katafygiotis and Cheung, 2007), line sampling 

(Pradlwarter et al., 2007), spherical subset simulation (Katafygiotis and Cheung 2007; Katafygiotis et 

al., 2010). These techniques require the probability distribution function (PDF) of all uncertain quanti-

ties and model parameters prior to analysis. The complete probabilistic representation of ground mo-

tion in this case is obtained by adopting stochastic ground motion models with uncertain seismic 

source parameters. Stochastic ground motion models provide more reliable prediction for small dis-

tance large magnitude events which contribute the most to inducing large responses in structures 

(Jalayer and Beck, 2008). 

 

Au and Beck (2003b) presented the application of subset simulation for efficiently computing small 

failure probabilities encountered in seismic risk problems involving structural dynamic analysis. In 

their study, they obtained failure probability estimates for the case where the performance objectives 

were specified in terms of structural response parameters (e.g. story drift ratio). In this paper, failure 

probability estimates are obtained at various combinations of decision variable thresholds (e.g. direct 

dollar loss, downtime) using a new algorithm developed by the authors. The proposed method in-

volves the modification of the simulation algorithms in the subset simulation to tackle the estimation 

problem of seismic loss probability function. 

 

 

2. STOCHASTIC GROUND MOTION MODEL 

 
The uncertainty in the ground motion characterization is by far the dominant source of uncertainty in 

calculating seismic losses. The stochastic point-source ground motion model characterized by the 

moment magnitude M and the distance R from source motion is selected to quantify the uncertainty in 

ground motion. It is defined by the deterministic radiation spectrum and stochastic noise. The deter-

ministic radiation spectrum is calculated by the following equation 

 

Acc( , , ) Source( , )Path( , )Site( )M R f M f R f f=  (2.1) 

 

where Acc(M, R, f) is the total radiation spectrum obtained at site; Source(M, f) is the source spectrum 

at unit distance; Path(R, f) is the path effect that includes the effect of both geometrical spreading and 

inelastic attenuation; Site(f) is the site response operator that includes the effect of both site 

(de)amplification and high frequency deamplification; and f  is the frequency. 

 

The stochastic aspects are treated by modeling the motion as noise with the above specified underly-

ing spectrum. To obtain a sample ground motion record ug(t) for a given scenario event, first a dis-

crete-time white noise sequence Z with unit spectral intensity for the sampling interval t∆  is generat-

ed. The noise is then windowed by multiplying it by an envelope function e(t, M, R). The windowed 

noise is transformed into frequency domain and the spectrum is normalized by the square-root of the 

mean square amplitude spectrum. The resulting spectrum is multiplied by the point-source spectrum 

Acc(M, R, f) which is then transformed back to the time domain to yield a sample of the ground acce-

leration time history. The synthetic ground motion ug(t) generated from the model is thus a function of 



the additive excitation parameters Z, and model parameters M and R (Boore, 2003, Rezaeian and Der 

Kiureghian, 2010).  

 

 

3. NONLINEAR STOCHASTIC DYNAMIC RELIABILITY ANALYSIS FOR LOSS ESTI-

MATION 

 

Stochastic dynamic analysis provides the mean for probabilistic assessment of seismic demand on 

structures subjected to uncertain excitation modeled by stochastic processes. It allows the determina-

tion of various statistics of the structural performance, such as the probability distributions of maxi-

mum responses or the first-passage probability. Given the performance function D(θ) and the corres-

ponding threshold C(θ), the failure probability can be expressed by a multi-dimensional (reliability) 

integral of the form  

 

( ( ) ( )) ( )F FP I D C p d= >∫ θ θ θ θ  (3.1) 

 

where 
n∈θ � is the vector of uncertain variables of the problem; p(θ) is the joint PDF quantifying the 

relative plausibility of values that the set of uncertain variables θ may assume; and IF  is the indicator 

function: IF = 1, if D(θ) > C(θ) and otherwise IF = 0.  

 

To evaluate the performance of the system for any possible future event, different threshold levels of 

performance quantity of interest need to be considered and the corresponding reliabilities need to be 

estimated. In this study, the aim is to obtain probability distribution of the loss including the tail parts 

due to combinations of scenarios which can lead to extreme consequences. Loss may refer to dollar 

loss (repair and restoration cost), loss in functionality (downtime), or human loss (casualties) etc. Let 

L LN
∈� denote the loss vector in which the i-th component is given by the i-th loss quantity under 

consideration. To estimate the probability of any loss Li exceeding the threshold ci, the integral in Eqn. 

3.1 can be modified to the following for the case of multiple performance objectives expressed in 

terms of L:  
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where p(L|M, R, Z) is the PDF of L for a specific seismic event; p(M, R) define the uncertainty in re-

gional seismicity; and p(Z) is the PDF of excitation parameters. It should be noted that in the above 

equation, in addition to accounting for ground motion uncertainty, uncertainty resulting from the size 

and location of the earthquake are also directly introduced. Distribution of any loss for a scenario 

event can be obtained by fixing M and R.  

 

In Eqn. 3.2, p(L|M, R, Z) is equivalent to p(L|EDP) where EDP denotes engineering demand parame-

ter (e.g., peak interstory drift) vector obtained from the structural response analysis using the ground 

motion generated using stochastic ground motion model. Then, the PDF of L conditioned on stochas-

tic ground motion parameters and variables is given by 
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where 1 2,DM { , , }
Nc

DM DM DM= …  is a damage state random vector and {1,2.., }
j j

dm nds∈ ; Nc is 

the total number of damageable components and ndsj is the total number of discrete damage states for 

component j. There are nds1·nds2· ...·ndsNc possible realizations of DM and the PDF of total loss is giv-

en by the summation over each possible realization dm. p(DMj=dmj|EDP) can be obtained using the 

fragility functions for component j (fragility functions are probability distributions that are used to 

indicate the probability that a component will be damaged to a given or more severe damage state as a 

function of demand parameters). p(Li,j|DMj=dmj) is the PDF of the i-th loss quantity for component j in 

damage state dmj and is defined using loss functions (which is the probability of occurrence of a cer-

tain level of loss when a certain damage state has been observed in the component). Depending on the 

type of loss quantity, p(Li|DM=dm) can take the form in Eqn. 3.5 or a general form as in Eqn. 3.6. It 

can be expected that the dimension of random variables involved is high and the failure region has 

complicated geometry. To evaluate the integral in Eqn. 3.2, a subset simulation based approach mod-

ified for the estimation of seismic loss PDF is presented in the following section. 

 

3.1. Proposed Subset Simulation Based Method for Loss Analysis and Loss Probability Function  

 
The basic idea of subset simulation is to consider a sequence of m failure events (one being the subset 

of another) F1⊃F2⊃ ...⊃Fm= F converting a rare-event problem into a problem with a sequence of 

more frequent events that are conditioned on failing successively increasing threshold levels. This 

enables the computation of the failure probability as a product of conditional probabilities P(Fi+1|Fi) 

and P(F1) as 
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where P(F1) is estimated by simulating samples by Monte Carlo Simulation (MCS) and P(Fi+1|Fi) is 

estimated using samples distributed as the conditional PDF p(· |Fi). Samples satisfying the conditional 

PDF p(· |Fi)  are generated by a Markov Chain Monte Carlo simulation technique based on the mod-

ified Metropolis–Hastings (MH) method using samples distributed according to p(· |Fi) obtained from 

the previous simulation level. The MH method consists of the following steps (Au and Beck, 2001): 

 

1. Given a current state { .., }: 1,j

k k
njθ θ= =  distributed as p(· |Fi), generate a candidate state 

1k +
θ�  

For the j-th group random vector 
j

k
θ , a pre-candidate component 1

j

k
ξ + from the proposal distribu-

tion 
*
( | )

j

j k
q θ⋅  and compute the acceptance ratio 

*

1 1

1 *

1

( ) ( | )

( ) ( | )

j j j j

k j k kj

k j j j j

k j k k

p q
r

p q

ξ θ ξ

θ ξ θ

+ +

+

+

=  

Set  
1 1

1

1

with probability min(1, )

with probability 1- min(1, )

j j

j k k

k j j

k k

r

r

ξ
θ

θ

+ +

+

+

=




�  

2. Accept 
1 1 1 1

 if  else set ,
k k k i k k

F
+ + + +

= ∈ =θ θ θ θ θ� �  

 



The intermediate thresholds bn: n = 1,.., m-1 are chosen ‘‘adaptively’’ so that the conditional probabil-

ities are approximately equal to a some specified value, p0.  

 

For applying the subset simulation, a proposal PDF q* is required for each random variable in Fi to 

generate Markov chain samples following q(· |Fi) using the modified MH method. q* affects the dis-

tribution of the candidate state given the current state (transition PDF) and consequently the efficiency 

of the MH algorithm. In the original subset simulation approach, the transition of individual random 

vector are considered independent, so the transition PDF of the Markov chain between two states in Fi 

can be expressed as a product of the individual transition PDFs. However, not all the random variables 

in Eqn. 3.2 are independent, loss vector L is a probabilistic vector-valued function of other indepen-

dent random variables[ , , ]M R Z . But it can be shown that if in Fi, 1 1 1[ , , ]
k k k

M R+ + +Z  are simulated 

according to step 1 in the modified MH algorithm given above and Lk+1 is simulated according to the 

PDF 1 1 1 1( | , , )k k k kp L M R+ + + +Z  given in Eqn. 3.2 and then step 2 in the modified MH algorithm is car-

ried out, then the resulting sample will also be distributed as p(· |Fi). Due to space limitations, the cor-

responding proof is presented here. 

 

The output of subset simulation analysis is the exceedance probability of loss at various threshold le-

vels. Additional uncertainties arising from structural modeling can be easily incorporated in the pro-

posed stochastic simulation based methods without necessarily increasing the computational effort. 

The effectiveness and efficiency of the proposed method are shown by an illustrative example in the 

following section. An efficient approach has been developed by the authors to calculate the exceed-

ance probability of loss vectors at various threshold combinations. Due to space limitations, this will 

be presented in the journal version of this paper. 

 

 

4. ILLUSTRATIVE EXAMPLE 

 

The example used in the study is the hotel structure located in Van Nuys. This building is a seven sto-

ry reinforced concrete (RC) structure that was severely damaged during the 1994 Northridge Earth-

quake. In this study, it was assumed that the building is in its original condition prior to the occurrence 

of the Northridge earthquake. Simplified structural model as developed by Ching, et al. (2004) is used 

for structural dynamic analysis. Economic loss (building repair cost) and downtime (building repair 

time) of earthquake induced damage are considered as risk related decision variables.  

 

4.1. Stochastic ground motion model 

 
The stochastic ground motion records are generated by adopting Atkinson and Silva (2000) stochastic 

ground motion model developed for California seismicity, modified for soil site. The model belongs to 

the class of point-source models characterized by the moment magnitude M and the epicentral dis-

tance r. The total point-source spectrum observed at any site is given by 

 

 (4.1) 

 

where A0 is the ‘equivalent point-source spectrum’ based on two corner frequencies defined at a unit 

distance described by 

 

 (4.2) 

 

The constant C is given by C = RVFS/(4πρβ
3
), where R is the radiation pattern, V is the partition onto 

two horizontal components, FS is the free surface amplification, and ρ and β are the density and shear-

wave velocity, respectively, in the vicinity of the source; M0 is the seismic moment; fa and fb, the low-

er and higher corner frequencies are related to the size of the finite fault and subfault size, and ε is a 

relative weighing parameter. In  Eqn. 4.1, V describes the amplification factor for the crustal velocity 

0( ) ( ) ( ) ( ) exp( ( ) ) exp( )A f A f V f G f f R fγ π κ= − −
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gradient, G is the geometric spreading factor, γ is the anelastic attenuation factor, κ is the near-surface 

attenuation factor, and R = √(r
2
+h

2
), h is the ‘equivalent point-source depth’. Non stationarity in the 

ground motion amplitude is achieved by using an empirical window function e(t) (Boore, 2003) 

 

 (4.3) 

 

where U(t) is the unit step function and parameters a, b, and c are determined such that e(t) has a peak 

with value of unity when t=ε×tη  and e(t)=η when t=tη . The time tη is given by tη =2Tw where Tw is the 

duration of the ground motion, expressed as a sum of a path dependent component and a source de-

pendent component. The distribution of earthquake sizes is modeled by bounded Gutenberg-Richter 

recurrence law (Kramer, 1996) and uncertainty in epicentral distance is described by a triangular dis-

tribution given by 
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where β=2.303b and b=1 that describes the relative size distribution of seismic. It is assumed that 

[Mmin, Mmax] = [5, 8] and rmax = 50 km. 

 

4.2. Fragility and Loss Functions 

 
Loss due to earthquake induced damage to drift sensitive structural and nonstructural components is 

considered here as the performance function. The mapping between EDP and economic loss adopted 

here follows the ABV framework proposed by Porter et al. (2001). Peak interstory drift ratio (IDR) at 

each story is used as the EDP. For illustration and convenience, it is assumed in this example that (a) 

once an individual structural component has experienced extensive damage (loss of vertical carrying 

capacity), a local or global collapse mode has occurred in the structure that triggers the need to replace 

the building, (b) the damage experienced by different components for a given EDP vector are statical-

ly independent. Component specific fragility functions are defined using the lognormal distribution 

and their statistical parameters, logarithmic mean θ and logarithmic standard deviation β, were taken 

directly from the study conducted by Aslani & Miranda (2005). Given the fragility functions, the 

probability of component j being in a damage state k (i.e. DMj = k) is given by 
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where Φ is standard normal cumulative distribution function (CDF). The direct economic loss i.e. the 

repair cost (L=EL) is calculated by summing the economic loss for all components conditioned on no 

local/global collapse and is equal to the replacement cost of the building in case of local/global col-

lapse. Economic loss functions follow a lognormal distribution with logarithmic mean µ and logarith-

mic standard deviation σ (Aslani and Miranda, 2005) and the CDF when component j is in damage 

state k is given by 
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Samples of EL distributed according to ( | , , )p EL M R Z  can be generated by MCS by first simulating 

a random damage state for each component given the EDP using Eqn. 4.6, and then given the damage 

state, random economic loss sample for each component is generated using Eqn. 4.7. Finally the sum 

( ) ( / ) exp( / ) ( )
b

e t a t t ct t U tη η= −



of economic losses in individual components gives a sample of EL distributed according to

( | , , )p EL M R Z .  

 

Downtime is defined here as the period of time between the occurrence of seismic event and the com-

pletion of the building repair efforts. There are various factors that affect building downtime: building 

inspection, damage assessment, financial planning, resource mobilization, repair duration etc. The 

repair time data associated with individual components are obtained from Mitrani-Reiser (2007). It is 

assumed that they also follow a lognormal distribution and their CDF is given by an equation similar 

to Eqn. 4.6. Repair time required for every floor is calculated by summing downtime for all damaged 

components in that floor and the total repair time for the building is assumed equal to the maximum of 

repair time required for every floor. The repair time data used here are for a different structure but 

with similar types of components and are adopted here only for the purpose of illustration.  

 

4.3. Results 

 
Subset Simulation is applied with a conditional failure probability at each level equal to p0 = 0.1 and 

with the number of samples set to N = 500 at each conditional level. Levels 1, 2 and 3 correspond to 

the failure probability of 0.1, 0.01 and 0.001, respectively. One-dimensional chain adaptive symmetric 

uniform distribution is adopted as proposal for each addictive excitation random variable and level 

adaptive bivariate Gaussian distribution with mean and covariance matrix estimated from samples 

from the most recent simulation level is adopted as the proposal for M and r. Fig. 4.1 shows the esti-

mates of exceedance probability for different threshold levels of economic loss normalized by the re-

placement cost of the building. Mean exceedance probability obtained using 50 independent simula-

tion runs and the result for each simulation run is shown in Fig. 4.1 to show the variability of the esti-

mator obtained using the proposed simulation method. It can be seen that the probability of no damage 

and local/global collapse from Fig. 4.1 is 0.18 and 0.001, respectively. Fig. 4.2 shows the scattering of 

M, r samples at different conditional levels of simulation. It indicates that as the failure become more 

severe the samples shift towards the large magnitude and small distance region. The samples shown in 

solid are the combination of M, r that leads to local/global collapse from the last simulation level. 

 

 
 

Figure 1. Exceedance probability at various loss thresholds 



 
 

Figure 2. Conditional M, r samples at conditional levels 0,1,2,3 

 

 
 

Figure 3. Exceedance probabilities for different loss forms 

  

Typically, exceedance probabilities for individual loss quantities are obtained independently. Exceed-

ance probabilities as a function of multiple thresholds can yield valuable insights into how all the dif-

ferent loss quantities come together to affect the seismic risk and system performance as a whole. It is 

thus appealing to obtain the exceedance probability estimates for different combinations of loss thre-



shold. Fig. 4.3 shows the exceedance probabilities if either of the two thresholds i.e. economic loss or 

downtime is crossed. A very efficient algorithm has been developed to obtain this result. Due to space 

limitations, the details are not presented here but will be presented in the journal version of this paper. 

As one of the performance threshold takes the extreme value (=1), the failure probability is the same 

as the one that depends on the other performance parameter. To further illustrate the type of informa-

tion which can be obtained using the proposed method, the contribution of each story to the total loss 

is shown in Fig 4.4 for each failure probability level.   

 

 
 

Figure 4.  Contribution to total loss from each story (conditioned on no collapse) 

 

 

5. CONCLUSIONS 

 

A new stochastic simulation based approach for the estimation of seismic loss probability function is 

proposed with the adoption of stochastic ground motion. Exceedance probabilities at various loss thre-

sholds are obtained using the modified subset simulation that efficiently computes small failure prob-

abilities. The approach is robust to the number of random variables and is directly applicable even 

when considering both seismic uncertainty and modeling uncertainty. An example was presented to 

show the applicability, effectiveness and efficiency of the proposed approach.  

 

The performance of the proposed method depends on (a) the stochastic ground motion model to pro-

vide realistic description of the characteristic of the ground motions expected to happen at the specific 

site; (b) modeling of the physical system and collapse; (c) the quality of fragility functions and loss 

functions for structural and nonstructural components. 
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