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Due to the severe damage that the switches and porcelain insulators have experienced during many 
earthquakes (Fujisaki, 2009), and to mitigate the vulnerability of new disconnect switches and other 
electrical substation equipment in Northern America, the Institute for Electrical and Electronics 
Engineers (IEEE) is developing and updating guidelines for seismic testing and qualification of 
disconnect switches. These guidelines require certain disconnect switches to be tested on shaking 
tables using an IEEE693 (IEEE, 2005) spectrum-compatible strong motion to qualify the switch at 
certain performance levels. If the disconnect switch does not qualify according to the IEEE guidelines, 
modifications of the switch or its support structure should be performed. The switch should then be re-
tested and pass in order to be qualified. 
 
This process, of repeating the shaking table test for the disconnect switch after design modifications is 
time-consuming, expensive, and sometimes not practical. This was the motivation for developing a 
new testing approach that can easily accommodate performing such design modifications, especially 
in the support structure. The proposed approach is based on the concept of real time hybrid 
simulations (RTHS) using a small shaking table for testing only a component of the disconnect switch, 
such as a single insulator, with an online computational model for the support structure. The main 
advantage of the hybrid simulation (HS) approach is its flexibility to evaluate any support structure as 
a numerical simulation model. In this approach, a simple modification in the computer model can help 
to minimize amplification of the support structure and frequency coupling between the switch and the 
support structure and as such can streamline process of research and development. Due to the complex 
nature of disconnect switches with the different components, fittings and mechanical parts, the 
suggested approach is not meant to substitute the full switch qualification tests. However, it could save 
expensive full-scale shaking table tests for every time a modification in the support structure or the 
switch is made. Moreover, the design of the support structure can be optimized using the suggested HS 
testing approach, which is the essence of the experimental testing program conducted in this study. 
 
The ultimate goal of the experimental study was to develop the HS approach for vertical-break 
switches. However, only the first stage of the study, which focused on demonstrating the concept of 
substructuring to be utilized in RTHS, is presented in this paper, whereas the development and 
validation of the RTHS framework is discussed in (Günay et al., 2012). Two types of switches were 
considered for the study; namely 230-kV and 550-kV disconnect switches. The experimental program 
started with several frequency analyses and static cyclic-loading calibration and fragility tests in order 
to acquire basic knowledge of 230-kV and 550-kV single porcelain insulator posts. 
 
Several substructured dynamic tests were carried out by testing part of the disconnect switch using 
offline signals that were generated from previous tests of complete switch assembly with the support 
structure (called as-installed switch in this study). The results of the substructure and as-installed 
switch tests were then compared. Two tests were conducted for this purpose. The substructure test 
with offline signals was conducted on the 550-kV switch (three-insulator posts assembly) on the six-
degree-of-freedom shaking table of the Pacific Earthquake Engineering Research (PEER) Center 
without support structure. Moreover, the 550-kV substructured test aimed at evaluating the 
contribution of support structure rotations to the seismic performance of the disconnect switch. Out-of-
plane rotations are expected to have significant values due to the flexible nature of the 550-kV support 
structure in the out-of-plane direction. The second test focused on testing a single porcelain insulator 
of a 230-kV vertical-break disconnect switch on a small unidirectional shaking table at the Structures 
Laboratory of UC-Berkeley. The effect of rotations was assumed to be insignificant in the 230-kV 
case due to the high stiffness of the braced frame support structure of this switch type. Thus, the main 
objective of that test was verification of the single insulator substructuring concept to be utilized in the 
intended RTHS framework on the same unidirectional shaking table. 
 
2. STATIC AND RESONANCE SEARCH TESTS 
 
The conducted static tests were the first stage of the multi-stage experimental study. Two different 
types of porcelain insulator posts were tested. The first type included one 230-kV insulator post which 
consisted of 2 sections and had an overall height of 80 in., while the second included several 550-kV 
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SG#2 and SG#4, respectively. The jaw insulator strains in substructured and as-installed switch tests 
were compared for the three configurations as summarized in Table 3.1. The comparison showed how 
the rotational component of the signal led to better match with the as-installed switch results. 
 
Table 3.1 Comparison of insulator strains in the substructured tests with those of the as-installed switch test.  
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3.2.3. Comparison of Relative Displacements 
The relative displacements of the jaw-side insulator were determined in the out-of-plane direction as 
the difference between the displacement measured at the top of the insulator and that measured at its 
base. The comparison of the jaw post relative displacements between the substructured test with and 
without the application of the rotational component and that from the as-installed switch triaxial test is 
shown in Fig. 3.2 for the OC configuration. Similar to the strains, inclusion of the rotational 
component of the input signal results in better match with the relative displacements from the as-
installed switch test. Although not shown here due to limitations of the paper size, same conclusion 
was drawn from the other switch configurations. The good match in case of rotation inclusion verifies 
the validity of substructuring in 550-kV switches using a rotational DOF. 
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Figure 3.2 Relative displacement between the jaw post top and bottom for different tests in OC configuration. 
 

4. SUBSTRUCTURED DYNAMIC TESTS: 230-KV SWITCHES 
 
After evaluating the effect of support structure rotations and acceptable verification of the 
substructuring concept in the 550-kV switches, response of 230-kV switches that comprise braced 
support structure was investigated. Due to the rigid nature of the 230-kV switch support structure, the 
rotations are not expected to contribute significantly to the response of the insulator posts. 
Accordingly, the 230-kV switch is more suitable for developing the intended unidirectional RTHS 
testing with a single translational signal applied. Thus, the substructuring in 230-kV switches focused 
on testing a simple idealized substructure: a single insulator post with relevant live parts. After the 
substructuring concept was properly verified, the single insulator post was used as the physical 
specimen in all of the conducted HS implementation and validation tests (Mosalam et al., 2012).  
 
4.1. Test Setup 
 
The single substructured 230-kV insulator post was tested on the uniaxial shaking table at the 
Structures Laboratory of UC-Berkeley. Similar to the 550-kV switch substructured tests, the 230-kV 
insulator test was driven by an offline signal that was generated from the acceleration record on top of 
support structure in the as-installed 230-kV switch tested on PEER shaking table in 2008 (Takhirov, 
2008). In the 230-kV case, only the OO configuration was considered when jaw post is disconnected 
on top from other two posts, allowing it to be used independently as a substructure. The as-installed 
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the two tests in Fig. 4.4. The results show a good match in relative displacements and strains, 
validating the developed substructuring concept for 230-kV switch. 
 

 
 

Figure 4.3 Comparison of relative displacements between the top and bottom of the jaw post for the as-installed 
switch test at PEER shaking table and substructured test at the small unidirectional shaking table. 

 

 
 

Figure 4.4 Comparison of strains at the insulator bottom for the as-installed switch test at PEER shaking table 
and single insulator test at the small unidirectional shaking table. 
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5. HYBRID SIMULATION TESTS 
 
After the 230-kV substructured test was properly validated, it was desired to develop a RTHS 
framework where an online computed signal is used instead of the offline generated signal used in the 
substructured tests. An integrated environment that uses a single-degree-of-freedom spring model to 
represent the support structure (analytical substructure) was utilized along with the single insulator 
post (physical substructure) to generate and update the input for the small shaking table in real time. 
Although not presented here, the implementation and validation of the RTHS framework was 
successfully achieved and details can be found in (Mosalam et al., 2012 and Günay et al., 2012). 
 
6. CONCLUSIONS 
 
From the 230-kV and 550-kV porcelain insulators static tests, it was observed that force-displacement 
and force-strain relationships are very close to linear until failure. Porcelain insulator posts showed 
brittle mode of failure in fragility tests as the failure took very short time to develop and propagate. 
  
From the substructured dynamic tests of the 550-kV switches, it was shown that including the rotation 
component in the input signal resulted in better match with the as-installed switch test. This reflects 
the significance of the out-of-plane rotations induced at the top of a flexible support structure as it 
contributes to approximately 25% (for this switch design) of the response quantities during earthquake 
loading. Accordingly, if the support structure is properly stiffened to eliminate or minimize the 
rotations, the straining actions developed during earthquakes can be reduced. In addition, rotations 
cannot be ignored if HS testing that utilizes substructuring is to be conducted.  
 
From the substructured dynamic tests of the 230-kV insulator posts, it was concluded that applying the 
uniaxial offline generated signal to the single post can reasonably reproduce the response from triaxial 
shaking table test of the as-installed switch in the open-open configuration. This implicitly validates 
the assumption that the rotations at the top of the rigid support structure used in the 230-kV switches 
can be ignored when single insulator post is tested. Accordingly, a HS framework for unidirectional 
testing of a single post insulator of 230-kV switches installed on stiff frames is a suitable approach.  
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