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SUMMARY

This paper presents a comparison of dynamic regpoha fluid-arch dam coupled system obtained ey afs
the classical Westergaard added mass formulatiehtla@ more advanced analytical FEM-BEM technique.
Herein the influence of the applied techniques lmn distribution and intensities of the manifesteésses is
presented within the dam body. Dynamic responseliseved assuming that the arch dam has a linasticel
material behavior. For solving the dynamic equatibmotion direct integration technique is usederdat the
dam foundation, as well as foundation undergoing téservoir, is assumed rigid. The FSI is performed
following the assumptions that the water in theeresir is inviscid with irrotational motion of theater particles
limited to small amplitudes of velocities and aecation while the gravity surface waves are negbkciThe
presented results are obtained by use of FE—-BHtedesoftware ADAD-IZIIS, especially written for algses

of arch dams. The software also has the possibititycalculation of hydrodynamic effects accorditay
Westergaard added mass method.
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1. INTRODUCTION

The phenomenon of FSI that occur during the seisgsponse of the coupled dam-reservoir system
has been for the first time physically explained amathematically solved by Westergaard (1933).
The very first dynamic analyses, considering thelrbgynamic inertial forces, were based on
application of added mass method. Besides its &ityplin application and popularity among the
analysts, Kuo (1982) and Kotsubo (1960) have enipbaghat evaluation of hydrodynamic pressure
using the added mass approach is not accurate, tiea@ssumptions used for calculation of the added
mass are not in accordance with random natureeoé#inthquake phenomenon. This type of analysis
leads to a conservative design. There is a comnaiefbthat in case of a rigid structure, the
magnitude of the hydrodynamic pressure becomes bigtthis is not always true. The magnitude of
hydrodynamic pressure may increase significanttyflexible structures as well. If resonance effect
and the energy release mechanism in the fluid dtcan lead to the development of unsound design.
Thus it is necessary to study the fluid—structurgeraction problem considering the flexibility
property of the structure that may alter the bebrawf the fluid domain significantly. However, the
added mass method is very effective for calculatidnEigen values for coupled dam-reservoir
systems. During the last decade consequent andsixteresearch was carried out for development of
more sophisticated approaches and analytical methimeed towards overcoming of disadvantages of
the added mass method as well as lightening theagtnpf the characteristic features of this
phenomenon over the calculation results. They adidet! into solution methods concerning FEM-
FEM or BEM-FEM numerical techniques based on timé&@quency domain approach, Seghir et al.



(2009), Tsai and Lee (1987), Tsai (1992), Tsaile{1®92). This paper deals with coupled BE-FE
analysis of the fluid—structure systems considetimg coupled effect of elastic structure and an
incompressible and inviscid fluid. The solutiontbé& coupled system is accomplished by solving the
motion of the two systems, the dam and the fluitheareservoir, separately. The interaction effatts
the fluid—solid interface are enforced by adding thatrix of hydrodynamic forces to the classic
equation of dynamic motion of dam, ADAD-IZIIS (200&Research was made for concrete arch dam
with structural height of H=130m. The fluid—dam &\ was subjected in upstream direction to El
Centro N-S record of the Imperial Valley earthquakiee first seven seconds of the record was used
and scaled to the peak acceleration of 0.3g. The 8tep increment of 0.01ls was chosen for the
integration process. In a general fluid-soil-stametsystem, the structure and the reservoir doaran
supported by the elastic soil medium. However, ha analysis presented in this paper the rock
foundation is assumed to be rigid which means tthatdam—foundation interaction is neglected and
the motion of all nodes at the fluid—dam-rock ifdee are following the input ground accelerations
without any modification. The dam properties arda®ws: Young’'s modulus E = 31.5 GPa; mass
densityp = 2450 kg/nt;, Poisson’s ratie = 0.2; the acoustic wave velocity in water ¢ =Q.4d/'s.

2. GOVERING EQUATIONS
2.1 Governing equations for coupled BE-FE FSI solitn

The incremental form of differential equation of tina for system subjected to the dynamic action
including the effect of fluid-dam interaction is fadlows:

[M]a0(t) +[clau(t + [K]au(t) = {M]dR]aa, (t) + AHDF(t) (2.1)

where [M] is the mass matrix, [R] is the accelermttransformation matrix, [C] is the structural
damping matrix, [K] is the structural stiffness mat AU(t) ; AU(t) ; AU(t) are vectors of nodal

incremental displacements, velocities and accetersitrelative to the groundda, (&) the vector of

incremental ground acceleration8HDF  {§)time dependant vector of incremental nodatderat
the dam-fluid interface caused by the propagatibthe acoustic waves generated in the reservoir
domain. Wilsone method is used for the solution of the generabégn of motion Eqn. 2.1 and for
6=1.38 unconditional stability of the direct intetyoa process is achieved. This method requires the
damping matrix to be represented in explicit forfhis is accomplished using Rayleigh damping.
According to Rayleigh, the structural damping ia #ystem can be included by the Eqn. 2.2.

[C]= ap[M]+Bg[K] (2.2)

The Rayleigh damping coefficientk andpr are determined using two known damping rafj@ong
with the corresponding eigenvalues Eqn. 2.3 chosen to present energy dissipatiorityalif the
fluid-structure system in the best way.
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During the dynamic response, at any time step,vdwor of incremental hydrodynamic forces is
directly added to the vector of seismic force. Tketor of HDF is defined applying BEM numerical
technique for solution of Laplace’s equation ofidlmotion as well as a specially written algorithm
within the software ADAD-IZIIS.

The governing equation for solving the small anupolé irrotational motion of the impounded
incompressible and inviscid fluid is governed bg three-dimensional Laplace’s equation as follows:
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where W(X, vy, z) is the function of the potentialthe fluid domain with boundary surfadesandr
where essential and natural type of boundary ciomdit exist. Applying BE technique, the
discretization of boundary surfaces is by an asseofieight nodded quadratic “serendipity” type of
boundary elements as follows:

1 NEL W 0 NEL W 0
“w+y | Ep-wBan+y | Ep-wPdr, =0
2 nel=1r1 on on nel=1r2 on on (25)
Where: i=1, NBE; NBE - number of nodeshe boundary element model

Father on, despite “direct” Czygan and Estorff @00ru et al. (2001), Estorff and Antes (1991),
Fukui (1987), Karabalis and Beskos (1985), or &tee coupling” methods Soares et al. (2005),
Soares and Estorff (2004), Soares et al. (200905, the software utilize simple and effective
numerical technique of matrix of hydrodynamic imfice that provides a compatible link of both
media which are in interaction. It is accomplishgtiizing the concept of virtual work of unit
acceleration.

2.2 Governing equations of dynamic motion in casd application of added mass method

If added mass method is used for solving FSI thé&riecessary to calculate the amount of the alirtu
mass fixed against the upstream face of the dare. added mass should produce inertial forces
equivalent to the expected hydrodynamic effectarat time increment. The procedure for this
calculation is given in section 3. If added masshme is used then the vector of incremental nodal
hydrodynamic forces in Eqn. 2.1 is replaced byrtoalified mass matrix. The structural mass matrix
is modified by the increment of the added mass phaduces equivalent increment of hydrodynamic
force during the dynamic motion. Therefore, thdedéntial equation of dynamic motion Egn. 2.1,
acquires the following form:

[M +Ma]@0(t) +[c]@u() +[K]u(t) = -[M + Ma]JR]aa, () (2.6)

The added mass method implies rearranging of tbeerimental differential equation. After some
transformations it acquires the following form:

Ty K Ty 2

After arranging known and unknown terms Eqn. Z6édmes:

K,AU, =AF (2.8)
where,
— 6 3
K, =K, +—(M+M,)+—[aM +BK] (2.9)
Ty Ty

AF =AP +(M +MA)[EEUi +3Ui}+[aM +BKi][ET7kUi +3Ui} (2.10)
Ty



Eqn. 2.8 expresses the dynamic equilibrium of @diror nonlinear system at the "i"-th time incremen
and it has the same form as the static equilibegomtion.

3. WESTEGAARD SOLUTION OF HDP — ADDED MASS METHOD

When Westergaard formulation is applied when sgl¥fre FSI of arch dam, there is a need for some
modification of basic Westergaard assumption. lyiréitshould be considered that earthquake motion
is not normal to the dam face. In general the epstrface of the dam is double curved and therefore,
the orientation of the faces relative to the groomation varies from point to point. Also recognitio
should be given to the influence of dam flexibiligver the magnitudes of the manifested
hydrodynamic effects. Namely the relative respoasecleration of dam face varies from point to
point and differs from the earthquake acceleratfecording the classic Westergaard solution, the
pressure caused by unit acceleration at any piiig &xpressed by:
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The parameters in the above expressions are welikiWestergaard (1933). Calculation is based on
use of the first 10.000 terms of infinite row of B#ergaard solution. The period of propagation ef th
acoustic waves is selected from the Fourier spactithe excitation and amounts to T=0.5sec.

The normal acceleratidpy due to Cartesian components is given by the dmeciosines between the

coordinate axis and the normal.
fu =Laf L =Aah o] (3.3)

xn’*yn’*zn

The normal force at point “i” is obtained as follew

=

I:>ni = I:ni I-ni”i (34)

In order to use finite element analysis this norfoete must be resolved into Cartesian components:

ni (3.5)

IDi = I-niTPni = I-niTFni L

Hence the diagonal terms of the added mass matiasafollowing:

My =Ly Fulafi/p (3.6)

Here m, is a diagonal (lumped) mass matrix for each upstraode, and is to be added appropriately

to the general mass matrix in order to obtain thkifiertial effect. The added mass exhibits some

properties of its own. Thus, in distinction of teguctural mass, this value is independent of the

direction of the degrees of freedom, the valuehefd@added mass depends on the direction in which the
excitation develops and the direction of the degafefreedom. Since the earthquake is assumed to
travel upon some direction ¢ and if the structdegrees of freedom are in directions X, vy, z, &t

the components of the lumped mass have the follpwkpressions:

n=F,/p (3.7)
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Figure 1. Computation diagram for added mass of water

3.1 Derivation of approximate Westergaard formulas

For the purpose of approximate computation one tnigplace the infinite row of Westergaard
solution Egn. 3.1 by a parabola, even if this pal@bas a sloping, not vertical, tangent at thé¢olpmt

p=C0(\/h_y C= P (3.8)
a./hy
The main source of variation of C is the constanwih n=1, in Eqn. 3.9. Ascappears as
denominator in the first term in each of the sumeq. 3.1, it is reasonable to express C via ezfmes
Eqgn. 3.9, where K is a constant.

c=K (3.9)

Using the fact that the coefficient C depends om thtio of the impounded water depth h and
predominate period of excitation T, and by inspettf the numerical results obtained by application
of the Westergaard equations [1], it has been coled that the most convenient value for the
coefficient K is K=0.0255 tonfit

Accordingly the approximate formula for hydrodynarpressure calculation is:

3

= CC(\/h_ _ 0.0255%o0n/ ft . a\/h—y (3.10)
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For the analysis presented herein the value ofdkéicient C is C=12.4 kN/f

4. DISCUSSION OF THE RESULTS - WESTEGAARD VERSES BEFE METHOD

If flexible structure is considered, like an arcmg added mass principle, according to Westergaard
does not give accurate resultants, because Wesatdrgheory is based on straight rigid dam
assumption. Since software ADAD-IZIIS have the puliy for calculation of hydrodynamic
pressure according to Westergaard added mass matit@ccording to coupled FE-BE method,
fallowing figures present the discrepancies in ivlgtdh resultants.

Figures 2, 3, and 4. present the time history nesg® of relative displacement, velocity and
acceleration for selected node in X, Y and Z dicectrespectively, at dam crest (crown cantilever)
where the extremes of the response occurred. Oflyiothe response acceleration of the dam is
modified by 37% when BEM-FEM numerical method iedidor solving FSI. Westergaard added
mass method gives 28% maodification of the dynamgponse of the dam. The flexibility property of



the structures and the influence of the reservainan alter the behavior of the fluid significan¢digd
consequently the coupled system has a strongeonespFigure 5. presents the time histories of the
three principal stresses at the nodes where thiersatof each stress is achieved when FSI effect is
omitted. It also presents the impact of the FSF ¢we time histories of these stresses and itemds.
Figure 7. presents a snapshot of hydrodynamic presdistribution over the interface, at time
T=4.95sec. It is obtained under the assumptiornsthieatopology of the canyon has a regular shape as
indicated in the drawing. However, the insight e tdeveloped hydrodynamic effects is not possible
when added mass method is used. According to pgezbeesults herein, it is evident that added mass
method is not applicable to flexible systems, beedhe discrepancies are significant, which is best
shown in figure 6. The figure shows diagrams o&sr distribution with and without included
hydrodynamic effects, whereat hydrodynamic effeate calculated according to added mass
method and coupled BE-FE method. The stress extigimereased by 15% if added mass method is
used and 49% if coupled BE-FE method is used, whiebs error of 23% using added mass method
in arch dam design.

There is a common belief that in case of a rigidcdtire, the magnitude of the hydrodynamic effects
becomes high, which can not be generalized. Inrdodeonfirm or deny this statement, other analyses
have been done for the 70m depth of impounded wasethe dam is more rigid in the lower part and
consequently the absolute accelerations at theflagninterface are lower it appears that the above
statement is almost valid for this particular casigure 8. Namely, despite the case of 100m water
depth, here the mismatching of both approachesgkgible.
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Figure 3. Modification of the dam response in Y directioreda the FSI effect
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a) Stress distribution on dam extrados face G3,428, without HDE
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b) Stress distribution on dam extrados face G2.42s, with HDE using BEM-FEM
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c¢) Stress distribution on dam extrados face G3,.422, with HDE using added mass method
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Figure 6. Stress distribution. Modification of the dam resgewlue to the FSI effect
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Figure 7. Snapshot of hydrodynamic pressure distributioimae T=4.95 sec
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Figure 8. Modification of the dam response in Y directioreda the FSI effect



CONCLUSION

The Westergaard added mass method provides ackepedults only in the range of restricted
hypothesis. Since it neglects the dam flexibilihdavater compressibility and does not require any
discretization of the reservoir domain whereverséhéeatures have an impact on the magnitude of
hydrodynamic effects there will be discrepancy leé bbtained resultants. Recently develop BEM-
FEM, FEM-FEM or hybrid methods are focused towasdercoming disadvantages of added mass
method. They give far more realistic estimates 8f €ffects. In this particular case whether added
mass method would over or under estimate the hydardic effects depends on the water depth in
respect to the flexibility properties of the dam.
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