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SUMMARY 
 
This paper presents a comparison of dynamic response of a fluid-arch dam coupled system obtained by use of 
the classical Westergaard added mass formulation and the more advanced analytical FEM-BEM technique. 
Herein the influence of the applied techniques on the distribution and intensities of the manifested stresses is 
presented within the dam body. Dynamic response is achieved assuming that the arch dam has a linear elastic 
material behavior. For solving the dynamic equation of motion direct integration technique is used, whereat the 
dam foundation, as well as foundation undergoing the reservoir, is assumed rigid. The FSI is performed 
following the assumptions that the water in the reservoir is inviscid with irrotational motion of the water particles 
limited to small amplitudes of velocities and acceleration while the gravity surface waves are neglected. The 
presented results are obtained by use of FE–BE oriented software ADAD-IZIIS, especially written for analyses 
of arch dams. The software also has the possibility for calculation of hydrodynamic effects according to 
Westergaard added mass method. 
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1. INTRODUCTION 
 
The phenomenon of FSI that occur during the seismic response of the coupled dam-reservoir system 
has been for the first time physically explained and mathematically solved by Westergaard (1933). 
The very first dynamic analyses, considering the hydrodynamic inertial forces, were based on 
application of added mass method. Besides its simplicity in application and popularity among the 
analysts, Kuo (1982) and Kotsubo (1960) have emphasized that evaluation of hydrodynamic pressure 
using the added mass approach is not accurate, since the assumptions used for calculation of the added 
mass are not in accordance with random nature of the earthquake phenomenon. This type of analysis 
leads to a conservative design. There is a common belief that in case of a rigid structure, the 
magnitude of the hydrodynamic pressure becomes high, but this is not always true. The magnitude of 
hydrodynamic pressure may increase significantly for flexible structures as well. If resonance effect 
and the energy release mechanism in the fluid occur it can lead to the development of unsound design. 
Thus it is necessary to study the fluid–structure interaction problem considering the flexibility 
property of the structure that may alter the behavior of the fluid domain significantly. However, the 
added mass method is very effective for calculation of Eigen values for coupled dam-reservoir 
systems. During the last decade consequent and extensive research was carried out for development of 
more sophisticated approaches and analytical methods aimed towards overcoming of disadvantages of 
the added mass method as well as lightening the impact of the characteristic features of this 
phenomenon over the calculation results. They are divided into solution methods concerning FEM-
FEM or BEM-FEM numerical techniques based on time or frequency domain approach, Seghir et al. 



(2009), Tsai and Lee (1987), Tsai (1992), Tsai et al. (1992). This paper deals with coupled BE-FE 
analysis of the fluid–structure systems considering the coupled effect of elastic structure and an 
incompressible and inviscid fluid. The solution of the coupled system is accomplished by solving the 
motion of the two systems, the dam and the fluid in the reservoir, separately. The interaction effects at 
the fluid–solid interface are enforced by adding the matrix of hydrodynamic forces to the classic 
equation of dynamic motion of dam, ADAD-IZIIS (2008). Research was made for concrete arch dam 
with structural height of H=130m. The fluid–dam system was subjected in upstream direction to El 
Centro N-S record of the Imperial Valley earthquake. The first seven seconds of the record was used 
and scaled to the peak acceleration of 0.3g. The time step increment of 0.01s was chosen for the 
integration process. In a general fluid-soil-structure system, the structure and the reservoir domain are 
supported by the elastic soil medium. However, in the analysis presented in this paper the rock 
foundation is assumed to be rigid which means that the dam–foundation interaction is neglected and 
the motion of all nodes at the fluid–dam-rock interface are following the input ground accelerations 
without any modification. The dam properties are as follows: Young’s modulus E = 31.5 GPa; mass 
density ρ = 2450 kg/m3; Poisson’s ratio ν = 0.2; the acoustic wave velocity in water c = 1440 m/s. 
 
 
2. GOVERING EQUATIONS  
 
2.1 Governing equations for coupled BE-FE FSI solution  
 
The incremental form of differential equation of motion for system subjected to the dynamic action 
including the effect of fluid-dam interaction is as follows: 
 

[ ] [ ] [ ] [ ] [ ] )t(HDF)t(aRM)t(UK)t(UC)t(UM g ∆+∆⋅−=∆+∆+∆ &&&             (2.1) 

 
where [M] is the mass matrix, [R]  is the acceleration transformation matrix, [C] is the structural 
damping matrix, [K] is the structural stiffness matrix, )t(U∆ ; )t(U&∆ ; )t(U&&∆  are  vectors of nodal 

incremental displacements, velocities and accelerations, relative to the ground, )t(ag∆ is the vector of 

incremental ground accelerations, )t(HDF∆  is time dependant  vector of incremental nodal forces at 
the dam-fluid interface caused by the propagation of the acoustic waves generated in the reservoir 
domain. Wilson-θ  method is used for the solution of the general equation of motion Eqn. 2.1 and for 
θ=1.38 unconditional stability of the direct integration process is achieved. This method requires the 
damping matrix to be represented in explicit form. This is accomplished using Rayleigh damping. 
According to Rayleigh, the structural damping in the system can be included by the Eqn.  2.2. 

[ ] [ ] [ ]KMC RR β+α=          (2.2) 

The Rayleigh damping coefficients αR and βR are determined using two known damping ratios ξi along 
with the corresponding eigenvalues ωi Eqn. 2.3 chosen to present energy dissipation ability of the 
fluid-structure system in the best way.  
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During the dynamic response, at any time step, the vector of incremental hydrodynamic forces is 
directly added to the vector of seismic force. The vector of HDF is defined applying BEM numerical 
technique for solution of Laplace’s equation of fluid motion as well as a specially written algorithm 
within the software ADAD-IZIIS. 
The governing equation for solving the small amplitude irrotational motion of the impounded 
incompressible and inviscid fluid is governed by the three-dimensional Laplace’s equation as follows: 
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where W(x, y, z) is the function of the potential in the fluid domain with  boundary surfaces Γ1 and Γ2 
where essential and natural type of boundary conditions exist. Applying BE technique, the 
discretization of boundary surfaces is by an assembly of eight nodded quadratic “serendipity” type of 
boundary elements as follows: 
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Where:  i=1, NBE;            NBE - number of nodes in the boundary element model 
 
Father on, despite “direct” Czygan and Estorff (2002), Yu et al. (2001), Estorff and Antes (1991), 
Fukui (1987), Karabalis and Beskos (1985), or “iterative coupling” methods Soares et al. (2005), 
Soares and Estorff (2004), Soares et al. (2004), (2005), the software utilize simple and effective 
numerical technique of matrix of hydrodynamic influence that provides a compatible link of both 
media which are in interaction. It is accomplished utilizing the concept of virtual work of unit 
acceleration. 
 

2.2 Governing equations of dynamic motion in case of application of added mass method 

If added mass method is used for solving FSI then it is necessary to calculate the amount of the virtual 
mass fixed against the upstream face of the dam. The added mass should produce inertial forces 
equivalent to the expected hydrodynamic effects at any time increment. The procedure for this 
calculation is given in section 3. If added mass method is used then the vector of incremental nodal 
hydrodynamic forces in Eqn. 2.1 is replaced by the modified mass matrix. The structural mass matrix 
is modified by the increment of the added mass that produces equivalent increment of hydrodynamic 
force during the dynamic motion. Therefore, the differential equation of dynamic motion Eqn. 2.1, 
acquires the following form: 
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The added mass method implies rearranging of the incremental differential equation. After some 
transformations it acquires the following form: 
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 After arranging known and unknown terms Eqn. 2.6 becomes: 
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where, 
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Eqn. 2.8 expresses the dynamic equilibrium of a linear or nonlinear system at the "i"-th time increment 
and it has the same form as the static equilibrium equation.  
 
 
3. WESTEGAARD SOLUTION OF HDP – ADDED MASS METHOD 
 
When Westergaard formulation is applied when solving the FSI of arch dam, there is a need for some 
modification of basic Westergaard assumption. Firstly, it should be considered that earthquake motion 
is not normal to the dam face. In general the upstream face of the dam is double curved and therefore, 
the orientation of the faces relative to the ground motion varies from point to point. Also recognition 
should be given to the influence of dam flexibility over the magnitudes of the manifested 
hydrodynamic effects. Namely the relative response acceleration of dam face varies from point to 
point and differs from the earthquake acceleration. According the classic Westergaard solution, the 
pressure caused by unit acceleration at any point “i” is expressed by: 
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The parameters in the above expressions are well known Westergaard (1933). Calculation is based on 
use of the first 10.000 terms of infinite row of Westergaard solution. The period of propagation of the 
acoustic waves is selected from the Fourier spectrum of the excitation and amounts to T=0.5sec. 
The normal accelerationnir&&  due to Cartesian components is given by the direction cosines between the 
coordinate axis and the normal. 
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The normal force at point “i” is obtained as follows:    

ininini rLFP &&=           (3.4) 

In order to use finite element analysis this normal force must be resolved into Cartesian components: 
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Hence the diagonal terms of the added mass matrix are as following:   

ρ= /rLFLm inini
T

niai &&          (3.6) 

Here aim is a diagonal (lumped) mass matrix for each upstream node, and is to be added appropriately 
to the general mass matrix in order to obtain the full inertial effect. The added mass exhibits some 
properties of its own. Thus, in distinction of the structural mass, this value is independent of the 
direction of the degrees of freedom, the value of the added mass depends on the direction in which the 
excitation develops and the direction of the degrees of freedom.  Since the earthquake is assumed to 
travel upon some direction c and if the structural degrees of freedom are in directions x, y, z, and then 
the components of the lumped mass have the following expressions: 

ρ= /Fm nini
h           (3.7) 



  
 
Figure 1. Computation diagram for added mass of water 

 
 
3.1 Derivation of approximate Westergaard formulas 

 
For the purpose of approximate computation one might replace the infinite row of Westergaard 
solution Eqn. 3.1 by a parabola, even if this parabola has a sloping, not vertical, tangent at the bottom.  
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The main source of variation of C is the constant c1 with n=1, in Eqn. 3.9. As c1 appears as 
denominator in the first term in each of the sums in eq. 3.1, it is reasonable to express C via expression 
Eqn. 3.9, where K is a constant.  
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Using the fact that the coefficient C depends on the ratio of the impounded water depth h and  
predominate period of excitation T, and by inspection of the numerical results obtained by application 
of the Westergaard equations [1], it has been concluded that the most convenient value for the 
coefficient K is K=0.0255 ton/ft3.  
Accordingly the approximate formula for hydrodynamic pressure calculation is:  
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For the analysis presented herein the value of the coefficient C is C=12.4 kN/m3. 
 
 
4. DISCUSSION OF THE RESULTS - WESTEGAARD VERSES BE-FE METHOD  
 
If flexible structure is considered, like an arch dam, added mass principle, according to Westergaard 
does not give accurate resultants, because Westergaard theory is based on straight rigid dam 
assumption. Since software ADAD-IZIIS have the possibility for calculation of hydrodynamic 
pressure according to Westergaard added mass method and according to coupled FE-BE method, 
fallowing figures present the discrepancies in obtained resultants.  
Figures 2, 3, and 4. present the time history responses of relative displacement, velocity and 
acceleration for selected node in X, Y and Z direction respectively, at dam crest (crown cantilever) 
where the extremes of the response occurred. Obviously, the response acceleration of the dam is 
modified by 37% when BEM-FEM numerical method is used for solving FSI. Westergaard added 
mass method gives 28% modification of the dynamic response of the dam. The flexibility property of 
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the structures and the influence of the reservoir domain alter the behavior of the fluid significantly and 
consequently the coupled system has a stronger response. Figure 5. presents the time histories of the 
three principal stresses at the nodes where the extreme of each stress is achieved when FSI effect is 
omitted. It also presents the impact of the FSI over the time histories of these stresses and its extremes. 
Figure 7. presents a snapshot of hydrodynamic pressure distribution over the interface, at time 
T=4.95sec. It is obtained under the assumptions that the topology of the canyon has a regular shape as 
indicated in the drawing. However, the insight in the developed hydrodynamic effects is not possible 
when added mass method is used. According to presented results herein, it is evident that added mass 
method is not applicable to flexible systems, because the discrepancies are significant, which is best 
shown in figure 6. The figure shows diagrams of stress distribution with and without included 
hydrodynamic effects, whereat hydrodynamic effects are calculated according to added mass 
method and coupled BE-FE method. The stress extreme is increased by 15% if added mass method is 
used and 49% if coupled BE-FE method is used, which gives error of 23% using added mass method 
in arch dam design. 
There is a common belief that in case of a rigid structure, the magnitude of the hydrodynamic effects 
becomes high, which can not be generalized. In order to confirm or deny this statement, other analyses 
have been done for the 70m depth of impounded water. As the dam is more rigid in the lower part and 
consequently the absolute accelerations at the dam-fluid interface are lower it appears that the above 
statement is almost valid for this particular case, Figure 8. Namely, despite the case of 100m water 
depth, here the mismatching of  both approaches is negligible. 
 
 

 
 

Figure 2. Modification of the dam response in X direction due to the FSI effect  



 

 
Figure 3. Modification of the dam response in Y direction due to the FSI effect  

 

 

 

Figure 4. Modification of the dam response in Z direction due to the FSI effect  

 



 

Figure 5. Time histories of extreme principal stresses with and without FSI effect 
 

a) Stress distribution on dam extrados face G3, T=2.42 s, without HDE 

 

 b) Stress distribution on dam extrados face G3, T=2.42 s, with HDE using BEM-FEM 

 

c) Stress distribution on dam extrados face G3, T=2.42 s, with HDE using added mass method 

 
 

Figure 6. Stress distribution. Modification of the dam response due to the FSI effect 



 

Figure 7. Snapshot of hydrodynamic pressure distribution at time T=4.95 sec 

 

 
 

Figure 8. Modification of the dam response in Y direction due to the FSI effect  

 

 



CONCLUSION 
 
The Westergaard added mass method provides acceptable results only in the range of restricted 
hypothesis. Since it neglects the dam flexibility and water compressibility and does not require any 
discretization of the reservoir domain wherever these features have an impact on the magnitude of 
hydrodynamic effects there will be discrepancy of the obtained resultants. Recently develop BEM-
FEM, FEM-FEM or hybrid methods are focused towards overcoming disadvantages of added mass 
method. They give far more realistic estimates of FSI effects. In this particular case whether added 
mass method would over or under estimate the hydrodynamic effects depends on the water depth in 
respect to the flexibility properties of the dam. 
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