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SUMMARY 
Structural health monitoring techniques are often based on static or dynamic response-based damage detection 

methods since the occurrence of damage can alter both the static and the dynamic behaviour of structures. The 

first needed step for successfully solving an inverse damage identification problem, appears to be the definition 

of a reliable model of the damaged structures and the evaluation of an accurate solution of the direct problem. 

In this paper a new powerful approach, aimed to evaluate the frequencies and the vibration modes of frame 

structures in presence of concentrated damage, is presented. This approach is based on a closed form solution, 

previously derived by the authors, relative to the vibration modes of a beam with an arbitrary number of 

concentrated damage represented by means of internal elastic hinges. The exact explicit solution possesses the 

same analytical structure of the undamaged beam, being a function of four integration constants only, regardless 

of the number of the damaged cross sections. On the basis of the explicit expressions provided for the 

eigenmodes, the exact dynamic stiffness matrix of the multi-cracked Euler-Bernoulli beam is derived. The 

knowledge of the exact dynamic stiffness matrix of the multi-cracked beam, as a function of the end degrees of 

freedom only, represents a fundamental result since it allows the direct evaluation of the global dynamic stiffness 

matrix of frame structures in presence of an arbitrary number of concentrated damages along its members. The 

great advantage of the proposed approach, with respect to the classical approach based on the knowledge of the 

dynamic stiffness matrix of the undamaged beam, is that the degrees of freedom of the overall frame structure 

are exactly the same of the equivalent undamaged structure irrespective of the number of the concentrated 

damages. This fact represents an advantage both from a computational cost and an implementation effort. 

Moreover, it facilitates the numerical investigation relative to the evolution of damage in complex frame 

structures when subjected to dynamic loadings. 
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1. INTRODUCTION 

 

In the last decade, several studies have been conducted aimed at the detection and identification of 

damages in civil and mechanical structures and to assess their general health or their residual load 

carrying capacity both in static and in dynamic context. These structural health monitoring techniques 

are often based on static or dynamic response-based damage detection methods since the occurrence of 

damage can alter both the static and the dynamic response of structures. Damage identification on the 

basis of dynamic measurements is usually conducted by means of approximate numerical procedures 

in view of the difficulty in obtaining exact solutions of both the direct and inverse analysis problems. 

An overview on the use of inverse methods in damage detection and location, using measured 

vibration data, is provided in (Friswell, 2007). Inverse problems combine an initial model of the 

structure and measured data to improve the model or test a hypothesis. As a consequence, the first 

needed steps for successfully solving an inverse problem, appears to be the definition of a reliable 

model, consistent with the real structure, and the evaluation of an accurate solution of the direct 

problem. In view of the difficulties connected with the solution of damage identification problems for 

complex structures, many of the studies available in the specific literature, aimed to obtain a solution 

of the direct or inverse problems, have been devoted to very simple structural systems. In particular, 

greater attention has been devoted to the solution of the direct analysis problems of vibrating beams in 

the presence of single or multiple concentrated cracks, (Morassi, A., 1993; Dimarogonas, A.D. 1996; 



Li, Q.S., 2002; Binici, B., 2005; Caddemi et al., 2009, 2011; Xiaoping, Z. et al. 2010).  

The identification problem becomes extremely more complicated in the case of complex damaged 

frame structures. The approaches presented in the literature, aimed to investigate the direct or the 

inverse problem of frame structures in presence of concentrated damage, are generally based on finite 

element approximate models (Nikolakopoulos, P. G., 1991; Dado, M.H.F. et al., 2003).  

The only available approach for obtaining an exact evaluation of the eigen-properties of multi-cracked 

frame structure, consistent with a distributed parameter systems modeling, is based on the use of the 

dynamic stiffness matrix of the undamaged beam and the subdivisions of the cracked beams in more 

elements whose number is associated to the number of damaged cross section, an example of this 

approach is reported in reference (Greco, A. et al. 2012). This procedure, although providing an exact 

solution, determines a significant increase of the overall degrees of freedom of the structures that is 

proportional the number n of damages. As a consequence the study of the evolution of concentrated 

damages in structures requires an a priori definitions of the sections that can be subjected to damage 

and the associated degrees of freedom.   

In this paper a new powerful approach, aimed to evaluate the frequencies and the vibration modes of 

cracked frame structures, is presented. This approach is based on a closed form solution, derived by 

the authors (Caddemi et al., 2009), relative to the vibration modes of the multi-cracked beam, which 

possess the same analytical structure of the undamaged beam, being a function of four integration 

constants only, regardless of the number of the cracked cross sections. On the basis of the explicit 

expressions provided for the eigenmodes, the exact dynamic stiffness matrix of the multi-cracked 

Euler-Bernoulli beam is derived. As it is well known, the knowledge of the exact dynamic stiffness 

matrix of the multi-cracked beam, represents a fundamental result since it allows the direct evaluation 

of the global dynamic stiffness matrix of frame structures in presence of an arbitrary number of 

concentrated damages along its members. The great advantage of the proposed approach, with respect 

to the classical approach based on the knowledge of the dynamic stiffness matrix of the undamaged 

beam, is that the degrees of freedom of the overall frame structure are exactly the same of the 

equivalent undamaged structure irrespective of the number of the concentrated damages. This fact 

represents an advantage both from a computational cost and an implementation effort. Moreover, it 

facilitates the numerical investigation relative to the evaluation of the influence of damage in complex 

frame structures towards the identification inverse problem solution. Once the global dynamic 

stiffness matrix of a damage frame structure is evaluated, the solution of the nonlinear eigenvalue 

problem requires a safe and reliable procedure to be solved. In the paper, the Wittrick & Williams 

algorithm (Williams, F.W. et al. 1970), which gives all required eigenvalues with the desired accuracy, 

is adopted. An efficient procedure for the evaluation of the exact solution of the direct problem 

represents a further and important step towards the more complicated solution of the inverse 

identification problem of the damage detection in frame structures.  

 

2.  THE CLOSED-FORM SOLUTION OF THE CRACKED EULER-BERNOULLI BEAM 
 

The model adopted in this study is based on the concept that a concentrated crack or a concentrated 

damage locally affect the flexural stiffness of the beam and that its influence can be modelled through 

generalised functions. According to a model already considered by the same authors (Caddemi et al., 

2009) the governing differential equation of a multi-cracked uniform beam may be written in the 

following form. 
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where prime denotes differentiation with respect to the spatial coordinate x along the beam axis and 

the superimposed dot differentiation with respect to time t. The n  singularities, given by Dirac’s 

deltas centred at abscissa , 1, ,oix i n= … , represent n  concentrated damages and the parameters  

ˆ , 1, ,i i nγ = …   multiplying Dirac’s deltas are directly related to the rotational stiffness of an equivalent 



internal spring, as specified in reference paper (Caddemi et al., 2009).  

This model is equivalent to consider a straight beam with n elastic rotational springs.  

By considering the non-dimensional coordinate ξ = x/L, and observing that the time dependence is 

harmonic, the differential Eq. (2.1) reduces the following form: 
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By performing the double differentiation with respect to ξ  of the first term containing the Dirac’s 

delta distribution, and after simple algebra, eq. (2.2) can be written in the following inhomogeneous 

form:  
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where the dimensionless frequency parameter 
4
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( )B ξ  collects all the terms with the Dirac’s deltas and their derivatives as follows: 
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(2.4) 

The general explicit solution of  Eq. (2.3) has been derived by the authors in (Caddemi et al., 2009) 
by making use of the generalised function theory and may be given the following form: 
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where ( )oiU ξ ξ−  is the well known unit step (Heaviside) function and the terms 

( ) ( ) ( ) ( ), , ,i i i iµ α ν α ς α η α  are given by: 
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The integration constants 1 2 3 4, , ,C C C C
 
can be easily evaluated by imposing the relevant boundary 

conditions. The first and second derivatives of the eigen-mode can be obtained by means of single and 

double differentiation of Eq.(2.5) by making use of the distributional derivatives of the unit step 

(Heaviside) function. Eq. (2.5) can also be re-written in the more compact form: 
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(2.8) 

It is worth noting that the solution expressed by Eq (2.8) is valid for the overall beam and for any 

number and positions of cracks, furthermore, it preserves the same analytical structure of the 

undamaged beam being a function of four integration constants only irrespective of the number of the 

cracked cross sections. This form of the solution makes possible the derivation of the exact dynamic 

stiffness matrix of a multi-cracked beam, as reported in the following paragraph.  

 

3.  THE DERIVATION OF THE DYNAMIC STIFFNESS MATRIX 
 

In order to obtain the dynamic stiffness matrix of the multi-cracked beam, two sets of boundary 

conditions have to be specified: the kinematic boundary conditions, to be expressed in terms of 

transverse displacements and flexural rotations, and the natural boundary conditions, to be expressed 

in terms of shear forces and bending moments. 

By assuming end displacements and forces positive downwards, end rotations and moments positive 

clockwise,  the kinematic boundary conditions provide the following relationships between the end 

degrees of freedom and the integration constants: 
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Expression (3.1) can be written in matrix form as: 
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Similarly, by applying the natural boundary conditions, the following relationships between the end 

forces and the integration constants must be enforced: 
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(3.3) 

Expression (3.3) can be written in matrix form as: 

 
= ⋅F Q c  (3.4) 

 

By solving Eq. (3.2) with respect to c and substituting the result in Eq. (3.4), the dynamic stiffness 

matrix K of the Euler Bernoulli beam in presence of an arbitrary number of concentrated cracks is 

obtained as follows: 
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where 
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It is worth noticing that the coefficient of the dynamic stiffness matrix, after many algebraic 

manipulations, can be written in explicit form. Here for the sake of brevity only the computational 

procedure has been described.  

The global dynamic stiffness matrix of a frame structure composed of beams with concentrated cracks 

can be obtained by a standard assemblage procedure. 

The use of the dynamic stiffness, or flexibility, functions in connection with the Wittrick and Williams 

algorithm (Williams, F.W. et al. 1970) has the advantage of providing exact solutions, as opposed to 

the approximate ones obtainable by the finite element.  

 

 

4.  THE APPLICATION OF THE WITTRICK & WILLIAMS ALGORITHM 

 

The Wittrick & Williams (WW) algorithm was developed over 40 years ago and has been applied with 

increasing sophistication to problems in structural mechanics ever since. The use of stiffness or 

flexibility functions in connection with the Wittrick & Williams algorithm has the advantage of 

providing exact solution, as opposed to the approximate ones obtained by well adapted techniques 

such as the finite element methods. In what follows the main steps of the Wittrick & Williams 

algorithm are summarized.  

Once the global dynamic stiffness matrix of the entire structure is derived, the central step in the 

Wittrick & Williams algorithm is the evaluation of the number J of natural frequencies that are lower 

than a specified frequency value. It is apparent that the knowledge of J allows the evaluation of any 

required frequency, with the desired accuracy, by means of simple iterative procedures. According to 

the Wittrick & Williams algorithm, this number may be expressed as the sum of two terms 
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J  is the number of frequencies of vibration lower than 
*ω  for the generic r beam of the 

structure.  If the beam is undamaged, the corresponding value of 
b
r

J  can be evaluated by means of the 

closed form expression 
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where u
D  is given by 
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The value 
b
r

J  corresponding to the cracked beams cannot be evaluated in closed form; this apparent 

drawback can be overcome by considering the multi-cracked clamped-clamped beam as a substructure 

to be handled in a different way.  Namely, 
b
r

J   represents the number of frequencies of the clamped-

clamped damaged beam that are lower than the specified frequency value 
*ω , and has to be evaluated 

for each damaged beam of the frame structure.  

This can be obtained, at a very low computational cost,  by simply applying the Wittrick and William 

algorithm to each single damaged clamped-clamped beam by assembling the dynamic stiffness matrix 

introducing equivalent internal elastic hinges, at each damaged section. It is worth noticing that the 

latter substructuring procedure does not alter the number of the degrees of freedom of the overall 

frame structure that is coincident with the number of the corresponding undamaged structures, hence 

the global dynamic stiffness matrix of the damaged frame structure has the same dimension of the 

corresponding dynamic stiffness matrix of the undamaged structures that can be obtained as particular 

case by setting all the damages equal to zero. 

 

 

5.  NUMERICAL APPLICATIONS  

 

The applications reported in the following are intended to validate the efficiency of the numerical 

procedure whose computational cost is strongly reduced, with respect to a standard application of 

Wittrick & Williams algorithm, since it does not require any additional degree of freedom accounting 

for the presence of the concentrated damages.  

 

 

Figure 1. The two span damaged frame. 
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Figure 2. First ten vibration modes and the corresponding frequencies of the two span frame. 
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The structure under investigation is a two span portal frame in presence of four concentrated cracks 

located at the middle of the horizontal beams and in the middle of external columns, figure 1. The 

geometrical and mechanical parameters of the system are reported in table 1. 

 
Table 1. Portal Frame geometrical and mechanical properties. 

 
Elastic Modulus  206000 MpaE =  

Span Length 12 mL =

 

Column height 12 mL =

 

Rectangular Section base  19.8 mmb =

 

Rectangular Section height  12.2 mmh =

 

Mass density  37.675 t/mρ =

 

 

 

The damaged frame elements, with uniform rectangular cross sections are considered as subjected to 

concentrated cracks whose depth to the cross section height ratio is equal to 0.9. Each concentrated 

damage has been modeled by means of a rotational spring, according to a model already applied in the 

literature (Caddemi, S. et al., 2008, 2009). In figure 2, the first ten vibration modes and the 

corresponding periods of vibration of the damaged frame are reported.  

It is worth noticing that the global dynamic stiffness matrix of the system has been evaluated by 

assembling the stiffness matrices of each damaged element, and by considering for the overall system 

only four degrees of freedom (three rotational and one translational), since the axial deformability has 

been neglected.  

The modal shapes are clearly influenced by the presence of the concentrated damages in the middle of 

each element. It is interesting to observe that the tenth mode is not influenced by the damage since the 

nodal points of the mode shape are coincident with the positions of the cracks. 

Here, for the sake of brevity, only a simple application has been reported.  

It is worth noticing that the considered approach make possible a low cost numerical evaluation of the 

evolution of damage in the eigenproperties of frame structures, since the degrees of freedom of the 

damaged and undamaged structures are coincident.  

 

 
6.  CONCLUSIONS  
 

In the paper a new powerful approach, aimed to solve exactly the direct problem of the evaluation of 

the frequencies and the vibration modes of multi-cracked frame structures, is presented. This approach 

is based on a closed form solution, derived by the present authors, relative to the vibration modes of 

the multi-cracked beam, which possesses the same analytical structure of the undamaged beam, being 

a function of four integration constants only, regardless of the number of the cracked cross sections. 

The exact dynamic stiffness matrix of the multi-cracked beam has been presented and it represents a 

fundamental result since it allows the direct evaluation of the global dynamic stiffness matrix of frame 

structures in presence of an arbitrary number of concentrated damages along its members. The great 

advantage of the proposed approach, with respect to the classical approach based on the knowledge of 

the dynamic stiffness matrix of the undamaged beam, is that the degrees of freedom of the overall 

frame structure are exactly the same of the equivalent undamaged structure irrespective of the number 

of the concentrated damages. This fact represents an advantage both from a computational cost and an 

implementation effort. Moreover, it facilitates the numerical investigation relative to the evaluation of 

the influence of damage in complex frame structures towards the identification inverse problem 

solution.  
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