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SUMMARY: 
The large tsunami disasters of the last decade have highlighted the need for performance-based solutions to the 
problem of tsunami loading and thus the establishment of a probabilistic framework for tsunami hazard analysis. We 
have developed a method for Probabilistic Tsunami Hazard Analysis (PTHA) that closely follows, where possible, 
the approach in Probabilistic Seismic Hazard Analysis (PSHA) using a two-step approach. 
First we compute fully probabilistic offshore waveheights. We use a library of pre-computed tsunami Green's 
functions from all potential sources, which allows us to integrate over a wide range of locations and magnitudes, 
similar to PSHA, and also incorporate epistemic uncertainties through the use of logic trees and aleatory 
uncertainties using distribution functions. 
In the second step, we compute inundation scenarios using a small subset of events, based on source disaggregation, 
of events that are representative of the hazard expressed by the probabilistic waveheights derived in step 1. This 
process has enabled us to develop probabilistic tsunami inundation maps for California.  
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1. INTRODUCTION 

Since the tsunami disaster caused by the 2004 Sumatra-Andaman earthquake (Ammon et al. 2005), which 
has focused our attention on the hazard posed by tsunamis generated by large subduction zone 
earthquakes, the need has become clear for a systematic evaluation of tsunami hazard. Even before this 
destructive event, a significant amount of work was carried out in this field, primarily through 
deterministic modeling of tsunami scenarios (e.g., Borrero et al. 2005). Such studies usually address 
worst-case scenarios or some type of maximum credible event. For a wide variety of applications, such as 
performance based engineering, land-use planning, etc. it is however desirable to be able to express the 
hazard in probabilistic terms, and in this paper we present a method for probabilistic tsunami hazard 
analysis (PTHA) that not only yields probabilistic offshore waveheights but also inundation. 

Also, notwithstanding the great usefulness of individual scenario maps, in order to assess the hazard for a 
certain region, it may be more appropriate to start with a map of the tsunami hazard, analogous to the 
seismic hazard maps that are published by government agencies such as the United States Geological 
Survey and statewide agencies in the U.S., or the Global Seismic Hazard Assessment Program. Even 
though events like the Sumatra-Andaman earthquake and tsunami are rare, the very large loss of life (> 
200,000 dead or missing) and tremendous material destruction over large geographical areas warrant a 
significant effort towards the mitigation of the tsunami hazard worldwide. In recent years, the tsunami risk 
posed to United States coastal communities from a variety of sources has also become apparent with the 
need for a comprehensive and consistent methodology to evaluate this aspect of earthquake risk that so far 
has been neglected. On the other hand, where there is concern about tsunami damage, the lack of a 



consistent framework to evaluate this hazard has given rise to unnecessarily conservative estimates, which 
can result in an economic barrier to development of coastal communities and facilities. 

 

2. TSUNAMI MODELING 

Although we would like to follow seismic practice closely, there is a fundamental difference between 
tsunami hazard analysis and seismic hazard analysis in terms of the forward modelling problem. Seismic 
ground motion can be expressed by relatively simple functions of distance between site and source, 
magnitude and a limited number of second-order parameters (i.e. ground motion prediction equations). 
For tsunami propagation, such an approach is not practical, given the large lateral variations in the 
propagating medium, the oceans. On the other hand, the main parameter governing the tsunami 
propagation, water depth, is generally very well known, making it feasible to model tsunami waves 
numerically to a much higher accuracy than is currently possible for seismic waves. In the following 
section, we shall briefly explain the numerical methods that we used in our approach. 

We take a Eulerian approach to describe the particle motion of the fluid. Only the velocity changes of the 
fluid are described at some point and at some instant of time rather than describing its absolute 
displacement. We consider a wave that is a propagating disturbance from an equilibrium state. Gravity 
waves occur when the only restoring force is gravity. When the horizontal scale of motion is much larger 
than the water depth, then the vertical acceleration of water is much smaller than the gravity acceleration 
and thus negligible. This means that the whole water mass from the bottom to the surface is assumed to 
move uniformly in a horizontal direction. This kind of gravity wave is also known as a “long-wave.” Long 
wave approximations are appropriate when the water depth of lakes and oceans (< 5 km) is much smaller 
than the length of the disturbance (fault lengths ~ 10-1000 km). This approximation gives an accurate 
description of tsunami wave propagation in the open ocean. In order to also model the propagation of 

Figure 1.1. Source distribution along the Pacific Rim used in this study (left), and the location of the detailed 
tsunami inundation analysis (right). 



tsunami waves in coastal areas, we use an approximation to the wave equation where the low-amplitude 
linear long-wave requirements are relaxed. 

Numerical Computation 

The equations of motion and equation of continuity are implemented in a spherical coordinate system. 
They are solved by a finite-difference method using the staggered leapfrog method (e.g., Satake, 1995).  
For the advection terms, an upwind difference scheme is used. The land-sea is a moving boundary 
condition so that inundation and run-up are included. The time step of computation is determined by trial 
and error. This code has been used by various researchers (e.g. Ichinose et al., 2007; Baba et al, 2004; Fuji 
et al., 2006; Burbidge et al, 2008; Baba et al., 2008) and has been validated against several benchmarks 
and other codes.  

Variable grid finite difference 

The variable grid setup consists of a master grid with a coarse grid spacing and a number of nested finer 
grids with decreasing grid sizes around areas of interest. Our code allows for more than one area with 
decreased grid size. In this model, the deep ocean part is sampled at 120 arc seconds. Because of the very 
long wavelength of tsunami waves in the deep ocean, such a sampling is sufficient for accurate results and 
reduces the computation time and memory requirements considerably. Closer to shore, we used several 
nested grids stepping down to .96 arc sec (approx 30 m). The timestep for these runs is 0.5 sec. Currently, 
our code uses a fixed timestep, which generally is controlled by the finest gridsize. 

 

3. PROBABILISTIC HAZARD ANALYSIS 

Offshore hazard 

The methodology behind probabilistic seismic hazard analysis (PSHA) is well known (e.g., McGuire 
2004) and here we will only briefly describe the adaptations that are made for tsunamis (PTHA). Whereas 
in PSHA we are usually interested in the exceedance of some ground motion measure such as peak ground 
acceleration (PGA) or spectral acceleration (SA), in PTHA a parameter of interest (not necessarily the 
only one) is the maximum tsunami height at sites along the coast. The statistical earthquake model behind 
the two methods is the same, the only difference being that in PTHA we are not concerned with 
earthquakes that are completely inland and in general the minimum magnitude of interest tends to be 
much higher (e.g. M=5 for seismic hazard vs M=7 for tsunami hazard). The difference between the two 
methods lies in the part that in PSHA is referred to as attenuation relations. These relate a certain seismic 
moment release on a fault (or an area) to the ground motion parameters as a function of distance. Because 
of the strong laterally varying nature of tsunami propagation, we have adopted a waveform excitation and 
propagation approach instead of trying to develop analogous tsunami attenuation relations. In fact, current 
developments in traditional PSHA include the replacement of the attenuation relations with ensembles of 
numerically generated ground motions, which is entirely analogous to the approach used here. The method 
has been used by Burbidge et al. (2008) to map probabilistic tsunami hazard around Australia, and Thio et 
al. (2010) to map probabilistic tsunami inundation in California. 

The excitation and propagation of tsunamis in deeper water can be modeled using the shallow water wave 
approximation, which for amplitudes that are significantly smaller than the water depth are linear (Satake 
1995). We can solve the equation of motion numerically using a finite-difference method, which has been 
validated to produce accurate tsunami heights for propagation through the oceans, although for very 
shallow water the amplitudes may become too large, and more sophisticated nonlinear methods are 
required to model the details of the run-up accurately. Nevertheless, the linear approach provides a very 



good first approximation of tsunami propagation for the offshore waveheight. 

Aleatory uncertainties 

Aleatory uncertainties reflect the inability to predict the outcome of a process due to its random nature. 
Whether or not an uncertainty in the outcome of a process is a true aleatory uncertainty, i.e., caused by the 
random behavior of nature rather than a limited understanding of the process itself, is not always clear. In 
practice, this distinction is not important. Aleatory uncertainties are typically accounted for by the use of 
distribution functions rather than single mean or median values to express the outcome of a process. The 
probability of an outcome being in a certain range is then given by the area under the probability density 
(or distribution) function. In our analysis we have identified three main contributions to the aleatory 
uncertainty: modeling uncertainty (σA), uncertainty to random slip distribution (σS) and uncertainty due to 
the tidal variations at any location (σT).  

Figure 3.1. Example of the effect of tides on the probabilistic exceedance waveheight.  The grey histograms 
show the probability density function of the tidal record superposed on a simulated maximum waveheight of 3 
m. The grey curve shows the corresponding cumulative density function, or probability of exceedance given a 

modeled maximum waveheight and the observed tide record. The tsunami simulation (inset, showing 10 hr 
record) however shows multiple peaks close to the maximum waveheights and the correct way to take the 
multiple peaks into account is to convolve the simulated timeseries with the tidal record which in this case 

yield significantly larger exceedance waveheights for the same probability.  



Under modeling uncertainty we include the mismatch, given known source parameters, between observed 
and computed tsunami waveforms. Several different sources contribute to this modeling uncertainty, the 
two most important being errors from the numerical implementation (i.e., our finite difference scheme) 
and errors from shortcomings in the bathymetric model (either errors in the model, or insufficient 
resolution). We have estimated this uncertainty by modeling several large and well-constrained tsunamis 
along the California coast, including the 1960 Chile, 1964 Alaska, and 2006 Kurile events, and by 
comparing the observed and computed maximum waveheights or run-ups. The standard deviations (σA) 
for coarse (1km) and fine (90m) grids are 0.595 and 0.345 (natural log), respectively. We truncated the 
standard deviation for the aleatory uncertainty at an epsilon of 3.  

We take into account the source variability, such as uncertainties in scaling relations and maximum slip by 
directly sampling these parameter distributions using sources that have been perturbed accordingly. The 
variability in the scaling relations are usually given with the scaling relations themselves (e.g. Papazachos 
et al., 2004). 

Variations in tide level can have a significant impact on the effective waveheight, and have to be taken 
into account. In Figure 3.1 we show the effect of tidal variations on the maximum waveheights. In simple 
cases, we can deal with this problem by replacing the computed waveheight at any point by the probability 
density function of the tides. While this works for a tsunami wave with one isolated and unique peak, it 
underestimates the hazard when the tsunami has several peaks with amplitudes comparable to the 
maximum waveheight. In this case, there is a larger chance that a particular waveheight is exceeded since 
there are now several peaks that can coincide with a tidal high. 

Epistemic uncertainties 

Uncertainties in the model parameters are generally incorporated using a logic-tree approach, where 
different alternatives are represented as weighted branches. These include variations in slip-rate, 
magnitude range and distribution, fault geometry, as well as rake. 

Figure 3.2 Offshore exceedance waveheights for California at a return period of 2500 yrs (left) from a fully 
probabilistic integration over all subduction sources in the Pacific. On the right we show the source disaggregation 
results for Santa Monica for a return period of 475 yrs. The hazard is dominated by source in Alaska, but there are 

also smaller contributions from source around Japan and Chile. 



In the Green’s function approach, it is convenient to divide these uncertainties into two groups: parameter 
variations that act on the Green’s function level (e.g., fault geometry) and parameters that do not influence 
the Green’s functions, such as the recurrence parameters and magnitude scaling relations. In the latter 
case, the logic tree branches are easily added without major computational requirements, but for the 
former, the question is whether any extra branch in the logic tree, such as a variation in slip, would require 
an entire set of Green’s functions. From some simple numerical experiments, we conclude that in many 
cases, especially at large distances, these variations can accurately be taken into account by perturbing the 
Green’s functions using a constant scaling factor rather than re-computing them. For example, a change in 
rake, readily translates into a change of the vertical seafloor displacement, which in turn directly translate 
to differences in waveheight.  

Figure 4.1 Probabilistic tsunami inundation map for two areas along the Cascadia coast of California, Crescent 
City (left) and Humboldt Bay (right). The colors indicate the average return time for inundation.  



At shorter distances, i.e., local faults, this approach is less accurate, and in these situations (particularly for 
dip-slip events) we will have to resort to complete re-computation of the Green’s functions. However, 
since these sources are relatively scarce, and require less computing time due to the short distances, this is 
far less of a burden than having to re-compute tele-tsunami Green’s functions. 

Probabilistic offshore hazard 

In Figure 3.2 we present an example of the offshore waveheight off California for a return period of 2500 
yr.  These waveheights have been calculated for a depth of 30 m and give a good overview of the relative 
hazard along the coast. It is clear that the hazard is highest in Cascadia and lowest in Southern California. 
The disaggregation meanwhile gives us a good idea what the main contributions are to the hazard. 

 

4. PROBABILISTIC INUNDATION HAZARD 

In order to extend the offshore waveheight hazard to inundation hazard, we chose to use a numerical 
approach rather than existing empirical approaches because of the limitation in accuracy of the latter. We 
used the source disaggregation (Figure 3.2) for several regions along the California coast to select the 
source regions, and magnitudes that contribute the most to the hazard. Invariably, apart from the 
contribution of the Cascadia subduction zone on the Cascadia hazard, only three other regions are very 
significant: Alaska, Kamchatka-Kurile, and Chile. All subsequent scenarios were therefore done for these 
regions. Just using the disaggregation to select the scenarios is not sufficient, since this would not include 
the aleatory uncertainties in the offshore waveheight. We therefore computed a suite of scenarios with 
increasing amplification factors (i.e., we multiplied the slip by increasing factors) and for every region and 
return period chose the scenarios that yielded waveheights that bracket the probabilistic offshore 
waveheights.  This matching is carried out using the coarse grid from the nonlinear runs (which is similar 
to the coarse grid from the probabilistic offshore hazard calculations) so that differences in bias between 
the fine and coarse grids are taken into account. 

Figure 4.2. Probabilistic inundation map two sites in Central California, Half Moon Bay (left) and Avila Beach 
(right). 



The inundation from that particular source region can then be determined by taking the weighted average 
of the two scenario runs that bracket the offshore waveheight. This way, we only need to compute a 
limited number of fully nonlinear scenarios but still retain the directional (i.e., source region specific) 
character and probabilistic nature of the hazard. The line of inundation can then be determined by 
specifying that it borders an area that is inundated by tsunami waves from all the different major source 
zones for that particular return period.  In addition, we can also compute the local inundation level (height 
of the water column) exceedance for different return periods. 

In Figure 4.1 – 4.3 we show several examples of these inundation maps for areas in California. Up in 
Cascadia, the inundation hazard is of course very high, with extensive inundation even for relatively short 
return periods. 
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