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SUMMARY:

The peak floor acceleration (PFA) is a criticalgraeter influencing the performance of non-strudtelements

in buildings. This paper develops a response spactnalysis method based on the Complete Quadratic
Combination (CQC) rule to estimate the PFA. The hoétapproximately accounts for the contribution of
truncated higher modes. The approximation is intoed in the time domain, then formulated in thedency
domain by CQC. Application of the method to a comtius cantilever beam idealizing a building witleah
walls is presented and compared with alternativenfations. The proposed method is able to prowade
consistent estimation of the PFA along the entinecture, not only where the PFA is principallylignced by

the first few flexible modes, but also where theAR§& mainly related to the rigid response of theicture, for
example near the base.
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1. INTRODUCTION

This paper presents a response spectrum analytiedni® predict the peak floor acceleration (PFA)
in structures under seismic excitation. Estimatbithe PFA is required for the design and reli&ili
assessment of acceleration-sensitive non-struotlgaients and floor diaphragms in buildings. More
specifically, the PFA is a key engineering demaadhmeter in buildings, when floor diaphragms or
attached equipment are intended to behave aspégid, having natural frequencies much higher than
the dominant frequencies of the seismic excitatidslani and Miranda (2005) have shown that in
non-collapse seismic events, the expected losdtirgsirom damage to acceleration-sensitive non-
structural elements is somewhat higher than thahénstructural elements, the biggest contributor
being the loss due to drift-sensitive non-strudtalements.

The use of PFA in the design of floor diagraph#iustrated by Rodriguez et al. (2002). In that kyor
the authors propose a response spectrum methatintate the PFA, following a numerical campaign
on non-linear systems. The PFA at the top of thkeling is computed using the Squared Root of Sum
of Squares (SRSS) modal combination rule. The irton of the first mode is reduced to account
for the effects of ductility and hysteretic behawiowhile the other modes are considered elastie. T
profile of the PFA along the building height is amgmated by a bi-linear function: Uniform
acceleration for the top part of the building, dmgkar decay from mid-height to the base of the
building, where the acceleration equals the Pealu@t Acceleration (PGA). The SRSS rule is also
used by Kumaret al. (2007), who propose an approximate formula foimeging the PFA. Miranda
and Taghavi (2005) also propose a method for estimahe PFA, approximating the first three
modes of the building with those obtained by fleiand shear cantilever models. The PFA can also
be computed by response history analysis for gpdcijround motions, possibly using non-linear
hysteretic models, as in Medina and Krawinkler Q00

In this paper, we limit our attention to linearassically damped structures. The paper benefita fro
the earlier work of Der Kiureghian and NakamuraS@9 where a method for approximating the



quasi-static contributions of truncated higher n®ode response spectrum analysis by the CQC
(Complete Quadratic Combination) rule is presenfBide focus of that work was on response

quantities related to relative displacements, sashinter-story drifts and strains or stresses in
structural members. Although the paper never mestiboor accelerations, in the last section it

reports a numerical example of computing floor pieeaccelerations. Even though a part of what is
presented here was implicitly included in that wosle find it useful to further investigate and shed

light on the peculiarity of computing floor accelgons by response spectrum analysis in contrast to
computing response quantities related to relatisplacements.

2. MODAL COMBINATION FOR TOTAL ACCELERATION

2.1. Discrete system with complete modal information

Consider anN-degrees-of-freedom linear system with classicahmlag and subjected to a single
component of ground motion. The well-known equattbmotion is

Mii + Cu + Ku = —Mviiy (£) (2.1)
whereM, C, andK are theNxN mass, damping and stiffness matrices, respectivelg the Nx1
vector of nodal displacements relative to the gdywnis theN X 1 influence vector connecting the

nodal displacements to the base motion, dipdt) is the ground acceleration. Using modal
decomposition, the solution for the nodal relatiigplacements can be written as

u(t) = XL, dilisi (t) (2.2)

whered; denotes théth mode shape; = (¢;"Mv)/(d;"M,) is the participation factor for tHe
th mode, and;(t) is solution to the equation:

§i + ZZiwis'i + (L)L'ZSL' = —ug(t) i=1,..,N (23)
in which w; and{; respectively denotes tlith modal frequency and damping ratio. Taking treosd
derivative of Egn. 2.2 and adding the contributadrground acceleration, we obtain the nodal total
acceleration vectai® in the form

it = YL, 8 + vilg () (2.4)
This equation describes the usual procedure fopotimg the total acceleration when working in the
time domain: we compute the modal relative accéters, combine them to obtain the nodal relative

accelerations, and then add the ground acceleration

When all modes are included in the analysis, tfleence vectow can be expressed in terms of the
modal quantities (Chopra, 1995):

v=2L ¢l (2.5)
Substituting Eqn. 2.5 into Egn. 2.4 and factoring two summations, we obtain

it (6) = T, b 55 () (2.6)
in which

§F =5 +1i,(0) (2.7)



is the modal total acceleration. Egqn. 2.6 suggastalternative procedure for computing the nodal
total accelerations: we compute the modal totaklecations and combine them using the same
mapping as that used for nodal relative displacésnenEqn. 2.2. Eqn. 2.6 does not provide any
practical advantage relative to Eqn. 2.4 when cdimguhe total acceleration in the time domain.
However, as we will show in Section 3, this forntida provides a basis for response spectrum
analysis.

2.2. Discrete system with incomplete modal information

In practical modal analysis, usually mode shapesk feequencies are available for only the finst
modes, wheren «< N. Assuming the truncated modes have frequencieshniigher than the
predominant frequencies of the input excitationnaural approximation is to neglect the modal
relative accelerationg; for all truncated modes. Many arguments suppast dssertion. First, when
the natural frequency of a mode is much higher thanfrequency content of the seismic excitation,
the modal response is almost “static” and the ikeadcceleration is negligible. More quantitatively
when the modal frequency is much higher than tpetifrequencies, the term?s; on the left-hand
side of Eqn. 2.3 dominates the sum in balancingritjet hand side. It follows that the relative
acceleration ternx;, is negligible in comparison to the ground acalen. Consequently, the modal
total acceleratiod! approximately equals the ground acceleration.

Using this approximation in Eqn. 2.6 and also mgkise of Egn. 2.5, we obtain

i1 = B iS¢ + Tyl (6) (2.8)
where

I = V=X, ;] (2.9)

is a residual vector that transfers to the nodafdioates the fraction of the ground acceleratiat is
projected onto the rigid modes. Comparing with EjB, it is apparent that,, = 0.

2.3. Continuous systems

It is instructive to examine the extension of thmae formulation to the case of continuous mass
systems. As shown below, such a system seemingbesp@ paradox when computing total
accelerations at support points of the structurebglal decomposition.

To frame the problem, consider a structure of lehgllefined by the spatial coordinates (0, L) and
mass distributiot(x). For such a structure, the setho&igenvectors is replaced by an infinite set of
eigenfunctionsp;(x), i = 1, ..., o, and the influence vector is replaced by an imfb@efunctionv(x),
representing the displacementxatvhen the support point(s) of the structure is ldispd by a unit
amount. Furthermore, the modal participation fector  become

I = fOL ¢, ()A(x)v(x) dx/fOL ¢ 2(x)A(x) dx. Mimicking Egn. 2.5, we express the influence fiorc
as a combination of the eigenfunctions in the form

v(x) = XiZ, ¢ (O (2.10)

However, this formulation seems to pose a problethexsupport point(s) of the structure, where the
eigenfunctiongp (x) must necessarily be zero, whiléx) generally is not zero.

Furthermore, the counterpart of Eqn. 2.6 for thatiooous structure reads

i (x, ) = BiZy i (O3 () (2.11)
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Figure 2.1. Simply supported beam.

This equation seems to suggest zero total acdelerat the support point(s) of the structure, whike
know the total acceleration there must equal theelacation at the support(s). This seemingly
paradoxical result is resolved by noting that thexs in Eqns. 2.10 and 2.11 are over an infinitobet
modes. The proper results should be obtained abntits of v(x) andii’(x, t) whenx goes to the
coordinate of the support, say =0, which formally readlim,_,limy_ . YN, ¢;(x)I; and
lim, o limy_e Y0 ¢ (X)15F (£). We illustrate this idea through a simple example.

Consider a simply supported beam of lenigthlaced vertical inside a C-shape rigid body, whgh
subjected to horizontal ground motiogt), as shown in Fig. 2.1. Assume the beam has aunsta
properties along its length and letdenote the mass per unit length &dhe bending stiffness. For
this structure, the influence functiomigéx) = 1, x € (0, L), which has a non-zero value at the support
pointsx = 0 andx = L. It is well known (Chopra, 1995) that théh mass-normalized eigen-function
for the simply supported beam ¢ (x) = /2/(AL)sin(irx/L). Using this result and the unitary
influence coefficient, the modal participation farst are obtained &% = 2v21L/ (i) for oddi and

I; = 0 for eveni. It follows that

i i (OT; = §2°;zgéi%sin (Tx) (2.12)

The above series is identical to the Fourier sesigsansion of a unitary function over the interval
(0,L). This proves the validity of Egn. 2.10 at all gsinincluding the support points as> 0 or L.

The counterpart of Eqn. 2.8 for the continuousesysis

it (x) = Xty ¢ (O3 + 1 (01l (0 (2.13)
where

() = v(x) — Xt i (O (2.14)

It can be seen that at the boundary the sum oedirtite number of modes goes to zero and Egn. 2.13
yieldslim,._,q ii* (x) = iiy(t), which is the correct solution.

3. MODAL COMBINATION BY THE CQC RULE

CQC is a well-known method for estimating the maximof a dynamic response by response
spectrum analysis. The reader is referred to Dardghian (1981) and Der Kiureghian and Nakamura
(1993) for a detailed introduction and justificatiof the method. For the acceleration atktiefloor

of the structurei,l,‘;, including all the modes, the CQC rule reads



E[max|itf (0[] = [ZX, X5 akiakjpijA(a)i:(i)A(wj:(j)]l/Z (3.1)

where ay; = ¢y;I;, in which ¢,; denotes theith element in the eigenvectds;, A(w;, {;) is the
ordinate of the total acceleration response specfor theith modal frequency and damping ratio,
and p;; is the cross-modal correlation coefficient betweeodesi andj for the total acceleration
response. The correlation coefficient is computed a

=ty
Pij = Joiito; (3.2)

wherej, ;; is the cross-modal spectral moment defined by

AO,ij = Re [fooo Hi (O))H] (—a))Gugug (a))da)] (33)
in which Gﬁgﬁg (w) is the power spectral density (PSD) of the groacckleration, and

2 .
wi+2ifjww

Hi(w) = - (3.4)

Z_w2+2ifjwiw
is the frequency response function (FRF) of mofi the total acceleration response.

The approximation introduced in Egn. 2.8 replabesmodal acceleration for all truncated modes with
the ground acceleration. In the framework of C@ implies the following relations:

Vi >n:A(w;, §;) = PGA; Vi,j>nip; =1 Vi<nj>nip;=py (3.5)

In the abovep;, is the cross-correlation coefficient between dtemodal response and the ground
acceleration. With this approximation, Eqn. 3.1dsea

E[maX|il1tc(t)|] = [Z?:l Z;'l=1 akiakjpijA((Ui; (L-)A(a)j, (]) + (3 6)
1/2 .
+2 X1 ATk PigA(@y, §)PGA + 177 PGA? |

where andr,,, is the kth element in the residual vectef,). To compute the cross-correlation
coefficient p;4, it is sufficient to note that the ground accetierais identical to the response of a
mode with infinitely large frequency. Sintien,, ., H;(w) = 1, p;4 is computed according to Eqn.
3.2 with the correspondind,;, and 4,4, values obtained from Eqgn. 3.3 with;(—w) and
H;(w)H;(—w) replaced by 1, respectively. These computationsiire the definition of the PSD
Gii it (w) compatible with the specified response spectrumeHge have used a modified version of

the formulation proposed by Der Kiureghian and Ndaader (1992), which is more accurate in the
high frequency range.

The CQC formulations in Egns. 3.1 and 3.6 are imseof the total acceleration response spectrum,
which in practice is seldom available. Responsetspén design codes are usually specified in terms
of the pseudo acceleration. However, it is well \no(Chopra, 1995) that the pseudo-acceleration
spectrum is a good approximation of the total aregion spectrum for a wide range of frequency and
damping values. The two spectra are identical fedamped systems and nearly identical for low-
damped systems. The difference between the twolyssignificant for high damping values and long
periods. For such cases, correction factors sutiogs suggested by Sadslal. (2000) may be used.
These observations suggest tHéi;, ¢;) in the above CQC rules can be replaced with tleigis
acceleration spectrum, which we denotd d&;, {;).
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Figure 3.1. (a) Pseudo-acceleration response spectrum anégtnsPSD, (b top) modal cross-correlation
coefficients, (b-bottom) cross-correlation coeffiti between modal response and ground acceleration.

As an example, Fig. 3.1(a) shows an ASCE (2006ug¢s@cceleration response spectrum for 5%
damping with the corresponding consistent PSD. F}aroross-correlation coefficients are shown in
Fig. 3.1(b). The upper graph reports the coeffisigyy for f; = w;/2m = 1, 2, 20, 100 and 500Hz and
fj = wj/2m ranging from 0.1Hz to 1kHz. This graph shows tgatto about 10Hz, which is near the
upper limit of the frequency content of the seisemcitation, coefficientp;; decay when frequencies
fi andf; are well separated. However, for higher modaldeggies, the correlation coefficient is high
even when the frequency are well separated. Ttesrghtion supports the approximation in Eqn. 3.6
and, indirectly, provides an argument supporting.E8. The lower graph in Fig. 3.1(b) reports the
cross-correlation coefficient;; as a function of the modal frequenfy We again observe that the
correlation coefficient between a modal respongktha ground acceleration is approaches unity for
high modal frequencies, support the “rigid appradilon” proposed above.

4. NUMERICAL APPLICATION TO A CONTINUOUS CANTILEVER

Consider a cantilever beam fixed at the base abhfectied to ground excitation modeled by the
response spectrum described in Section 3. As showkig. 4.1(a), thex coordinate indicates the
position along the cantilever, which has uniformsmadistributiond, and bending stiffnessl. The
parameters are selected such that the first ngiaradd of the structure is 3s.
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Figure4.1. (a) Example cantilever beam; (b) mass-normalizedershapes; (c) modal frequencies; (d) modal
participation factors.



Formulas for the natural frequencies and mode shapé¢he cantilever beam are provided in, e.g.,
Chopra (1995). We include 50 modes in our analyisir mass-normalized mode shapes are shown
in Fig. 4.1(b), the first 50 frequencies in Figl#&) and the corresponding participation factorkim
4.1(d). As expected, in the lower part of the dtre the lower modes have negligible contributjons
while the 20th mode has significant contributiomeTresidual contributiom, of the rigid modes is
plotted in Fig. 4.2(a) for selected number of modedf we include just one mode in the analysis
(n = 1), the acceleration in the lower half of the cantleis dominated by the rigid contribution,
while this contribution is reduced as more modesiacluded. Fon = 50, the rigid contribution is
significant only in the close proximity of the base

The correlation coefficient between modezndj is depicted in a contour plot in Fig. 4.2(b). Ween
that the correlation between two modes with higtides is close to one. This is consistent with Fig.
3.1(b), but it is also due to the fact that théorft, , /f; approaches unity ds- oo.

The graphs in Figs. 4.3 report the estimated PFAafoincreasing number of modes included in the
analysis, froom = 1 to n = 50. Three points on the cantilever have been seleotsal at the top of
the structur€x = L), and two close to the base fat 0.15L andx = 0.08L). The proposed approach
described by Eqn. 3.6 is referred to as CQC wighdrcontribution (“CQC with RC”). The results are
plotted as the ratio of the prediction usingnodes to the result of CQC with rigid contributigsing

50 modes, which is assumed as the “correct” relsuthe same figures, we show the estimated PFA if
the rigid contributions of truncated modes werédé¢oneglected (“CQC w/o RC"). These results are
obtained by including only the double-sum term gnE3.6. The third line in the graphs refers to the
use of SRSS, including the rigid contribution (“SR®ith RC"). The key assumption of SRSS is that
the responses of each pair of modes are uncowelated that the response of each mode is
uncorrelated with the ground excitation. Hence,3RSS rule is equivalent to the CQC rule if we set
all the cross-correlation coefficients equal taozdihis yields

) 1/2
Esgss|maxliif, (t)|] = [ i(arA(w, §))" + rr%kPGAZ] (4.1)

Of course, for the application to the cantilevearnea,; = a;(x) andr,;, = n,(x). By including the
rigid contribution of higher modes in the above SRBrmulation, we are essentially assuming that
modal responses are uncorrelated for all modes uptlen, and perfectly correlated for all truncated
modes. Thus, the SRSS rule employs two extremeoappations of the cross-modal correlations:
zero for the modes included in the analysis andrIHe truncated modes. Admittedly, the SRSS rule
is much simpler than the CQC, as the former doésaguire computation of correlation coefficients.
However, it is apparent from Fig. 4.3 that, eventh® simple structure examined, the approximation
of zero correlation among high modes is untenable.

It is well known that the reliability of the SRS$paoximation in response spectrum analysis of
structures depends on the specific application.sAswn by Chopra (1995), when we consider
gquantities related to the relative displacementSSRnay be adequate in some cases of practical
relevance. This is particularly the case when #sponse is influenced only by the first few modes,
and the actual correlation among them is smalksuoh cases, the SRSS rule gives results that are
close to those of the CQC rule. However, in thdyamaof the total acceleration response, the cante
is different. As explained in Section 2.3, we expbe response close to the base of the struaiure t
driven by the higher modes, which are usually gfiprorrelated among themselves. In the SRSS
approach, the modes are treated as either undedet@ as fully correlated, depending on the
selection ofn. Therefore, the prediction based on Egn. 4.1 glyodepends on the number of modes
used in the analysis. An insight into that issugiven by the following argument: consider a stuoet
whose natural frequencies, even the lowest onesmach higher than the frequency components of
the ground excitation. Obviously, such a struchekaves approximately as a rigid body, and the PFA
equals the PGA at every location in the structlites means that the rigid approximation is adequate
even when we include no modes in the analysis,wileenn = 0. In that case, the predictions based
on the CQC and SRSS rules are identical and corrtmtvever, when we explicitly include some



modes (n > 0), the predictions disagree. Note that, for thedrigtructure, the actual correlation
coefficients are unitary for each pair of modes fordeach mode and the ground excitation, while the
spectral acceleration is equal to the PGA for eaclle. Consequently, the CQC prediction is not
affected byn. On the other hand, the correlation structure rassuby the SRSS depends on
Consider the limit when goes to infinity and all modes are included in dmalysis. In that case, the
rigid contribution vanishes, so that Eqn. 4.1 idueed to the PGA multiplied by square root of the
sum of squares of the coefficients. Fig. 4.4(a) reports the outcome of this sum, glibve profile of

the cantilever. The outcome has been computed mcetigy investigating the convergence of the
series up to a few thousand modes. It appearstlieaseries converges to 0 at the base of the
cantilever, and to 2 at its top. Thus, when all swdre included, SRSS overestimates the acceleratio
at the top by a factor two, and underestimatesatieeleration near the base by an arbitrarily large
factor (depending on selected valuexdf The remarkable conclusion is that, the lessntimaber of
modes included in the analysis, the better the SRi®S8iction, the reason being that the actual
correlation structure is captured much better leyrigid contribution than by the sum in Eqn. 4.1.

The first graph in Fig. 4.3 shows that, for the tagceleration, the rigid contribution plays no
significant role when at least two modes are inetuth the analysis. Hence, the results of CQC with
and without the rigid contribution are similar. SR@&Iso produces reasonable results, with a 5%
overestimation when a large number of modes isuded in the analysis. This overestimation is
related to the “rigid body” argument described abohhe overestimation at the top is smaller because
the correlations among the lower modes are muchlemthan one. When we consider a location
closer to the base of the structure, the differermmtween the three approaches is more evident. The
results of CQC including the rigid contribution dsgable”, i.e., they show small variation with

This indicates that the main contribution comesnfnmodes that are sufficiently rigid, such that the
approximation proposed in Sections 2-3 is acceptablhen only a single mode is included in the
analysis, the error is less than 20% for the acatibm response at = 0.15L and less than 10% for
that atx = 0.08L. As expected, the quality of the approximation rioyes as more modes are
included. However, one cannot guarantee that ther ®ill monotonically decrease with increasing
number of modes included in the analysis. When avaat include the rigid contribution in the CQC
formulation, the approximation close to the base lba extremely poor, unless we include a large
number of modes, with the required number dependinghow close we are to the base. The
estimation by SRSS with the rigid contribution sisaavtrend near the base that we have anticipated in
the previous paragraph. With a small nhumber of reddeluded, the approximation is acceptable;
however, the approximation deteriorates when wkidtecan increasing number of modes. In fact, we
expect it to predict a zero acceleration at the lvésen we include all the infinite modes.

Similar considerations can be drawn from Figs. B).4(vhich show the profile of the estimated
acceleration including = 1, 3 or 50 modes in the analysis. When we inclueeritjid contribution,

both CQC and SRSS estimate the PGA at the basependently of, while the prediction is zero
without the rigid contribution. Fon = 3, the agreement between CQC and SRSS is acceptable.
However, as we include more modes, SRSS progrégsigstimates smaller accelerations close to the
base, down to zero, while the result based on € @ithout the rigid approximation improves with
increasing number of modes.
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5. CONCLUSION

A formulation is presented for including the cobtiion of truncated modes in the CQC modal
combination rule for the peak floor acceleratiornisT approximation is equivalent to the “static
correction” (Der Kiureghian and Nakamura, 1993; @ag 1995) used in estimating quantities related
to relative displacement. While the “static cori@et requires that the user compute the static
response of the structure under a distributed l|dhd, “rigid” approximation we propose for
acceleration does not require any computationsiving the response of the structure: only the
flexibility of lower modes explicitly included inhe analysis is used. This happens because the
acceleration in rigid modes is identical to theug acceleration. Furthermore, while the “static
correction” usually plays a minor role in estimgtimisplacement-related responses, the rigid
contribution is crucial for correct estimation ofdl accelerations.

Through a simple example, it is shown that the comlgnused SRSS rule may lead to incorrect
estimation of acceleration responses, particulaelyr the support points of the structure. Furtheemo
this method is associated with the undesirable \behaf possibly producing less accurate results
with increased number of modes included in theyaisl
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