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Since only few studies considered seismic behavior of the insulators posts of disconnect switches 
(Gilani et al., 2000 and Takhirov et al., 2004), the study presented herein focused only on a single 230-
kV insulator post. That was to develop a better understanding of the insulators seismic behavior 
through finite element (FE) modeling and simulations. The first main objective was to conduct a 
sensitivity study to rank the different sources of uncertainties in insulator FE modeling and how the 
insulator behavior at failure is affected by the modeling parameters and assumptions. The dynamic 
failure of the insulator post was not possible to achieve experimentally (Mosalam et al., 2012). Thus, 
nonlinear dynamic analysis was sought to determine global insulator failure behavior under earthquake 
loading as a second objective.  
 
Several computational models were developed and calibrated using relevant experimental and material 
tests. However, only the most accurate FE model is presented herein. The conducted FE analyses 
included eigenvalue modal analysis, linear and nonlinear static and dynamic analyses. The nonlinear 
static (pushover) analysis focused on ranking the sources of uncertainties in insulator modeling 
through an extensive parametric study. Different model parameters were varied based on previously 
conducted material tests and the failure load and displacement were determined for each case. A 
“tornado diagram” was used to rank the sources uncertainties in model parameters. 
 
The most accurate nonlinear FE model calibrated from static analysis was used to conduct dynamic 
analysis using a base excitation similar to a signal applied to 230-kV sub-structured tests in a study 
conducted by the authors (Mosalam et al., 2012). The base excitation was applied at different scales to 
capture when the insulator failed under dynamic loading. Thus, it was possible to obtain the 
corresponding dynamic nonlinear force-displacement relationship for a single porcelain insulator post 
that is used in 230-kV electrical disconnect switches. 
 
2. EXPERIMENTAL RESULTS 
 
Several experiments were conducted by the authors (Mosalam et al., 2012) on single 230-kV porcelain 
insulator post. The experimental results were utilized in developing and calibrating the FE 
computational models. A brief discussion of the relevant tests used in this paper is presented in this 
section. First, several impact hammer tests were conducted on the insulator post in both of the static 
and dynamic test configurations for natural frequency determination. In the static test configuration, 
the insulator was connected to the reaction frame through a rigid base plate, and the mean value of 
frequency was found to be 19.25 Hz. On the other hand, the insulator had a frequency of 12.77 Hz 
when it was connected to the shaking table through a relatively flexible base plate in the dynamic test 
configuration. The difference in frequency is attributed to the flexibility difference at the insulator 
base in each test setup.  
  
Several ramp cyclic-loading tests were conducted in the static configuration to obtain the force-
displacement relationship and to estimate the insulator lateral stiffness. From the different runs, an 
average stiffness of 1.61 kips/in. was determined for the single insulator post. Subsequently, the 
insulator top was pulled to failure (fragility test) directly after the last applied load cycle to determine 
the mode of failure and the values of force and displacement at failure. The insulator had a very brittle 
mode of failure at 2.23 kips and corresponding displacement 1.60 inch. However, since the fragility 
was conducted right after several cyclic tests without letting the force to drop to zero after the cyclic 
tests, it was desired to shift the fragility curve to a zero starting point to facilitate FE model calibration 
and comparisons. This led to a corresponding failure load of 2.6 kips.   
 
The broken insulator parts were used to prepare six cylindrical specimens, Fig. 2.1, for porcelain 
characterization. The material tests aimed at determining the porcelain density, Young’s modulus, 
Poisson’s ratio, compressive strength, and tensile strength. These material properties were used to 
accurately calibrate the porcelain material model in the FE model. Several specimens were used such 
that the variation in the determined properties was utilized to vary the porcelain nonlinear material 
model parameters in the sought sensitivity analysis and parametric study. 
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bilinear behavior with infinite stiffness in compression and calibrated value in tension. The infinite 
compression stiffness was meant to reflect the fact that the metallic cap at insulator base cannot 
penetrate through the base plate. However, the bolts can stretch when tensioned which in turn 
introduce rotations at the insulator base. 
 
The flexible boundaries reduced the model stiffness, and hence reduced the fundamental frequency. A 
second eigenvalue analysis was conducted and the fundamental frequency from the modified FE 
model was determined. The new computational frequency was 12.84 Hz versus 12.77 Hz determined 
from the impact hammer tests when the insulator was mounted on the shaking table in the dynamic 
test setup. Achieving a comparable computational frequency value was necessary to proceed with the 
dynamic analysis. 
 
As mentioned previously at the end of Section 2, the accelerations measured at the insulator base on 
the shaking table during the 100%-scale test were employed as the excitation for the linear FEA. The 
FE dynamic analysis results were very comparable to the experimental results. That good match gave 
confidence about using the FE model in nonlinear dynamic analyses. Complete discussion of the 
dynamic analysis results and comparisons can be found in (Mosalam et al., 2012).  
 
4. RANKING UNCERTAINTIES IN PORCELAIN INSULATOR MODELING 
 
After calibrating the computational model, displacement-controlled nonlinear static analyses (0.05 in. 
increments applied at the insulator tip until failure) were performed. Subsequently, a sensitivity study 
was conducted to study how the force (cantilever load) and displacement at failure are affected by 
changing one of the FE model parameters, e.g. the porcelain tensile strength. In other words, since 
each model parameter reflects a source of uncertainty (or a random variable), it was intended to rank 
these sources of uncertainties to determine which parameter affects the modeled insulator response 
more. A “tornado analysis”, similar to that in (Lee and Mosalam, 2005), was used in this study.   
 
Several features of the DIANA M7 model influenced the nonlinear analysis and parametric study. Full 
capability of nonlinear material model was utilized for porcelain, i.e. not only the Young’s modulus 
definition as was the case in linear analyses and model calibration. Reduction in the grout Young’s 
modulus value was considered to account for any grout separation and/or degradation due to micro-
cracking that might develop at failure. The boundary condition at the base defined by bilinear springs 
contributed to the nonlinear behavior of the model. 
 
4.1. Sources of Uncertainties 
 
The FE model was used to investigate the sensitivity of the response of the insulator computational 
model to different input parameters that reflect sources of uncertainties in modeling. Each source of 
uncertainty (random variable) does not have a deterministic value, but have a range of possible values.  
 
Five sources of uncertainties (parameters) were considered in conducting the incremental nonlinear 
static (pushover) analysis. One input parameter was varied at a time while the remaining four 
parameters were held constant at their mean values. The first three parameters were related to the 
nonlinear porcelain material model and include: Young’s Modulus (Ep), tensile strength (ft) and 
fracture energy density (gf). The conducted material tests showed large variability in these properties 
and governed the varied material model parameters. The fourth source of uncertainty was the value 
used to calibrate the stiffness of the bilinear base springs in tension. The four springs represented the 
bolts used to attach the insulator base to the support structure. The corresponding variation can be a 
result of using different bolt lengths or different bolt alloy. Three different bolt lengths, 0.5, 1.0, and 
1.5 in. were used for the spring stiffness in tension calibration. The last parameter considered was the 
possible degradation and/or separation in the grout layer at the contact surface between the porcelain 
core and the metallic flange (cap). In order to avoid a computationally expensive FE model, a linear 
elastic material model was used for the grout layer. However, different levels of grout micro-cracking 
were considered by using Young’s modulus values ranging from 100% to 10% of the initial value.  



 

To study the sensitivity of the modeled insulator post to each of the above mentioned parameters 
independently, five groups of models were used. In each group, only one parameter was varied and the 
remaining four parameters were held constant at their mean values. Fourteen combinations, and in turn 
14 models, forming the 5 groups A to E were sought to conduct the parametric (sensitivity) study.  
 
4.2. Parametric Study Results 
 
The nonlinear static analysis involved applying a total tip displacement of 2.5 inch in 50 steps (0.05 
inch increments). The corresponding force at the base was determined to obtain the force-displacement 
relationship. The analysis was repeated for all 14 models, and the obtained force-displacement 
relationships were compared to the fragility pull test results. Five families of force-displacement 
relationships were obtained corresponding to the considered  5 groups. Only the one obtained by 
varying the porcelain Young’s modulus (Ep) is presented here in Fig. 4.1 as a sample of the results. 
However, a summary of failure loads and corresponding displacements obtained for each of the 14 
different models is shown in Table 4.1. These values were used to evaluate the range of change in 
response corresponding to each of the studied sources of uncertainties for the sake of the tornado 
diagram analysis as discussed next. 

 

 
 

Figure 4.1 Force-displacement relationships when varying Ep only (Group D). 
 
Table 4.1 Parametric study results. 

Group 
Variable 

Parameter 
Model 

Failure Load 
[kips] 

Disp. at Failure 
Load [inch] 

A gf 

M7- B1 2.813 1.60 
M7- B2 2.072 1.05 
M7- B3 1.720 0.85 
M7- B4 1.041 0.50 

B Eg 

M7- B5 2.648 1.45 
M7- B6 2.651 1.50 
M7- B7 2.621 1.50 
M7- B8 2.605 1.60 

C ks 
M7- B9 2.628 1.60 
M7- B10 2.611 1.40 

D Ep 
M7- B11 2.633 1.45 
M7- B12 2.621 1.60 

E ft 
M7- B13 3.082 1.70 
M7- B14 2.218 1.35 
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4.3. Tornado Diagram Analysis 
 
The tornado diagram, commonly used in decision analysis, is an effective way to represent the effect 
of sources of uncertainties. It has been recently used in sensitivity analysis in earthquake engineering 
and probabilistic seismic evaluation of structural components and systems (Lee and Mosalam, 2005). 
The tornado diagram consists of a set of horizontal bars, referred to as swings, one for each source of 
uncertainty (random variable). The length of each swing represents the variation in the output due to 
the variation in the respective parameter. Thus, a variable with larger effect on the output has larger 
swing than those with lesser effect. In a tornado diagram, swings are displayed in the descending order 
of the swing size from the top to the bottom. This wide-to-narrow arrangement of swings eventually 
resembles the shape of a tornado. 
 
In this study, the output of each tornado diagram is one of the porcelain insulator response quantities. 
These are the failure load and corresponding displacement. Typically in a tornado diagram analysis, 
the deterministic function is evaluated twice, using the two extreme values of the selected input 
random variable, while the other input random variables are set to their best estimates such as the 
medians. The conducted nonlinear FE analysis of the single porcelain insulator post is considered to be 
the deterministic function evaluation in this study. In addition, each of the 5 groups of parameters that 
ranged between upper and lower bounds represented the input to the FE analysis. When one of the 
input parameters (variables) was set to a lower or upper bound, the rest of parameters (variables) were 
set to the mean values as previously mentioned. In this case, the two bounding values of the output can 
be obtained directly for each of the 5 groups from Table 4.1 that summarizes the failure load and 
displacement (output) values for each run (variable input). The absolute difference of these two values 
is the swing of the output corresponding to the selected input random variable. The tornado is then 
built by arranging the obtained swings in a descending order as mentioned above, and the sources of 
uncertainties are ranked accordingly according to its influence. The tornado diagram for the first 
output which was the failure load is shown in Fig. 4.2, while that for the displacement at failure is 
shown in Fig. 4.3. The tornado diagrams in these figures present a clear picture of the effecting 
parameter identification, where the Young’s modulus (Ep) and tensile strength (ft) are observed to have 
significant effect on the response compared to the others 
 

 
 

Figure 4.2 Tornado diagram for the effect of different sources of uncertainties on the failure load. 
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Figure 4.3 Tornado diagram for the effect of different sources of uncertainties on failure displacement. 
 
5. NONLINEAR DYNAMIC ANALYSIS 
 
The nonlinear dynamic analysis used one of the DIANA M7 models of the previous parametric study, 
namely M7-BM12 in Table 4.1. This model considered the lower bound for the porcelain Young’s 
modulus and the mean values for the rest of the model parameters and showed the best match with 
experimental force-displacement relationship. For computational efficiency, the nonlinear analysis 
considered only the strong motion part of the signal. A 5-second signal comprising the peak 
acceleration was used. The main objective of the nonlinear dynamic analysis was to understand the 
nature of the insulator failure under dynamic loading, which was not possible to determine 
experimentally due to the shaking table limitations. 
 
It should be noted that the accelerations measured on the unidirectional shaking table was used only in 
linear dynamic analysis for model calibration purposes using the test results. However, for all the 
nonlinear dynamic analyses, the input signal generated directly from support structure response, as 
mentioned in Section 2, was used since it represents a more realistic loading in terms of the nonlinear 
response evaluation of the insulator. This is because the input signal does not contain the possible 
noise and amplification introduced by the dynamic characteristics of the unidirectional shaking table. 
 
The strong motion part of the signal was applied with increasing scale until failure was captured. The 
first global failure and instability was observed when the signal was 10 times amplified. As shown in 
Fig. 5.1, the relative displacement at insulator top increased significantly. The peak value for the 
relative displacement at this scale was unrealistically large indicating a global failure. Therefore, scale 
9 signal was considered as the maximum intensity level that the insulator can withstand before global 
failure. The peak values of several response parameters, namely top acceleration, displacement (total 
and relative), base force and number of cracks opened during the analysis, were determined (Mosalam 
et al., 2012). A summary of these peak values at the end of each analysis run is presented in Table 5.1. 
The peak input acceleration is also presented in Table 5.1.  
 
To determine the failure load from the obtained results, the peak force–peak displacement relationship, 
Fig. 5.2, was developed. The relationship is almost linear until failure, which agrees with the brittle 
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behavior expected from the porcelain insulator. The failure load is suggested to be the last point on the 
linear portion of the relationship before extremely large displacements were observed, i.e. a failure 
load of 5.76 kips. The determined dynamic failure load of 5.76 kips was 2.2 times the load capacity 
determined from nonlinear static analysis of the same M7-BM12 model (failed at 2.62 kips from Table 
4.1, which was very close to the actual value obtained from fragility test). The reason why the force 
capacity determined from dynamic loading is almost double the value from the static loading is 
attributed to the distributed mass, and in turn distributed force, along the insulator height. In a static 
configuration, the load is applied at the insulator top leading to a large moment arm that is equal to the 
entire insulator height. However, in a dynamic test, the base moment is equal to the integral of the 
product of the distributed mass, acceleration and varying moment arm, which in turn results in a 
reduced moment arm for the resultant force and this explains the reduced base moment values and 
obtained higher load capacity.  
  

 
 

Figure 5.1 The relative displacement time history at insulator top for scale 10 signal. 
 

Table 5.1 Peak values of response quantities at different input signal levels from the dynamic analyses. 

Input Signal Peak 
Force 
[kips] 

Peak Top Acceleration 
[g] (ratio with peak 
input acceleration) 

Peak 
Total Disp. 

[in.] 

Peak 
Relative Disp. 

[in.] 

Number of 
opened 
cracks Scale Peak Acc. [g] 

1 1.65 0.64 3.86 (2.34) 3.43 0.27 0 
2 3.30 1.43 7.73 (2.34) 6.86 0.55 0 
3 4.95 2.15 15.02 (3.03) 10.15 0.73 87 
4 6.60 2.90 20.95 (3.17) 13.38 1.01 932 
5 8.25 3.64 28.49 (3.45) 16.62 1.29 2859 
7 11.55 4.78 33.17 (2.87) 23.14 1.60 8878 
9 14.85 5.76 37.67 (2.54) 29.75 2.00 22958 

10 16.50 6.29 40.96 (2.48) 33.52 18.17 45671 
11 18.15 7.60 56.77 (3.13) 53.02 76.76 70782 

 
6. CONCLUDING REMARKS  
 
The following conclusions can be inferred from the presented FE computational investigation of 
porcelain post insulators of the 230-kV substation vertical disconnect switches: 

1) The close agreement between the FE analyses results and the experimental values provided 
confidence of the validity and accuracy of the adopted detailed DIANA finite element model. 

2) In the conducted sensitivity analysis to rank the sources of uncertainties in the porcelain 
insulator computational modeling, two model parameters were found to be significantly 
affecting the failure load and the corresponding displacement values. These parameters are the 
porcelain fracture energy density and tensile strength. Therefore, a reliable FE computational 
model should account for these uncertainties in the porcelain material properties, in cases 
where it is not possible to eliminate them physically.  

3) Only the porcelain fracture energy density (gf), as a source of uncertainty, was found to affect 
the values of the insulator failure load and displacements together without affecting the model 
initial stiffness. On the other hand, all other sources of uncertainty affected either the failure 
load or displacement independently, which indicates a change in the model initial stiffness. 
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4) The failure load and mode of failure of the porcelain insulator under earthquake loading was 
determined using nonlinear dynamic FEA, since it was not possible to fail the insulator in 
dynamic testing. The determined dynamic failure load was 2.2 times the load capacity 
determined from static fragility tests and calibrated nonlinear static analysis because of the 
distributed mass of the insulator that leads to distributed forces along insulator height. 

5) A proper amplification factor has to be utilized if the dynamic failure load is to be estimated 
from a cantilever static test. A suggested amplification factor of 2 is recommended for the case 
of the 230-kV porcelain insulator posts based on the ratio determined from the calibrated static 
and dynamic FE simulations in this study.  

 

 
 

Figure 5.2 Peak force versus peak displacement relationship from nonlinear dynamic analyses 
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